Stateful Analysis and Fuzzing of Commercial Baseband Firmware

Ali Ranjbar Tianchang Yang

Kai Tu

Saaman Khalilollahi Syed Rafiul Hussain

Penn State University Penn State University Penn State University = Penn State University Penn State University

aranjbar@psu.edu 1zy5088 @psu.edu

Abstract—Baseband firmware plays a critical role in cellular
communication, yet its proprietary, closed-source nature and
complex, stateful processing logic make systematic security
testing challenging. Existing methods often fail to account
for the interdependencies between baseband tasks and the
statefulness of input processing logic, limiting their scope and
effectiveness. We present LORIS, a stateful fuzz testing frame-
work designed to explore and analyze baseband firmware im-
plementations effectively. We employ iterative symbolic analysis
to progressively identify state variables and the predicates over
them that define different protocol states, while alleviating the
state explosion problem. It enables LORIS to perform targeted
exploration and fuzzing of program regions with high potential
for vulnerabilities. We evaluated LORIS across 5 commercial
devices from two major vendors, covering both 4G Long-Term
Evolution (LTE) and 5G New Radio (NR), demonstrating its
broad applicability. Our testing revealed 7 new vulnerabilities
exploitable by over-the-air attackers, potentially leading to
baseband crashes, remote code execution, and denial of service.

1. Introduction

The widespread deployment of cellular networks pro-
vides mobile connectivity for a wide range of user devices,
including smartphones, IoT devices, and other smart tech-
nologies. Critical to this cellular connectivity is the baseband
modem, which is responsible for processing signals and
managing data flow between devices and the network infras-
tructure. Despite its importance, baseband security is often
overlooked due to its closed nature and operating under
licensed spectrum. To make matters worse, as an embedded
system, the baseband modem is typically written in memory-
unsafe languages, such as C or C++. This exposes the
modem to memory corruption vulnerabilities, such as buffer
overflows and use-after-free, which the attackers can exploit
to perform remote code execution and denial-of-service at-
tacks. Adding to this, cellular communication protocols [1],
[2], [3], [4] are highly complex, comprising numerous pro-
tocol states and the complexity leads to memory errors
that are often only exploitable in a stateful manner. Since
baseband firmware is directly exposed to cellular network
communications, attackers can exploit such vulnerabilities
using malicious over-the-air (OTA) messages [5], [6], [7].

kjt5562 @psu.edu

saamanl377@gmail.com hussainl @psu.edu

Recognizing these challenges, we focus on systematically
analyzing memory-safety violations in baseband firmware
when exposed to unexpected or malicious OTA messages.

Due to basebands’ proprietary and closed-source nature,
previous security analysis on basebands mostly resort to
black-box OTA testing [8], [9]. However, this approach is
prohibitively inefficient, taking ~1 minute to execute just
one test case over-the-air. More importantly, OTA testing can
only observe input/output behaviors and cannot introspect
basebands’ internal states. As a result, existing OTA testing-
based approaches fail to identify memory corruption vulner-
abilities, their root causes, or potential security implications.
To avoid the challenges of OTA testing, analysis of firmware
implementations relies heavily on reverse engineering and
emulation [5], [6], [7], [10], [11], [12], [13], [14]. Commer-
cial firmware implementations are, however, highly com-
plex, comprising numerous internal tasks and peripherals
(typically close to 100 tasks in 4G basebands and over 150 in
5@G), each having varying expected message formats and per-
forming different functions like processing OTA messages,
managing hardware drivers, and retrieving other critical
information. These tasks have intricate interdependencies
and complex interactions with peripherals that complicate
emulation efforts. Even if emulation is feasible, testing a
specific protocol while running all tasks simultaneously fails
to capture state and task interactions, ultimately missing
stateful bugs that only arise under specific conditions.
Previous Work. Due to these challenges, prior attempts to
test baseband security have been limited in scope, over-
looking complex program states and requiring extensive
manual setup and harnessing, as summarized in Table 1.
FirmWire [10] emulates the baseband as a whole while
disabling some components (e.g., SIM task) and injects
unexpected messages through manually-created harnesses.
However, this approach overlooks the stateful nature of the
baseband, resulting in low coverage, and its reliance on
manual harnessing limits its extensibility. BaseSAFE [10]
tests individual functions one at a time, demanding substan-
tial effort to harness the correct parameters and construct
valid input formats. This approach cannot detect flaws that
arise across multiple functions, such as errors in data passed
from decoding functions to subsequent processing stages.
Lastly, BaseComp [15] uses static analysis to exclusively
test integrity protection functions, but it is limited in scope
and does not apply to other tasks.

TABLE 1. COMPARISON WITH EXISTING BASEBAND SECURITY WORK

Approach Full Task State-Aware Manual Effort Target Layer
FirmWire [10] v X TI, SH RRC (4G), SM, CC (2G)
BaseSAFE [12] X X TI, FH NAS, RRC (4G)
BaseComp [15] X X TI, FH NAS (4G)

LORIS v v TI NAS (4G, 5G)

M: MediaTek, S: Samsung

TI: task identification, SH: state harnessing, FH: function harnessing
Methodology. To address these limitations, we design
and implement LORIS, a stateful and grammar-aware
fuzzing framework designed to thoroughly analyze baseband
firmware. We observe that tasks within baseband firmware
are generally organized by the specific cellular protocol they
handle. Thus, LORIS focuses on a single task at a time,
specifically, the task responsible for processing the targeted
OTA messages, while accounting for this task’s complex
internal states and its interdependencies.

LORIS identifies state variables, which store state infor-
mation for the target task, by observing variables that persist
across message processing iterations and follow the use-
before-define principle. Essentially, LORIS considers non-
local variables within the message processing loop as po-
tential state variables if they are assigned within the loop
(i.e., not constants or configuration values), and are used
in an iteration either before or without being defined (i.e.,
assigned) in that iteration. This usage pattern indicates that
the variable’s value either persists from a previous iteration
or is assigned by another task. These state variables reflect
both internal state maintained by the task (e.g., the outcome
of prior message handling) and results from interdepen-
dent tasks (e.g., outputs from other message handlers or
peripheral interactions). Their values often govern branching
decisions, enabling or restricting access to specific code
regions based on runtime conditions, such as protocol state
(e.g., whether a security context is established) or peripheral
status (e.g., a SIM card read completed). LORIS treats these
variables as effective proxies for the task’s state.

LORIS then uses symbolic analysis to extract state pre-
conditions that these state variables must satisfy for an OTA
input to reach different code regions. This enables LORIS to
configure various program states prior to injecting fuzzing
inputs, facilitating the effective exploration of various pro-
gram regions to significantly improve code coverage. To
manage the hundreds of state variables in a task and effec-
tively mitigate the state explosion problem during symbolic
execution, we develop a novel iterative symbolic execution
approach. In each iteration, LORIS analyzes the regions it
can explore with the current symbolic values while also
adding new state variables as symbolic to gradually open
up more execution paths. This iterative approach enables
LORIS to collect state preconditions for existing symbolic
state variables while discovering additional state variables
in newly accessible paths. Additionally, it allows LORIS
to reuse prior analysis results on branches unaffected by
the newly introduced symbolic values to progressively build
results. LORIS employs a ranking mechanism to prioritize
state variables that are computationally less expensive and

likely to unlock more code regions in each iteration.

After iterative symbolic execution, LORIS generates con-
crete instantiation values for the state variables that satisfy
the identified state preconditions. These values are stored as
memory snapshots, setting the task’s state prior to fuzzing.
To explore the task effectively in each state, LORIS em-
ploys a grammar-aware input generator capable of producing
specification-compliant messages.

Findings. We evaluated LORIS on 5 proprietary, closed-
source commercial baseband binaries from Samsung and
MediaTek, supporting both 4G LTE and 5G NR. These
basebands are used in devices from two smartphone ven-
dors, Google and Samsung. LORIS uncovered 8 previously
unknown vulnerabilities, 7 of which are exploitable by
OTA messages. These vulnerabilities may lead to sensitive
data leakage, remote code execution, and denial-of-service
attacks, impacting user connectivity and potentially com-
promising user privacy. We successfully reproduced all ex-
ploitable vulnerabilities on real devices via OTA messages.
Responsible Disclosures. We reported all found vulnera-
bilities to the respective vendors. All 8 vulnerabilities were
confirmed, with 2 rated as high severity and 1 as critical.
Open-Sourcing. We make LORIS publically available at
https://github.com/SyNSec-den/Loris.

Contributions. In summary, our main contributions are:

« We develop LORIS, a state-aware analysis framework
tailored for effective testing of baseband firmware.

o We design and implement a novel iterative symbolic
analysis to detect state variables and extract their pre-
conditions to guide LORIS’s testing while mitigating
the state explosion problem.

o« We are the first to support reverse engineering and
emulation of commercial 5G basebands.

e We evaluate LORIS on 5 commercial devices from 2
vendors, covering both 4G LTE and 5G NR, demon-
strating LORIS’s broad applicability and effectiveness.
LORIS uncovered 7 new exploitable issues that may
affect user connectivity and compromise user privacy.

2. Background

Baseband Architecture. Besides the application processors
that run the mobile operating system, modern smartphones
also have dedicated baseband processors (BPs) responsible
for handling cellular communication with network base
stations. These BPs facilitate essential wireless connectivity,
cellular communication, and data transmission. To ensure
predictable behavior and meet the strict real-time require-
ments of cellular communication, the baseband processor
operates using a real-time operating system (RTOS) as
its firmware. For conciseness, we may refer to baseband
firmware simply as “baseband” throughout this paper. The
RTOS runs various cellular tasks, each implementing a
never-ending loop to continuously receive and process new
messages as long as the system is active. For example, Sam-
sung’s RTOS ShannonOS implements the Non-Access Stra-
tum (NAS) stack in an NASOT task. While OTA messages
processed by the baseband follow cellular specifications, the

https://github.com/SyNSec-den/Loris

proprietary nature of baseband means that details of its in-
ternal task implementation and inter-task messaging formats
are typically undisclosed, requiring reverse engineering the
firmware to understand its operation and assess the security
of cellular communication systems [5], [6], [16].
Baseband Emulation. Emulation enables the execution of
binaries compiled for different architectures, making it valu-
able for analyzing proprietary baseband firmware. Emulat-
ing a BP facilitates the execution of its firmware outside
the physical device, allowing controlled access to its core
functionality in a virtualized environment. Prior research has
demonstrated that emulation is highly effective for security
testing of embedded firmware [10], [12], [17], [18], [19].
Unlike OTA testing, which requires physical device interac-
tion, emulation enables direct introspection of the firmware’s
internal state, allowing for detailed monitoring, debugging,
and analysis of security issues as they emerge. This capa-
bility supports in-depth analysis of discovered vulnerabili-
ties and insights into firmware behavior, providing a more
comprehensive approach to security testing. QEMU [20] is
an open-source platform that supports full-system emulation
of various architectures and hardware peripherals, and is
widely used in baseband research [10], [12], [17], [18].

3. Threat Model & Motivation

3.1. Threat Model

We consider Dolev-Yao style adversaries who can in-

ject, drop, eavesdrop, or modify messages using fake base
stations [21], Man-in-the-Middle (MitM) relays [22], or
signal injectors [23]. These adversaries overpower legiti-
mate base stations with stronger signals, luring baseband
to connect to them or injecting malformed signals into
the communications. Additionally, as 5G networks become
more widespread across diverse use cases, the increase in
smaller providers, disaggregated RAN systems [24], and
home network devices (e.g., home base stations) introduces
additional risks. These emerging systems and devices of-
ten lack stringent security guarantees or even carry back-
doors and malicious intent, further exposing connected user
equipment to potential threats [25], [26]. Consequently, we
consider both pre-authentication messages and those that are
integrity-protected and/or authenticated, addressing potential
risks from both malicious and legitimate sources.
Scope of Testing. LORIS can be used to test different layers’
OTA messages in both 4G and 5G. This work focuses on the
NAS layer’s messages exchanged between the core network
and UE. The NAS protocols and messages are critical for
the overall security and session management in cellular
networks, with complex message structures and numerous
protocol states that make thorough exploration challenging.
We focus on identifying and mitigating memory corruption
vulnerabilities, such as buffer overflows and use-after-free
errors. We do not aim to detect logical errors such as
authentication or access control violations.

3.2. Motivating Example

Baseband firmware implementations consist of multiple
tasks running concurrently, each responsible for handling
different internal or OTA messages. To illustrate the mo-
tivation behind LORIS’s design, we present a previously
unknown vulnerability LORIS detected in a Pixel Exynos
baseband firmware (V4 in Table 4). Consider the simplified
code example of a single task responsible for processing
5G NR NAS protocol messages, extracted through reverse-
engineering, as shown in Listing 1. Before entering the main
processing loop, the task undergoes initialization (line 4 in
Listing 1), where several variables that control the process-
ing of the received messages are defined and initialized.
These variables include MmProc and MmAS, which are later
used on lines 17 and 18, respectively. MmProc represents
the current state of the 5GS Mobility Management (SGMM)
procedure, the protocol used for the registration, deregistra-
tion, mobility, and security between the baseband and AMF
(Application and Mobility Function) in the core network.
MmAS denotes the status of the Access-Stratum (AS) con-
nection between the baseband and base station managed
through Radio Resource Control (RRC) layer messages.
Both variables are initialized to zero, indicating the initial
states of no active procedure or connection. We identify
these variables as state variables because they capture the
task’s protocol state, and their values directly influence
the subsequent handling of messages. Other variables may
also initialize during this phase, such as msg_type which
temporarily stores the type of the received message, and
function pointers for decoding function dispatchers (line 34).

After the initialization, the task executes the main
message-handling loop, where the task continuously waits
for, receives, and processes incoming messages (lines 5- 10)
in a loop. Upon receiving a NAS message, the task first
performs several validation checks, e.g., checks the values
of related state variables (lines 17-18). The task processes
the radio message (line 19) only when the baseband has
started the SGMM procedure and the connection with a base
station has been established (i.e., an AS connection exists).
When processing the received message, the task first verifies
the validity of the message in CheckSecCompliance,
where several other state variables are involved (line 24).
For example, it may validate the security header type based
on the current status of the security context, which is stored
in a state variable. Only after all checks are successful, the
received radio message is decoded and further processed
(line 25). The decoding function, RadioMsgDecode (lines
30-36), processes each information element (IE), i.e., the
fields in the OTA message, by iterating through the elements
and dispatching a corresponding decoder function for each
type (i.e., a function pointer to the corresponding decoder).

The vulnerable DecodeExtEmergNumList function
is invoked by the indirect call on line 34. It decodes the
extended emergency number list IE [2], which contains local
emergency numbers that callers can use to reach emergency
services. The loop on lines 40-44 iterates through each
emergency number information block in the input buffer,

Task_Msg_t =*msgPtr;
A NasotInitialize();
do {
6 int err = pal Msg
if (lerr)
8 Ext

eiveMbx (NASOT_QID, &msgPtr);

ndler (msgPtr);
1sg () ;

14 void ExtMsgHandler (Task_Msg_t xmsgPtr) {

15 msg_type = msgPtr->group >> 8 & Oxff;

16 if (msg_type == RADIO_MSG)

17 f (MmProc != 5GMM_PROC_NULL &&

18 MmAS == 5GMM_IN_CONNECT)

19 ProcessRadioMsg (msgPtr->payload, msgPtr->plSize);

Msg (byte xdedInfoNas, ushort size) {
>liance (dedInfoNas, size)) {
ioMsgDecode (dedInfoNas, size);

30 int RadioMsg = (byte *msg, ushort size) {
31 byte typ rmmV e (msg) ;
3 IeCb xcb NrmmV ec (typ);
f (cb->decoder !'= 0) {
34 cb->decoder (msg, size);
35 }
36}
33 int DecodeExtEmergNumList (byte xbuf, ushort size) {
39 byte idx = 0;
10 do {
41 EmergNumInfo *info = (EmergNumInfo) (buf + idx);

12 idx = idx + info.length + 1;

44 }

45}
Listing 1. Simplified Code for the NASOT Task in Pixel Baseband

e(idx < size)

buf, using the length of each block to locate the offset to
the next block. The length of each block is stored in its first
octet, and since the specification does not enforce bounds on
this field, its value can range from 0 to 255. However, on line
42, a missing bounds check on the length field leads to an
integer overflow vulnerability that results in an infinite loop.
For example, if the length of the first block is 255, the 8-bit
integer 1dx overflows. The overflow results in the value of
idx wrapping back to O after the calculation, causing the
decoder function to be trapped in an infinite loop.

In summary, uncovering this vulnerability requires the
following capabilities. (1) Identify the relevant task: Locate
the specific task responsible for processing OTA messages
within the baseband’s complex task interactions (§4.1); (2)
Understand task dependencies and state space: Comprehend
the impact of dependent tasks, such as MmProc and MmAS,
and their state space to ensure the test input is accepted
and reaches the vulnerable logic (§4.2); (3) Resolve function
pointers: Resolve indirect calls to the vulnerable decoding
function (§4.3); (4) Craft syntactically and semantically
correct inputs: Generate inputs that follow both syntactic
and semantic requirements to pass initial decoding checks
(§87); (5) Introduce appropriate mutation in the triggering

e

init/resume/suspend

[] Bsm | (s cc]{rcee][ow |

scssiorémgmt data)‘auth ‘SIP
’ congcst{ion ctrl ‘ cell co%m/data
o] [] (s ltsﬂﬂs (e o [~

Figure 1. Dependencies of the NASOT Task in a Samsung Baseband

-

NASOT

-

field: Produce the specific length field value required to
trigger the vulnerability (§7).

4. Challenges of Designing LORIS

§3.2 demonstrates that to effectively uncover vulnerabil-
ities in a baseband firmware, LORIS has to navigate through
several challenges. We detail a few critical ones below.

4.1. C1: Target Task Identification & Isolation

For ease of exposition, the motivating example pre-
sented in Listing 1 shows the simplified version of a single
NASOT task in baseband firmware. In reality, each baseband
firmware contains over 100 tasks, each handling various
functionalities such as processing OTA messages, manag-
ing connections, and interacting with hardware drivers. For
instance, as shown in Figure 1, the operation of the NASOT
task relies on numerous other tasks that manage various
messages and protocols (e.g., RRC, SMS), or interact with
hardware drivers (e.g., SIM). Testing the entire baseband
as a whole presents significant challenges. Many tasks,
especially those interfacing with peripherals, cannot be fully
emulated without manually implementing support for the
missing functionalities. Creating stubs that mimic the ex-
pected functionalities of these tasks is primarily manual and
hence time-consuming, error-prone, and unscalable, as each
task may further rely on other tasks, creating an extensive
chain of dependencies. As a result, prior approaches [10]
often disable these tasks during testing, which prevents
accurate reproduction of the behavior of dependent tasks.
This leads to incomplete exploration of task states and the
inability to uncover deeply rooted stateful bugs. Moreover,
without the ability to generate test inputs for all tasks or
resolve inter-task dependencies, previous efforts suffer from
poor code coverage and are unable to thoroughly analyze
the complex interactions that occur within the baseband.

To address these challenges, we isolate and test individ-
ual tasks instead of emulating the entire baseband, while
still accounting for task dependencies (§ 4.2). This task-
level isolation narrows the testing scope and improves ef-
ficiency by eliminating unnecessary dependencies, reducing
execution time, and avoiding irrelevant message handling.
Testing all tasks individually, however, is impractical be-
cause some tasks serve only internal functionalities and
must use vendor-specific message formats. The proprietary
nature of baseband firmware means that there are no publicly
available technical documents that specify the task divisions
or the expected message formats. Consequently, identifying

each task’s message format requires labor-intensive reverse
engineering efforts, which we cannot apply to all tasks.

To address this challenge and find the proper task to
isolate and test, we observe that baseband tasks are generally
organized according to the specific cellular protocol layer
they handle, with each protocol layer associated with a
particular task. Leveraging this insight, LORIS narrows its
focus to testing only those tasks responsible for processing
the targeted OTA messages. This approach simplifies task
identification and ensures that any detected vulnerabilities
are exploitable through externally controlled messages. This
aligns with the threat model discussed in §3.1, where attack-
ers are limited to manipulating OTA messages. Furthermore,
this method enables us to refer to well-defined cellular
specifications [2], [3] to generate grammatically valid radio
messages as test inputs, eliminating the need to reverse
engineer internal message formats from baseband binaries.

4.2. C2: State and Dependency Management

As demonstrated in the motivating example, baseband
tasks are typically highly stateful, posing significant chal-
lenges for effective testing. The processing path of any
received messages by a task depends on the values of state
variables, i.e., variables whose values are initialized before
the message is handled. These values may be assigned
from baseband configurations or boot-time initialization, the
results of previously processed messages within the same
task, or through the processing of other dependent tasks.
For example, in Listing 1, the branch conditions on lines 17
and 18, and the validation on line 24 all depend on values
of different state variables. If any of these branch conditions
are not satisfied (i.e., the values of the corresponding state
variables are not appropriately assigned before the test input
is received), the vulnerable site on line 42 is not reachable.

To navigate these different states and explore various
execution paths and code regions, existing stateful testing
efforts [8], [9] typically rely on recording sequences of in-
puts that prepare the program to a particular state, i.e., input
sequences that lead to the assignment of appropriate values
to these state variables, before sending the test input. How-
ever, applying this strategy to emulated baseband firmware
is impractical. In baseband systems, message processing is
distributed across multiple interdependent tasks, which must
each be in specific states for the sequence to succeed. As
discussed in § 4.1, many of these tasks cannot be emulated,
leading to unresolved state dependencies. To work around
this, prior baseband fuzzing efforts [10] depend on extensive
manual reverse engineering, harnessing, and annotation to
manually set the task state before launching fuzzing tests.
This manual approach only enables exploration of a limited
subset of states and does not scale. As a result, achieving
high coverage and uncovering deep, state-dependent vulner-
abilities remains a significant challenge that prior efforts are
unable to effectively address.

To address this challenge, we observe that directly as-
signing specific values to a target task’s state variables
effectively simulates different protocol states and enables

controlled exploration of desired execution paths. In essence,
these state variables act as preconditions that gate access to
different program regions during message processing. Lever-
aging this insight, LORIS eliminates the need for the fuzzer
to generate complex input sequences or for researchers to
manually identify and satisfy preconditions. Instead, LORIS
directly identifies and sets the values of relevant state vari-
ables, configuring the baseband into the desired state before
dispatching test inputs. This approach also naturally handles
task dependencies: We find that dependent tasks execute
asynchronously without blocking the target task, with their
outcomes reflected in the state variables used by the target
task. For example, in Listing 1, line 18 references the
MmAS state variable, which represents the AS connectivity
state managed by the RRC task that NASOT depends on.
The dependent task updates such state variables through
inter-task communication, which the target task monitors
and reacts to these updates. By directly setting these state
variables, LORIS simulates the effects of dependent tasks’
behaviors without actually executing them.

4.3. C3: Effective State Analysis

Symbolic execution is a powerful approach for analyzing
how different values of state variables influence control
flow by reasoning the branching conditions that govern
access to different program regions, revealing the specific
preconditions (i.e., constraints) state variables must satisfy
to reach those paths. However, several challenges compli-
cate the application of symbolic execution in baseband.
(1) Accurately identifying true state variables in complex
basebands is non-trivial. In the motivating example, some
variables, such as msg_type (used on line 15), are defined
outside the loop’s scope but do not represent a persistent
state, as they are reassigned in each iteration by the input
message. Consequently, instantiating these variables prior to
testing is ineffective, as their values are overwritten during
execution. Analyzing such variables unnecessarily consumes
computational resources. Identifying true state variables re-
quires tracing paths from the message reception point to
each variable’s usage to verify that the variable retains its
value without being reassigned along those paths. (2) Each
baseband task contains more than 100 true state variables,
and setting all these as symbolic values would immediately
trigger the state explosion problem. This exponential growth
in symbolic states makes the analysis infeasible in terms of
memory, time, and computation requirements. (3) Baseband
tasks extensively use pointers for function dispatch and
structure references (e.g., the dispatcher on line 35 in List-
ing 1). Symbolic execution alone cannot effectively resolve
these indirect references, making it difficult to accurately
explore execution paths dependent on pointer values.

To address these challenges, LORIS employs a two-
stage analysis approach. In the first stage (§6.1), LORIS
performs dynamic execution up to the entry of the main
message processing loop (e.g., up to line 6 in Listing 1).
This dynamic execution serves two primary purposes: (1) it
dynamically executes task initialization functions, so that

when symbolic execution begins, all pointer references are
resolved. (2) LORIS hooks into all memory accesses during
this phase to identify non-local variables defined outside
the loop scope. While not all identified variables will be
true state variables, this approach narrows down the set of
variables to track subsequently. In the second stage (§6.2),
LoRIS performs iterative symbolic analysis. It progressively
identifies true state variables, expands the set of symbolic
state variables, and explores new code regions with each
iteration. This incremental approach allows LORIS to reuse
previously computed results, skipping branches unaffected
by the newly added symbolic variable. Additionally, the
iterative process enables LORIS to return meaningful results
intermediately without analyzing all state variables, and
instead prioritizing those with the most impact on execution
paths. To further manage the state explosion problem, LORIS
incorporates additional techniques, discussed in §6.4.

5. Design Overview

Figure 2 presents the overall architecture and workflow
of LORIS. LORIS tests a single target task 7 at a time. 7 is a
2-tuple T = (Z, L), where Z denotes the task initialization
code, a sequence of instructions (ij,...,%) (e.g., line 4
in Listing 1), and £ denotes the main input-reception and
processing loop, a sequence of instructions (%,,, . .., %,) that
continuously receives and handles incoming messages (e.g.,
lines 5-10 and the corresponding invoked functions). The
task 7 that LORIS targets must receive some OTA messages
M, which serves as test inputs for vulnerability analysis.

LORIS consists of three components: Analyzer, Fuzzer,
and Emulator. Analyzer identifies the state variables of the
target baseband task and analyzes the corresponding state
preconditions (i.e., the constraints on these variables) that
must be satisfied to reach different code regions. These
constraints are then passed to a Satisfiability Modulo Theory
(SMT) solver [27], which computes concrete values for
the state variables that satisfy the constraints. The resulting
state instantiations are shared with Fuzzer, which sets the
corresponding state variable values before dispatching test
inputs, effectively configuring the task into different desired
protocol states, enabling the test inputs to penetrate different
code regions only accessible under specific states. Addition-
ally, Analyzer gathers path constraints on input messages,
specifying the conditions that inputs must meet to drive
deeper execution within each state. These constraints are
integrated into Fuzzer’s grammar-aware input generation,
enabling it to selectively craft messages that achieve deeper
exploration. Supporting both Analyzer and Fuzzer is LORIS
Emulator, which prepares the baseband task for symbolic
execution for state variable analysis or concrete execution
for fuzzing. Analyzer extends a state-of-the-art baseband
emulator [10], adding support for new processors and pe-
ripherals to enable the first emulation capable of handling
5G basebands with their new CPU architectures and major
design changes comparing to their 4G predecessors (§8).
Analyzer. The goal of Analyzer is to determine various
states S in which Fuzzer can deliver input M to the target

task 7 to effectively explore vulnerabilities within the main
input-reception and processing loop £. Formally, we define
a state snapshot s € S as a concrete instantiation of state
variables) that satisfies a set of state preconditions 1.
II, represents a set of branch conditions that state variables
need to satisfy and dictate the execution flow to specific
code regions in £. Formally,

II, = /\m(vl.,...

where 7; denotes an individual branch condition involving
one or more variables v, . .., v, € V. Each 7; is a constraint
on the values of these variables that must hold true for the
program execution to follow the desired path toward the
target code region in L. The set of all such conditions Il
forms a necessary state preconditions for reaching certain
regions of interest in £. By identifying these state precon-
ditions, Analyzer can determine the required assignments of
V, forming a state s such that when M is received, the
execution flows through the intended branches.

,Uy), Wwhere vg,..., v, €V

5: Vi = {0 € DV) | ,(d)}

where f)ns is the instantiation of state variables satisfying a
set of preconditions I1,, and D(V) is the domain of possible
assignments to state variables. Here, © is a valuation (i.e.,
assignment) over V that satisfies all constraints in II;.
Iterative Symbolic Execution. To identify the set of state
variables V and the corresponding preconditions II required
to reach different code regions, while mitigating the state
explosion problem, we develop a novel iterative symbolic
execution (§6.2). This approach performs multiple complete
iterations of symbolic execution of the target task, incremen-
tally treating additional state variables as symbolic, thereby
expanding the symbolic state space and enabling the explo-
ration of code paths that were previously unreachable due
to non-symbolic (concrete) branch conditions. As new code
regions are explored, additional state variables influencing
control flow are discovered and incorporated into subse-
quent iterations. Specifically, during iteration ¢, the symbolic
execution engine treats a newly identified state variable
vk € V, discovered in a prior iteration j as symbolic, and re-
executes the task starting from the entry point of the message
processing loop L. Previously discovered symbolic paths
are reused when the newly added symbolic variable does
not influence branching decisions. This reuse, combined
with the iterative nature of the approach, enables a gradual
expansion of the symbolic state space, avoiding the need to
symbolically evaluate all branches in a single run, which
would quickly lead to path explosion. The iterative process
continues until state explosion occurs, even with the applied
mitigation techniques and the incremental nature of the
analysis (detailed in §6.4). Importantly, this design allows
Analyzer to yield meaningful results even when terminated
early, as partial sets of symbolic state variables and their
conditions are often sufficient to expose valuable execution
paths that are unreachable using traditional, non-iterative
symbolic execution techniques.

Analyzer

A

Task Candidate State
Emulation Vars Identification

Emulator

State Variable
Firmware Detection
Binary

1010] arget Task
0110

Selection

Iterative Symbolic Execution

State Variable
Ranking

Fuzzer

&g

s 8

Executor

Message Message

Generator Grammar

State Precond.
Identification

Input
Scheduler

Precondition

Solver

Figure 2. Architecture of LORIS

Checkpoint-Based Path Pruning. To further mitigate the
state explosion problem, we introduce two novel techniques
(§ 6.4): (1) first, we design checkpoint-based path pruning
that prioritizes paths that are likely to lead to deeper and
more meaningful execution when a state explosion is de-
tected to balance the effort on exploration width and depth.
(2) We also replace commonly used functions that are prone
to state explosion with emulated procedures based on our
domain knowledge from observed patterns in emulation.
Fuzzer (§7). During fuzzing, Fuzzer maintains a separate
corpus ¢, for each state snapshot s € S, where each corpus
stores inputs that have triggered new code coverage when
executed under that specific state snapshot. The mutator gen-
erates grammar-aware mutations enforcing both syntactical
(i.e., structural) and semantical (i.e., value) constraints. For
each fuzzing iteration, LORIS selects a state snapshot s,
samples a message m € cg, applies mutations to obtain
a new input m/, sets V to concrete values specified in s
to achieve a state-instantiated task 7., and sends m’ for
execution in 7. If m/' leads to new code coverage, it is added
to the corresponding corpus cs. Moreover, we leverage the
insight that an input m’ leading to new covered code in state
s may also result in new coverage in other states. Thus,
whenever a new input m’ is added to cs;, LORIS also tests
m’ under all other snapshots s’ € S. If m’ triggers new
coverage in T,/, m’ is likewise added to c,/. This cross-state
sharing reduces redundant effort across states and alleviates
the problem of states dividing the focus of the fuzzer since
discoveries of one state are reused across other states.

6. Identifying State Preconditions

As demonstrated in the motivating example (§3) and
discussed in §4.2, baseband tasks are highly stateful. To
efficiently explore the diverse behaviors of a stateful target
baseband task, LORIS requires identifying state variables
representing different protocol states and analyzing their
impact on the reachability of various code regions in the
task. To achieve this, we introduce Analyzer, which employs
a novel dynamic state exploration technique that operates in
two stages, candidate state variable identification (§6.1), and
iterative symbolic analysis (§6.2).

6.1. Candidate State Variables Identification

One key characteristic of state variables is that their
values persist across iterations of the task’s message pro-
cessing loop (e.g., lines 5-10 in Listing 1), which requires

them to be non-local to the loop’s scope. However, not all
non-local variables qualify as state variables. Specifically,
if a non-local variable is reassigned at the beginning of
each iteration and used only after reassignment, it does
not carry meaningful state information. In such cases, the
variable’s value prior to the current iteration has no influence
on the program’s execution path. For example, in Listing 1,
the variable msg_type is updated with the type of each
received message before it is used. As a result, its value
does not persist across iterations and does not qualify as a
state variable. Additionally, a variable that is never updated
after its initialization is not a state variable, as its value is
unaffected by OTA message inputs (e.g., the function pointer
cb->decoder in Listing 1). To accurately identify true
state variables, we formally define them as follows.

Definition 6.1 (State Variable). A variable v used within the
main input-reception and processing loop L is a state
variable (i.e., v € V) if it satisfies the following condi-
tions: (1) v is a non-local variable to £ (i.e., v is also
defined in task initialization code 7); (2) v is updated
within L, i.e., there exists a write operation w(v) € L;
and (3) for at least one execution path p from the
reception of an input to the first read operation r(v) in
the current iteration, there exists no preceding write op-
eration w(v). Formally, v is a state variable iff Ip, r(v) :
veZAIJw(v) € LAno w(v) precedes r(v) along p.

Since our focus is on how state variables influence the
reachability of different code regions, we consider only
those variables used in branch conditions that alter the
task’s control flow. A potential approach to automatically
identify these state variables is through static data flow
analysis [28] using dataflow and control-flow dependency
graphs. However, existing static, binary-only analysis tech-
niques struggle with resolving indirect calls and pointers,
which are common in baseband implementations.

To address these challenges, Analyzer first performs
dynamic execution of the baseband firmware until the target
task reaches the input-waiting stage (e.g., line 6 in Listing 1).
This process effectively executes all task initialization code
7. During this phase, Analyzer tracks all variable definitions
from the entry point of the task’s main function up to
the start of the input-processing loop L. It hooks into all
memory operations, recording both read and write accesses
to variables stored on the stack, heap, and global variables.
Once these definitions are collected, Analyzer performs
static analysis [29] to eliminate variables that are never
referenced within £ by analyzing their cross-references. The

remaining variables are marked as candidate state variables,
and their concrete values at the end of Z are saved for use
as concrete values for non-symbolic variables in the next
stage. This dynamic execution phase also resolves relevant
pointers and indirect call targets, allowing for accurate path
exploration during symbolic execution. In a nutshell, this
approach effectively narrows down the variables to track and
enables the resolution of indirect pointers before symbolic
execution. Note that candidate state variables may include
variables that are not true state variables (e.g., msg_type
in Listing 1) and LORIS resolves those in the next stage,
i.e., iterative symbolic execution.

6.2. Iterative Symbolic Analysis

In symbolic analysis, variables can be treated as sym-
bolic, allowing them to represent any value within their
type domain. During analysis, Analyzer tracks how these
symbolic variables affect task execution flow by collecting
path constraints depending on these variables across all
encountered branches. By resolving these collected con-
straints, Analyzer can determine the precise values required
for state variables to follow specific execution paths when
processing the input OTA message. However, Analyzer faces
two key challenges. First, the candidate state variables
identified in the previous stage are not necessarily true
state variables. Analyzing non-state variables provides no
meaningful insights, as these variables will be reassigned
during execution, regardless of the initial value set pre-
testing. Second, each task in the baseband firmware can
contain more than 100 true state variables, and thousands
of candidate state variables, making it infeasible to analyze
them all as symbolic, as it would require a prohibitive
amount of memory and computational resources due to the
state explosion problem, so the analysis could not finish.

To address these challenges, Analyzer employs an iter-
ative symbolic execution approach that progressively identi-
fies more true state variables, prioritizes the most impactful
ones to analyze, and gradually builds state preconditions
required for these state variables to reach different code
regions within the task. In the first iteration, only the input
message is symbolic, and all other variables retain their
concrete initialization values, as no true state variables have
yet been identified. In this initial pass, Analyzer can only
explore paths reachable by these concrete values, but it
identifies true state variables along these paths. In each sub-
sequent iteration, Analyzer introduces one additional state
variable as a symbolic value based on a priority ranking
(§6.3). This allows Analyzer to evaluate both directions of
the branches influenced by the added symbolic variable,
expanding its coverage and finding new state variables as
it explores previously unvisited paths.

Specifically, symbolic execution begins at the OTA mes-
sage reception point in the target task, where a potentially
malformed or malicious message is received (e.g., line 6
in Listing 1). At each iteration, Analyzer applies depth-first
search (DFS) with backtracking to systematically explore all
possible execution paths enabled by the current symbolic

------------------------------------- Symbolic Vars

Ve < Ve\{msg_type}
V + VU {MmProc}

; 1L, + II; U {MmProc != SGMM_PROC_NULL}

V < VU {MmAS}

13
14 void ExtMsgHandler (Task Msg t *msgPtr) {

15 msg_type = msgPtr->group >> 8 & OXff; [| lter2 | Iter3
16 (msg_type == RADIO_MSG)

1 if (MmProc != 5GMM_PROC_NULL &&

18 MmAS == 5GMM_IN_CONNECT)

19 ProcessRadioMsg (msgPtr->payload, msgPtr->plSize);

20 o
21 }
Each box marks the portion of ExtMsgHandler function explored during each iteration.

Figure 3. Illustration of Iterative Symbolic Analysis on Listing 1

variables. If a candidate variable is reassigned along a
particular path, Analyzer temporarily excludes it from the
candidate list for that path, re-adding it upon backtracking
when examining other paths. This redefinition check ensures
that only variables retaining their values across loop itera-
tions are considered potential state variables.

For each encountered branch, Analyzer takes different
actions depending on whether the branch condition involves
a non-candidate variable, a non-symbolic candidate variable,
or an already-symbolic variable. If the branch condition
depends on a variable not in the candidate list and not sym-
bolic, the branch is considered to be not affected by states
and is resolved using the concrete value of the variable. If
the branch condition involves a candidate state variable that
is currently non-symbolic, Analyzer marks the variable as
a true state variable. In the current iteration, it proceeds
only along the path dictated by the variable’s concrete
initialization. In future iterations, once the variable becomes
symbolic, Analyzer explores both directions of the branch.
If the branch condition depends on an already-symbolic
variable (either an input field or a symbolic state variable),
Analyzer explores both paths. For each path, it records
the corresponding preconditions, and upon completing one
path, backtracks to explore the other. To improve efficiency
and mitigate state explosion, Analyzer reuses results from
previous iterations when both the current and all subsequent
branches are unaffected by the newly added symbolic state
variable. In such cases, it performs an early return, avoiding
redundant exploration. However, if the current branch is
unaffected but a future branch along the path depends on
the newly added symbolic variable, Analyzer fast-forwards
execution to that branch, reusing previous results along the
unaffected segments. Once it reaches the impacted branch,
it resumes symbolic analysis to explore the newly enabled
code regions.

Illustration of Iterative Symbolic Execution. We demon-

strate the iterative symbolic execution process by showing
how it operates on the motivating example in Listing 1 to
identify state variables V' and determine the preconditions
II, to set state s that enable test inputs to reach the vulner-
able DecodeExtEmergNumList function. Without this
process, DecodeExtEmergNumList is not reachable by
test inputs due to unmet checks with state variables, such
as those on lines 17 and 18. Figure 3 illustrates this pro-
cess. Before symbolic execution begins, Analyzer identifies
MmProc, MmAS, and msg_type (line 4) as candidate state
variables (V.), as these are defined outside L. In the first
iteration, only the input message (pointed to by msgPtr)
is treated as symbolic. Symbolic execution proceeds to the
ExtMsgHandler function, where msg_type is assigned
from the input message (line 15). Since msg_type is
reassigned before any read operation, it is removed from
the candidate state variable list on this path. Execution
then reaches the branch condition on line 16, which de-
pends on msg_type. Given that msg_type is symbolic
(derived from the input message), Analyzer explores both
branches. We follow the path where msg_type is a ra-
dio message type, though symbolic execution also covers
the other path. The execution continues to line 17, where
MmProc is used in a branch condition. As MmProc is
read without prior assignment, it is confirmed as a true
state variable, and Analyzer records it along with statis-
tics (e.g., it controls one branch at a depth of 2, since
it follows a symbolic branch on line 16). In this itera-
tion, since MmProc is not symbolic, it retains its initial-
ized value of O (representing 5GMM_PROC_NULL), which
does not satisfy the branch condition, so execution cannot
proceed down this path. Analyzer then explores the other
path, ultimately terminating without reaching the vulnerable
DecodeExtEmergNumList function.

After the first iteration, Analyzer ranks the identified
state variables and selects one to make symbolic. Sup-
pose MmProc is chosen. In the second iteration, both
the input message and MmProc are symbolic. Analyzer
follows the same process, navigating the branch on line
16 by reusing results from the previous iteration. Now,
since MmProc is symbolic, Analyzer explores both direc-
tions for the branch on line 17, reaching the path lead-
ing to line 18 and recording the precondition MmProc
!= 5GMM_PROC_NULL. At line 18, MmAS is used in a
branch condition, and Analyzer records it as another state
variable. Since the concrete value of MmAS does not sat-
isfy this condition, execution cannot reach line 19. In a
subsequent iteration (iter 3), Analyzer selects MmAS as
symbolic, allowing exploration of both directions of the
branch on line 18. This enables access to line 19, with the
recorded preconditions MmProc != 5GMM_PROC_NULL
and MmAS == 5GMM_IN_CONNECT. By following this
workflow, Analyzer ultimately discovers all preconditions
required to reach the RadioMsgDecode function. Within
the RadioMsgDecode function, Analyzer successfully
resolves the function pointer, as it was initialized dur-
ing task setup, allowing Analyzer to reach the vulnerable
DecodeExtEmergNumList function and collect required

preconditions for inputs to reach this vulnerable point.

6.3. State Variable Ranking

As each task in the baseband firmware can contain
hundreds of state variables, even employing the iterative
symbolic execution, analyzing all identified state variables
as symbolic values would lead to severe path explosion.
To address this, Analyzer uses a ranking mechanism that
considers key characteristics of identified state variables,
aiming to prioritize symbolic analysis on variables that are
less likely to lead to path explosion (i.e., require fewer
resources to analyze) and provide the most insight (i.e.,
enabling the discovery of more code regions).

To assign priority, Analyzer computes a ranking score for
each state variable using a weighted formula that considers
three factors: the variable’s size, the depth of the shallowest
branch it controls, and the number of branches it influ-
ences. This information is collected dynamically during the
iterative symbolic analysis process described in §6.2. The
ranking system gives preference to variables with smaller
sizes, as they typically have smaller domains and are less
likely to cause path explosion. Next, the analysis considers
the depth of the shallowest branch the variable controls,
prioritizing variables associated with shallower branches.
These branches tend to occur earlier in execution and are
more likely to enable broader code exploration. Lastly, the
number of branches depending on the variable is considered,
since while analyzing variables that control many branches
offer greater coverage potential, they may also introduce
higher computational cost. The size ranking divides state
variables into four tiers, each assigned a size score S(v).
S(v) = 3 variables include boolean and enum values, which
have a small fixed set of possible values. Enum values are
identified in the baseband binary as variables whose assign-
ments are all constants and none of the assignments come
from variables or computation results. S(v) = 2 contains
one-byte values, which are typically flag values. S(v) = 1
includes two- to four-byte values, generally representing
integers or floats. S(v) = 0 variables are pointers and values
larger than four bytes, such as strings or byte arrays. These
variables are excluded from selection due to their complexity
and high computation cost.

The ranking score R(v) for each state variable v is calcu-
lated as R(v) = S(v) x W+ % X Wy+ B(v) x Wy, where
S(v) is the size score, D(v) is the depth of the shallowest
branch it controls (inverted to give preference to shallower
depths), and B(v) is the number of branches influenced by
the variable. W, Wy, and W}, are corresponding weights
that prioritize size over branch depth and branch influence.
Before each iteration of symbolic analysis, the variables are
ranked, and the highest-ranked state variable is selected to
be added to the symbolic set in the upcoming iteration.

6.4. Further Alleviating State Explosion

LoRIS also applies several novel techniques other than
iterative symbolic analysis to further alleviate the state ex-

plosion issue during its symbolic execution.
Checkpoint-Based Path Pruning. As Analyzer’s iterative
symbolic execution progresses, both the number of symbolic
state variables and the number of discovered paths grow,
gradually increasing the risk of state explosion. To address
this, when encountering state explosions, LORIS shifts its
focus from exploring a wide array of paths to concentrating
on fewer paths that may lead to meaningful discoveries. We
observe that each baseband task contains key program points
that implement critical functionalities, and paths flowing
through these points often lead to deeper and more mean-
ingful processing. For example, the RadioMsgDecode
in Listing 1 decodes input messages, directing those that
pass through to further processing logic, making these paths
more valuable for exploration. We mark such key points as
checkpoints and, when state explosion risks arise, redirect
symbolic execution to only paths that include checkpoints.
Initially, Analyzer freely explores all available paths to
capture a broad view of potential execution paths. How-
ever, it monitors for signs of state explosion, defined by
any of the following criteria: (a) Analyzing a single path
from the starting point (message reception) to the endpoint
(next input-waiting) exceeds a time limit (set to 1 minute
in our setup). This time limit is intentionally small, as
symbolically executing a single path behaves similarly to
a concrete execution since it follows only one side of each
branch. Based on our empirical observations, symbolically
executing each path typically requires around 10 seconds,
making the threshold reasonable to catch overly complex
paths while maintaining efficiency. (b) An entire analysis
iteration surpasses a total time budget (6 hours in our setup).
(c) The analysis requires more memory than available.
When state explosion is detected, Analyzer narrows its
focus to paths that contain checkpoints, pruning those that
do not and reallocating resources to dive deeper into these
high-value paths that are more likely to reveal vulnerabil-
ities. This checkpoint-based pruning balances breadth and
depth in symbolic execution, enabling initial broad path
discovery while refocusing on deeper analysis along selected
paths when broader exploration is no longer feasible. The
iterative symbolic execution terminates once checkpoint-
focused exploration also results in state explosion, at which
point Analyzer returns all collected sets of preconditions.
Simulated Procedures. In testing, we observe that some
utility functions are used across different program contexts
but are highly prone to path explosion, for instance, memory
operations like memcpy, memset, and memcmp, as well as
utilities like hexdump. These functions typically contain
branches dependent on buffer size, which leads to a rapid
increase in the number of paths when the buffer size is
symbolic. For instance, as shown in the simplified version of
memcpy in Listing 2, if the input size num is symbolic, the
function must evaluate a branch at each iteration to either
exit or continue the loop, forcing Analyzer to explore num
distinct paths. Furthermore, compiler-optimized versions of
memcpy can introduce over 10 more branches each iteration
due to optimizations like loop unrolling and architecture-
specific memory handling, which amplifies path explosion.

Given that these utility functions perform well-defined
tasks, we do not need to analyze their internal implementa-
tions in detail. Instead, Analyzer substitutes such functions
with simplified equivalents to alleviate path explosion. This
approach offers two main benefits. First, running a simulated
procedure bypasses the need to simulate the actual code,
improving execution speed even when not performing sym-
bolic analysis. Second, when performing symbolic analysis,
Analyzer applies heuristics to simplify these functions’ be-
haviors. For example, if num is symbolic when encountering
memcpy, Analyzer constrains num to its maximum con-
crete value, which simulates the effect of running the loop
to its upper limit without introducing additional branches.
This simplified analysis still provides sufficient information
since the goal is to validate the function behavior up to a
maximum bound rather than explore every possible interme-
diate state, especially for well-understood utility functions.
Consequently, symbolically analyzing every possible num
value in memcpy provides little additional insight and only
slows down analysis. This mechanism allows Analyzer to
significantly improve symbolic execution speed and reduce
unnecessary path forking, focusing instead on meaningful
aspects of the program’s execution.

1 void memcpy (char *dst, char xsrc, size_t num) {
for (size_t i1 = 0; i < num; ++1)
*dst++ = *src++;

Listing 2. Example memcpy Procedure Causing State Explosion

Additionally, for functions that do not influence exe-
cution flow, such as hexdump, Analyzer replaces them
with stubs that return immediately without performing any
operations. These stubs eliminate irrelevant computations,
streamlining the analysis process. We also apply manual
optimizations to frequently invoked functions based on our
domain knowledge. For example, if a function returns the
current SIM card index in a dual-SIM baseband, we return
a constant value, as the specific index does not impact input
processing logic. To identify candidates for function stub-
bing, we collect functions that take a long time to complete
symbolic execution and are frequently invoked. We then
manually implement appropriate stubs and apply pattern
matching [10] to automatically locate and replace these
functions during analysis. Finally, we also set a maximum
symbolic execution time limit to detect complex functions.
If a function exceeds this time limit, it is replaced with a
no-op stub. Although this approach may produce incomplete
results, it ensures that Analyzer can bypass complex func-
tions without becoming stalled. The allotted time, t,, for
each function call is calculated as t, = *2£ where max
denotes the maximum time limit, and d is the depth of the
function in the call stack, with the main input-handling loop
at depth d = 0. This allocation favors functions earlier in
the call path, as these functions have control over a greater
number of potential branches and code regions.

7. Stateful Fuzzing

The overall workflow of Fuzzer is presented in Figure 2
and summarized in §5. Below we detail a few novel tech-
niques LORIS Fuzzer incorporates.

Grammar-Aware Input Mutation. For a message m in cor-
pus, Fuzzer applies grammar-aware input mutation to gen-
erate a new OTA test message m’ that adheres to both syn-
tactic and semantic constraints defined by the corresponding
cellular specifications [2], [3]. Fuzzer employs context-free
grammar (CFG) to capture the structural requirements of
message formats. However, due to its inherent limitations,
CFG alone cannot express inter-field dependencies, such
as the length tags for value fields. As a result, previous
approaches often neglect semantic constraints [30], [31], or,
when they address them, rely on SMT solvers to generate
concrete values [32], which is highly time-consuming and
stalls the fuzzing process. To mitigate this challenge, we
analyze the message specifications in the technical docu-
ments, and observe that only limited semantic requirements
are used for cellular OTA messages, allowing us to design
domain-specific semantic annotations on the CFG to enforce
these requirements. While Fuzzer employs a novel approach
for grammar-aware input mutation, it does not directly relate
to our main contribution of handling state and dependencies
in baseband. Therefore, we provide additional details on the
limitations of prior efforts, our method, motivating exam-
ples, all supported semantic annotations, and a description
of both grammar-aware and havoc mutations in Appendix A.
Feedback. During fuzzing, code coverage is tracked through
emulator instrumentation, capturing both branch (edge) cov-
erage and coarse branch-taken hit counts.

Testing Oracle. Existing fuzzers [33], [34] typically de-
tect memory corruption issues through observable program
behaviors, such as crashes and execution timeouts. While
stack-based overflows often lead to crashes by overwriting
return addresses and causing program counter (PC) faults,
many memory corruptions (e.g., heap overflows) can occur
without any visible behaviors. Most memory sanitizers [35],
[36], [37], [38] are only applicable at compilation time,
making them unsuitable for our binary-only analysis. To
address this limitation, we replace the baseband heap man-
agement API with a customized emulated heap manager
that provides memory sanitization and detects vulnerabilities
such as double-free, use-after-free, and heap-based out-of-
bounds access during memory allocation and deallocation.
Allocation: The heap manager allocates a memory buffer
twice the requested size; for an allocation request of S bytes,
it allocates 25 bytes and returns a pointer offset by % bytes
from the start of the allocated region. This configuration
allows us to monitor accesses to the leading and trailing %-
byte buffers with callbacks to detect both buffer overflows
and underflows. Deallocation: Upon the first request to
free a previously allocated buffer, the heap manager adds
the buffer’s address to a list of deallocated regions to enable
double-free detection. It hooks any access to the deallocated
region to detect use-after-free vulnerabilities. To crash the
emulation upon detecting memory corruption, we set the

program counter to the address of the Data Abort exception
handler, which Fuzzer interprets as a crash.

8. Implementation

Table 2 summarizes the implementation language and
lines of code (LoC) for each component in LORIS. Specifi-
cally, LORIS Analyzer (§6) is implemented in Python using
the angr binary analysis platform [39]. LORIS Fuzzer (§7)
is developed in Rust employing the LibAFL library [40].
LORIS Grammar parser is defined in pest [41], a general-
purpose parser that uses expression parsing grammars. We
extracted message definitions of NAS EMM and ESM mes-
sages from 3GPP documentations [2], [3], and manually
expressed message grammars in LORIS’s customized CFG.
LoRIS Emulator extends FirmWire [10], the state-of-the-art
baseband emulator built on QEMU [20]. FirmWire supports
emulation of several Exynos basebands, but it does not
support any 5G basebands. Among the baseband we tested
(presented in Table 3), FirmWire only supports Galaxy S10.
We extend FirmWire to be the first to support recent Exynos
5G basebands by (1) supporting the Coretex-A processor
newly used in Exynos 5G basebands (2) creating a new
vendor plugin for Pixel basebands (3) adding support for
new peripherals such as the interrupt controller and timers.
We conduct reverse engineering on top of Ghidra [29], a
software reverse engineering suite of tools developed by
NSA. We developed several Ghidra scripts to collect code
coverage feedback, and semi-automate root cause analysis
of vulnerabilities.

TABLE 2. IMPLEMENTATION DETAILS OF LORIS’S COMPONENTS

Component Language LoC \ Component Language LoC
Analyzer Python 2892 | Loris CFG Pest 111
Fuzzer Rust 6084 | Msg Grammar Loris 694
Emulator Python/C 5078 | Harnessing C 234
Ghidra Scripts Python 770 - -

9. Evaluation

We evaluate the effectiveness of LORIS by answering
the following research questions:

o How effective is Loris in discovering vulnerabilities in
commercial baseband? (§9.1)

« How does LORIS compare to existing tools? (§9.2.1)

o How effective are LORIS’s ranking and iterative sym-
bolic execution strategies in addressing state explosion
during the analysis of state variables? (§9.2.2)

Baseband Targets. As summarized in Table 3, we evalu-
ate 5 baseband firmware images from Samsung and Pixel
smartphones. These images span two major baseband manu-
facturers, Samsung and MediaTek, and cover two instruction
set architectures, ARM and MIPS, respectively.

Experiment Setup & Statistics. We perform all our evalu-
ations on a machine with an Intel Xeon Gold 6448H @
4.1GHz CPUs (64 physical and 128 logical cores) and

TABLE 3. SMARTPHONES EVALUATED FOR EACH PROTOCOL

Protocol Phone Model Firmware Image Instruction Set Build Date
Galaxy S10 G973FXXSHHWII ARM Oct’23
LTE NAS Galaxy S20 G981BXXSKHXEA ARM May’24
Galaxy S21 5G G991BXXSCGXF5 ARM Jul’24
Pixel 6 oriole-ap2a ARM Sep’24
Galaxy A4l A415FXXS8DXD1 MIPS May’24
5G NAS Galaxy S21 5G G991BXXSCGXF5 ARM Jul’24
Pixel 6 oriole-ap2a ARM Sep’24

1007GB RAM running Ubuntu 22.04 with Linux kernel
5.15.0. Analyzer was allowed to utilize all available mem-
ory during its analysis, while each fuzzing instance was
restricted to a maximum of 512MB of RAM. During the
evaluation, Analyzer identified an average of 65,000 candi-
date state variables of 96KB size per target task. Iterative
symbolic execution was performed on each task for 24
hours, completing approximately 10 iterations. On average,
Analyzer identified around 100 true state variables, with 9
variables selected as symbolic across the 10 iterations. State
explosion was detected after approximately 8 iterations,
at which point checkpoint pruning was applied to guide
exploration. Additionally, we designed simulated procedures
for 5 distinct functions prone to state explosion, which
LoRriSs replaced on average of 12 occurrences of these
functions in each task. Analyzer identified on average 300
sets of state preconditions per task. The corresponding state
snapshots, derived by solving these preconditions, were used
to initialize Fuzzer. Fuzzing was conducted for 24 hours
across 10 independent runs for each task.

9.1. Discovered Vulnerabilities

9.1.1. Previously Unknown Vulnerabilities. Table 4 sum-
marizes the new vulnerabilities LORIS uncovers. In total,
LoRI1s uncovers 10 issues (I1-110) in both LTE and 5G
baseband firmware, leading to 8 new vulnerabilities (V1-
V8), 7 of which are exploitable OTA (V1-V6 & V8).
We have validated all 7 exploitable vulnerabilities using
OTA messages on commercial devices and reported them
to the respective vendors. All reported vulnerabilities have
been acknowledged, with severity assessments included in
Table 4. Five of the vulnerabilities (V1, V3, V5, V6, V8)
have already been patched and assigned CVEs (CVE-2024-
52924, CVE-2024-52923, CVE-2025-27891, CVE-2025-
26784, CVE-2025-26785, respectively). Note that the listed
impacted UE models in Table 4 are not exhaustive and only
show the models tested during our evaluation. Our responsi-
ble disclosure process has enabled vendors to systematically
identify and address all affected baseband versions and UE
models. Due to space constraints, we describe only a few
of these vulnerabilities in detail below.

V1. Loris discovers a vulnerability in Exynos basebands
when decoding the operator-defined access category defini-
tions information element (IE), which is used in both regis-
tration accept and configuration update command messages.
This IE can include various information fields, including the
DNN (Data Network Name), which is formatted as a length-

value (LV) field. Listing 3 illustrates the vulnerability within
the decoder function for this IE. In this function, on line 3, a
buffer is allocated to store the decoded bytes, and an uint8
variable, ieOffset, is initialized to track the number of
processed bytes. The function then enters a loop to process
each field within the IE, up to ieLength (also an uint8),
which is the total length of the IE (lines 4-17). In each
iteration, it reads the field type (line 5). If the field is a
DNN field, the decoder reads the length of the field (line 8)
and, based on this length, copies the field’s value into the
allocated buffer (line 10). After processing each field, the
decoder advances ieBuf to the next unread value (line 11)
and increments ieOffset (line 12). For fields other than
DNN, it continuously reads the next byte (lines 13-15).

l void decode (uint8_t xieBuf, uint8_t ieLength) {

uint8_t local[144][10], ieOffset = 0;

for (i = 0; ieOffset < ielength - 1; ++i) {
uint8 t ieTyp = ieBuf[0];

6 local[i] [0] = ieTyp;
7 ~ (ieTyp == 0) {
8 local[i] [1] = ieBuf[3];

10 memcpy (&local[i] [2], ieBuf + 4, ieBuf[3]);
11 ieBuf += ieBuf[3] + 4;

12 ieOffset += ieBuf[3] + 3;

13 } else {

14 ieBuf += 1;

15 ieOffset += 1;

16 }

17 }

18}

Listing 3. Simplified Code Demonstrating Vulnearbility V1

However, the uint8 ieOffset is vulnerable to an
integer overflow, which can cause the length check on line
4 to always evaluate as true, resulting in a stack overflow that
can be exploited by OTA messages. This overflow enables
an attacker to write to any location on the stack. Consider
the following crafted input: "\x01" repeated 144 times, fol-
lowed by "\x00\x00\x00\x6d" and an arbitrary custom
payload. The first 144 "\x01" bytes fill the allocated buffer,
local, exhausting its 144 indices (line 6). The decoder then
reads the type as 0 (line 7) and interprets \x 6d as the length
of the next field. It then attempts to copy \x6d bytes from
the IE buffer into the already-filled 1ocal buffer, causing
an overflow of the 1ocal buffer (line 10). The ieOffset
also overflows on line 12, as 144 + 0x6d + 3 = 256,
wrapping ieOffset back to 0 for the uint8 variable.
Since the length check on line 4 is based on ieOffset and
ieLength, the overflowed ieOffset allows the loop to
continue processing further bytes from the OTA message,
enabling the attacker to write arbitrary-length content onto
the stack. Even without triggering an integer overflow, a
message such as "\x01" repeated 145 times would still
cause a stack overflow. However, in that case, the attacker
would have limited control over the overflow length, con-
strained by ieLength’s maximum value of 255. The inte-
ger overflow grants the attacker significantly more control,
allowing them to write arbitrary-length content to the stack
by circumventing the length limit.

Attack Impact & Vendor Response. The stack overflow can
lead to crashes or remote code execution (RCE). We are able

TABLE 4. SUMMARY OF PREVIOUSLY UNKNOWN VULNERABILITIES DISCOVERED BY LORIS
(* represents any IE in the message is vulnerable, - indicates no direct exploit for this vulnerability)

Severity Rating

Protocol Message Type Vulnerable IE Exploited Issues Impacted UE Model Impact
Samsung Google
. Registration accept & Operator-defined access (I1) Integer Truncation .
V1 (§9.1) 5G NR Gal S21 Med - DoS, RCE
(59.1) Configuration update command category definitions (12) Stack overflow yay edum ©
Registration accept & Operator-defined access (I1) Integer Truncation . .
V2 (§9.1) 5G NR Pixel 6 High DoS, RCE
9.1) Configuration update command category definitions (I3) Heap overflow B i
V3 5G NR DL NAS transport Payload container (I4) Assertion failure Galaxy S21, Pixel 6 Medium Moderate DoS
V4 (§3.2) 5G NR Registration accept Emergency number list (I5) Integer overflow Pixel 6 - Low DoS
V5 5G NR DL NAS transport UE parameters update (I6) Heap overflow Galaxy S21, Pixel 6 Medium Low DoS
Vo6 5G NR DL NAS transport Steering of Roaming (I7) Heap overflow Galaxy S21, Pixel 6 High High DoS
. (I8) Integer overflow Galaxy S10, S20.
. * s s _
V7 LTE Security mode command (19) Heap overflow and S21. Pixel 6
V8 5G NR DL NAS transport SMS (110) Heap overflow Galaxy S21, Pixel 6 High Critical DoS

to reproduce the stack overflow in a commercial Galaxy S21
5G (detailed in §9.1.2), leading to a forced reboot of the
phone. To mitigate stack overflows, the baseband processor
used in Galaxy S21 5G implements a stack canary mech-
anism that helps prevent stack corruption from affecting
other parts of the system. This mechanism places a 4-byte
canary value at the top of a function’s stack frame during
the function’s prologue, which is then checked for integrity
just before the function returns (in the epilogue). The canary
value is updated with each baseband boot, ensuring its un-
predictability. If the stored canary value is altered, indicating
a stack overflow, the execution is immediately aborted. For
an attacker to achieve RCE via this stack overflow, they
would need to bypass the stack canary mechanism, or the
baseband simply crashes, preventing further exploitation. An
information leak or a more realistic scenario, a memory
corruption resulting in write-what-where conditions can by-
pass this canary mechanism. We observed that the canary
value is loaded from a memory address that is updated
with a random value only during the boot process, the
canary offset is fixed in the stack frame of all functions,
and the canary check is a simple integer comparison (no
complex functionality is involved). With the absence of
Address Space Layout Randomization (ASLR), the stored
canary value can be manipulated or leaked by chaining
with other vulnerabilities to achieve RCE. As we focus on
vulnerability detection rather than developing exploitations,
bypassing this mechanism is beyond the scope of this work.
We reported the stack overflow vulnerability to Samsung,
who confirmed its existence.

V2. A similar integer overflow is also identified in the Pixel
6 baseband. This baseband dynamically allocates a buffer
to store decoded OTA messages, avoiding stack overflow.
However, the dynamically allocated buffer is stored within
a fixed-length heap buffer in a NrmmRegContext class
object. Listing 4 shows a structure containing this class
instance. Any overflow within reg_ctx field can lead to
an intra-chunk heap overflow, overwriting adjacent fields.
This vulnerability can also result in severe exploits, as
the neighboring fields (proc_ctx and security_ctx)
utilize virtual tables and store sensitive information about

5GMM procedure and security contexts.

I struct cn::mm::NrmmContext {

NrmmRegContext reg_ctx;
4 NrmmProcedureContext proc_ctx;
NrmmSecurityContext security_ctx;
6
7}
Listing 4. Structure vulnerable to heap overflow (Vulnerability V2),
where an overflow in reg_ctx can corrupt adjacent fields

V4. This vulnerability is detailed in § 3.2, where an integer
overflow in the decoder causes the function to enter an
infinite loop, causing DoS.

V8. This vulnerability is triggered by providing an overly
long SMS payload within the payload container IE of a
Downlink NAS Transport message with multiple payload
container types. The decoder allocates a fixed-size buffer
(0x61c bytes) to hold the SMS content, but it fails to validate
the SMS field length against the allocated buffer size. As
a result, the decoder could copy data beyond the bounds
of the heap buffer, overwriting adjacent memory. This heap
corruption is detected by Samsung’s heap sanitizer newly
introduced in their 5G basebands, which aborts execution
and triggers a crash. We verified that this vulnerability is
specific to the handling of multiple payload containers, and
does not occur when the SMS payload is directly embedded
within a single container in the DL NAS Transport message.

9.1.2. Over-the-Air Exploit Validation. To demonstrate
the practical impact of the vulnerabilities discovered through
emulated fuzzing, we validated all detected exploitable vul-
nerabilities (V1-V6, V8) over-the-air (OTA) on real devices.
We used a USRP B210 software-defined radio (SDR) as
gNodeB with a modified Open5GS [42] as the core network
to transmit the attacking NAS message payloads identified
by LORIS. We followed the standard registration process to
send the attacking registration accept messages (V1, V2,
V4). For the DL NAS transport message (V3, V5, V6,
V8), we configured an access point name (APN) on the
phone, prompting it to send a PDU session establishment
request. The SDR then responded with the attacking DL
NAS transport message. To verify the exploit is successful,
we send several security mode command messages after

Galaxy S10 LTE Galaxy S20 LTE Galaxy S21 LTE

Pixel 6 LTE Pixel 6 5G Galaxy A41 LTE

6000

8000 12000

3000

=
——

8000 16000 24000

4000

Sy

°
B g7 g
(@R 8 sS4
- (=3
2 — s z —
= g E g
£= =
= o E
£1] : %
v <
L S N U R L B A
4h 8h 12h 16h 20h 24h 4h 8h 12h 16h 20h 24h 4h 8h 12h 16h 20h 24h
Elapsed Time Elapsed Time Elapsed Time
—— LORIS —— LORIS w/o Grammar

—— FirmWire

I I | | T
4h 8h 12h 16h 20h 24h
Elapsed Time

T T T T 1 T T T T 1
4h 8h 12h 16h 20h 24h 4h 8h 12h 16h 20h 24h
Elapsed Time Elapsed Time
—— GRIMOIRE

Figure 4. Discovered Basic Blocks (BB) Over Time for Fuzzing NAS Layer Tasks Across Different Phone Models & Protocols

the malformed attack message. Under normal operations,
these commands should guarantee a response, and a lack of
responses confirms that the device has become unresponsive.
Results. We successfully reproduced all 7 discovered ex-
ploitable vulnerabilities on either the Galaxy S21 5G or
Pixel 6. On both devices, crashes were indicated by signal
loss (i.e., disconnection from the network with no service
indication). On the Galaxy S21, triggering a crash while
Upload Mode was enabled resulted in a forced reboot
and the generation of a core dump. On the Pixel 6, we
enabled core dump generation using a user-debug build of
the Android ROM. Subsequent analysis of the collected core
dumps validated our findings.

9.1.3. Known Vulnerability Discovery. To further validate
LoRi1S’s bug-finding capabilities, we evaluated it on an older
version of the Galaxy S21 baseband (G991BXXUSCVF3).
LoRris identified 3 heap overflow vulnerabilities that have
since been patched in recent versions. According to Sam-
sung’s CVE program [43], 6 heap overflow vulnerabilities
in total have been reported for this baseband model. How-
ever, due to the lack of available information regarding the
vulnerability details, firmware versions, or specific tasks, we
could not determine how many of these reports correspond
to the issues in this task or firmware version. We also
examined two prior studies with overlapping scopes [12],
[44], each reporting one vulnerability in NAS message han-
dling. When applied to the vulnerable basebands analyzed
in these studies, Analyzer identified the state preconditions
needed to reach the vulnerable code regions in 5 and 11
iterations of symbolic analysis, respectively. Fuzzer then
generated inputs to trigger these vulnerabilities within 24
minutes and 2.5 hours, respectively. Notably, among all prior
reports, only BaseSAFE [12] employed automated meth-
ods for vulnerability discovery, while others likely relied
on manual efforts. In contrast, LORIS fully automated the
process, demonstrating its efficiency and effectiveness.

9.1.4. Vulnerability Discovery Accuracy. Like any test-
ing approach, LORIS may miss vulnerabilities due to time
and resource constraints limiting code coverage, or failing
to generate test cases triggering vulnerabilities for highly
restrictive conditions. However, we have not observed any
false negatives in our testing. Regarding false positives,
LoRris focuses on analyzing and testing individual baseband
tasks in isolation. As a result, some discovered vulnerabil-
ities may not be remotely exploitable in practice if miti-

TABLE 5. VULNERABILITY DISCOVERY TIMINGS
Fac. indicates the time factor by which LORIS is faster than comparison.
No time is reported when comparison fails to discover a vulnerability.

Fuzzer Min. Max. Mean Fac.
LORIS 0h-9m-33s Oh-15m-57s Oh-12m-0Os -
V1 FirmWire Oh-33m-45s 1h-3m-11s 0h-48m-35s 4
no grammar Oh-8m-43s 0h-23m-5s Oh-15m-48s 1.8
LoRrIs 0Oh-Om-29s Oh-7m-43s Oh-5m-52s -
V2 FirmWire Oh-24m-34s 1h-54m-54s 0h-53m-57s 9.2
Grimoire 1h-4m-30s 1h-10m-48s 1h-7m-33s 115
no grammar Oh-44m-30s O0h-53m-29s Oh-49m-37s 8.5
LORIS Oh-6m-18s 1h-24m-29s 0h-42m-55s -
V3 FirmWire 1h-3m-39s 1h-42m-20s 1h-11m-7s 1.65
- Grimoire Oh-17m-18s 6h-17m-41s 3h-12m-51s 4.5
no grammar Oh-24m-22s 1h-15m-25s ~ 0h-49m-1s 1.14
V4 LORIS 0h-9m-27s 1h-7m-53s Oh-53m-4s -
no grammar 1h-31m-46s 4h-13m-5s 3h-10m-51s 3.6
V5 LORIS Oh-2m-46s Oh-5m-5s Oh-3m-16s -
no grammar Oh-4m-5s Oh-56m-46s Oh-10m-1s 3
V6 Loris Oh-Om-34s Oh-4m-3s Oh-Om-42s -
no grammar Oh-12m-38s ~ Oh-31m-7s Oh-15m-16s 21.8
V8 LoRIS Oh-1m-19s Oh-4m-51s Oh-2m-24s -
no grammar Oh-7m-39s Oh-16m-17s Oh-10m-27s 4.35

no grammar represents LORIS without employing grammar-aware mutation

gated by lower-layer validations. For example, V7 (Table 4)
triggers a crash in the SAEL3 task, but is rendered non-
exploitable over-the-air due to checks in the Layer 2. While
Samsung has confirmed the underlying issue, they also agree
that no OTA exploit is possible. Aside from this case, we
have not encountered other false positives in our evaluation.

9.2. Benchmark Comparisons & Ablation Studies

9.2.1. Benchmark Comparisons. To evaluate the effec-
tiveness of LORIS against other approaches, we adapt
existing state-of-the-art tools for comparison, specifically
FirmWire [10] and Grimoire [45]. We do not include BaseC-
omp [15], as it uses a static approach focused solely on
finding logical bugs in integrity protection functions, nor
BaseSAFE [12], which requires manual setup for each func-
tion it tests. LORIS is designed to eliminate these manual
harnessing efforts. We present some qualitative comparisons
against these tools in Table 1. Additionally, we note that vul-
nerability V4 LORIS discovered involves interactions across
multiple functions to trigger, a scenario that BaseSAFE’s
function-specific approach cannot detect even with extensive
manual setup due to its inherent limitations.

FirmWire [10] applies AFL++ [33] to emulated base-
bands while managing state and task dependencies manually.
AFL++ is a state-of-the-art evolutionary fuzzer that employs

only havoc mutations on binary inputs, lacking any aware-
ness of the input’s underlying structure.

Grimoire [45] is a coverage-guided fuzzer that generates
new inputs by dynamically inferring the grammar structure
of the expected input format. It supports mutation operations
including splicing, recursive replacement, string substitu-
tion, and random deletion on the inferred input structure.
Grammar Ablation Studies. Additionally, to evaluate
the impact of LORIS’s grammar-aware mutator on fuzzing
effectiveness, we conduct an ablation study in which LORIS
uses AFL++’s havoc mutators in place of its grammar-aware
mutator (i.e., LORIS w/o Grammar), while still leveraging
the state analysis results produced by Analyzer.

Manual Harnessing. We use the same initial corpus for
all tools, including LORIS, and ensure a fair comparison by
allocating the same computational resources and a fixed test-
ing duration of 24 hours for each tool. However, testing OTA
NAS messages on the baseband firmware without state infor-
mation leads to immediate rejection of the test inputs due to
the incorrect message flow. As a result, both FirmWire and
Grimoire struggle to achieve significant coverage without
the state insights that LORIS gains from its Analyzer. To en-
sure that inputs generated by these two fuzzers reach at least
the initial decoding logic, we manually reverse-engineered
each target firmware to identify a specific sequence of four
NAS messages that allow subsequent messages to pass
through decoding. This additional manual effort must be
repeated for each tested baseband, taking hours for experts
familiar with the firmware (e.g., 2 hours for us when we
evaluate Galaxy S21). This manual setup mirrors Analyzer’s
automated analysis through iterative symbolic execution to
determine the necessary preconditions that set the task to
the required state. In 4 iterations, Analyzer successfully
identifies the relevant state variables and their preconditions
to achieve this same state. Additionally, further iterations
allow Analyzer to uncover additional state variable values
that enable deeper code exploration.

Comparison Result. Figure 4 illustrates the basic block
(BB) coverage achieved by different tools when fuzzing the
NAS message handling task across various phone models on
both LTE and 5G. Each plot shows data from 10 independent
24-hour runs, with the line representing the median BB
coverage and the shaded area indicating the range (upper
and lower bounds) across these runs. As shown, LORIS con-
sistently outperforms both FirmWire and Grimoire, which
perform similarly to each other. Notably, LORIS achieves
nearly double the coverage for most tested phone models.
Loris with AFL++ mutator achieves similar or slightly
lower coverage as LORIS although its coverage growth is
significantly slower. Table 5 summarizes the number of
vulnerabilities detected by each tool and the time taken to
identify them. LORIS not only identifies the highest number
of vulnerabilities (more than twice as many as other tools)
but also does so in the shortest amount of time. LORIS
without grammar finds all vulnerabilities but slower.

9.2.2. Ablation Study on State Analysis. To assess the
impact of different techniques employed by Analyzer in

mitigating state explosion, we conduct an ablation study
on state variable symbolic analysis under two scenarios:
(1) Analyzer randomly selects discovered state variables to
make symbolic instead of using the ranking system (i.e., no
ranking); (2) Analyzer does not perform iterative analysis at
all, making all candidate state variables symbolic simulta-
neously (i.e., no iterative). The experiments were conducted
for 8 hours, and the results are presented in Figure 5. We
measure the number of completed paths that successfully
reach the decoding function (e.g., line 30 in Listing 1), as
inputs that fail to reach decoding are rejected and have
no impact on the task. The results indicate that LORIS
without iterative symbolic execution suffers from immediate
state explosion and fails to identify any meaningful paths.
Loris without ranking is also significantly less effective at
discovering meaningful paths and experiences more frequent
state explosion due to having more active paths at any time.

e

‘\ LORIS (Non-iterative)
|

20+ f A\ H WM

10 '. W\l Wﬁ JLW W‘" w "

@ 1500 —— LORIS

' —— LORIS
| — LORIS (No Ranking)

| —— LORIS (No Ranking)
LORIS (Non-i ucramc)

Active Paths

<

[=W

=

8

Lé_ 600 /
S "Mw wn‘“w R

2 & £ 2h 4h oh 8h
Elapsed Tlme Elapsed Time

T
Figure 5. Number of Completed Paths and Active Paths Over Time

10. Discussions

Required Manual Effort. The proprietary and closed-
source nature of baseband firmware inherently requires some
manual analysis. LORIS requires reverse engineering to
identify the target task and the data structures containing
the OTA messages for delivery to the target task. However,
LORIS does not require reverse engineering of OTA message
structures, as these are well-defined in cellular specifications
(§4.1). In our workflow, approximately 10 hours of manual
effort is required to prepare a new baseband for testing,
or less than 1 hour when details of the target task are
available from previous research [10]. LORIS’s grammar-
aware mutator also requires manual grammar extraction,
which takes approximately 20 hours in our workflow to
extract NAS message definitions from the corresponding
technical specifications. However, this is a one-time effort
per protocol and can be reused to test all baseband imple-
mentations. To support future research, we will open-source
the extracted grammars. Moreover, as shown in Figure 4,
LORIS remains effective even without the grammar-aware
mutator. Finally, Extending LORIS’s emulation capabilities
to support new basebands (e.g., 5G basebands) also requires
manual engineering effort.

While LORIS significantly outperforms existing ap-
proaches (as shown in Figure 4), this type of manual effort is
common to all methods aimed at baseband firmware testing.
Notably, LORIS avoids the need for manual fuzz harnessing,
which is a common requirement in previous work. For
example, prior approaches [10], [12] require analysts to
manually configure tasks to reach message reception states

or to build function-level fuzzing harnesses (§9.2). In con-
trast, LORIS automates the analysis of state preconditions
necessary for message acceptance and processing (§6), en-
abling deeper and automated exploration of program logic.
Extensibility of LORIS. The core concept of LORIS
is adaptable to other baseband architectures and general
firmware that employ a task-like design to continuously han-
dle incoming messages, enabling it to resolve the complex
state and dependencies of these tasks. We demonstrate this
extensibility by evaluating LORIS on two different baseband
architectures, Samsung’s ARM-based Shannon basebands
and MediaTek’s MIPS-based basebands. Adapting LORIS
to MediaTek’s MIPS-based baseband required reverse engi-
neering to find the target task and locate the task’s message-
reception entry point, which serves as the starting point
for Analyzer. Once identified, Analyzer automatically infers
state preconditions, which are then used by Fuzzer with
minimal additional manual intervention. Supporting MIPS-
based basebands also required extending LORIS’s emulation
and symbolic execution capabilities. Specifically, to enable
symbolic execution for the MIPS16e2 instruction set used in
MTK basebands, we extended the MIPS Pcode definitions
in angr. Because angr’s default intermediate representation
(VEX) lacks MIPS support, we adopted the experimental
UberEnginePcode backend, which integrates Ghidra’s Pcode
IR. The MIPS16e2 extension required a one-time manual
effort of approximately 6 hours and successfully enabled
symbolic execution on MTK firmware.

Analyzer Accuracy. Analyzer may encounter false nega-
tives if it fails to identify a relevant state variable, poten-
tially causing Fuzzer to stall at early branches that depend
on the missed variable. Such misses can result from the
incompleteness of static analysis [46], where some write
operations may not be captured, leading to incorrect classi-
fication of a variable as a constant rather than a candidate
state variable. However, we did not observe such cases in
our evaluation. Additionally, some correctly identified state
variables may remain unexplored during symbolic execu-
tion due to resource constraints. In such cases, subsequent
fuzzing mutations may still enable the exploration of paths
determined by these variables. On the other hand, all state
variables identified according to Definition 6.1 are valid, and
we did not encounter any false positives in our experiments.

11. Related Work

Cellular Protocol Security. Several previous efforts analyze
various security aspects of cellular communications [9],
[47], [48], [49]. 5GBaseChecker [47] applies black-box au-
tomata learning and differential testing for analyzing the se-
curity of 5G baseband control plane protocols. DoLTEst [9]
performs negative tests on LTE RRC and NAS message han-
dling functions in commercial UEs. However, these black-
box and OTA-based approaches are slow and rely on logs
from UEs to diagnose problems. These logs may not be
detailed enough or available at all on proprietary basebands.
In comparison, LORIS performs testing directly on baseband

firmware emulations which enables detailed analysis and
provides accurate introspection to triage vulnerabilities.

Firmware Security. Previous efforts on general firmware
security [50], [51], [52], [53] either depend on manual
harnessing, unscalable static analysis or symbolic analysis,
or could not reason the complex states at all. Mulliner’s
research [11] pioneered cellular baseband security analysis
using Sulley [54] fuzzing framework to generate invalid
SMS messages and delivered them through AT command
from application processor to modem. BaseSAFE [12] con-
ducts testing on isolated functions, whereas FirmWire [10]
employs full-system emulation and testing of baseband.
None of these previous efforts can effectively reason the
state and dependencies in baseband. In comparison, LORIS
performs symbolic exploration and stateful fuzzing, and its
approach is extensible to other binary-only stateful testing.

Stateful Analysis. Several stateful analysis approaches are
proposed for protocol testing [55], [56], [57], [58]. Among
them, Frankenstein [55] extracts memory snapshots from
physical devices to initialize state variables. However, its
code-injection approach for snapshot extraction is infeasible
in proprietary basebands. Additionally, it can only capture
limited snapshots, and cannot test states not captured. LORIS
assigns arbitrary values to state variables, enabling broader
state space exploration and code coverage. [jon [56] and
SandPuppy [57] rely on source code, leading to unsatisfac-
tory results in binary-only basebands. Ferry [58] can only
track state variables derived from inputs, failing to capture
inter-task dependencies in basebands (Section 4.2). LORIS
presents a precise definition (Definition 6.1) and employs an
iterative approach to accurately identify and analyze state
variables. On the other hand, [jon and SandPuppy use state
variables as fuzzing feedback, but their random, unreliable
fuzzing cannot systematically reach different states. Ferry
symbolically analyzes state variables to derive input con-
straints, but it quickly encounters state explosion in complex
targets (Figure 5). Even Ferry acknowledges limitations in
complex environments (Section 3.1 of [58]). Loris employs
iterative symbolic execution to comprehensively analyze
state dependencies while mitigating state explosion.

12. Conclusion

We present LORIS, a novel framework for stateful,
dependency-aware analysis and fuzz testing of baseband
firmware. By employing an iterative symbolic analysis,
LoORIS progressively uncovers state preconditions while ef-
fectively mitigating the path-explosion problem, enabling it
to explore various code regions and achieve high coverage.
Evaluations on 5 commercial devices from 2 major vendors,
spanning both 4G LTE and 5G NR protocols, revealed 8 new
vulnerabilities, with potential impacts including remote code
execution and denial of service when exploited over-the-air.
Comparisons with state-of-the-art tools highlight LORIS’s
ability to mitigate state explosion, achieve better coverage,
and uncover more vulnerabilities.

Acknowledgements

We thank the anonymous reviewers and the shepherd
for their feedback and suggestions. We also thank the cor-
responding developers for cooperating with us during our
responsible disclosure. This work has been supported by
the NSF under grants 2145631, and 2215017, the Defense
Advanced Research Projects Agency (DARPA) under con-
tract number D22AP00148, and the NSF and Office of the
Under Secretary of Defense—Research and Engineering,
ITE 2326898 and 2515378, as part of the NSF Convergence
Accelerator Track G: Securely Operating Through 5G In-
frastructure Program.

References

[1] 3GPP, “IP multimedia call control protocol based on Session Initiation
Protocol (SIP) and Session Description Protocol (SDP); Stage 3,”

2022.

[2] ——, “TS 24.301; Non-Access-Stratum (NAS) protocol for Evolved
Packet System (EPS); Stage 3,” 2022.

[3] ——, “Non-Access-Stratum (NAS) protocol for 5SG System (5GS);
Stage 3,7 2022.

[4] ——, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio

Resource Control (RRC); Protocol specification,” 2022.

[S] A. Cama, “A walk with shannon: A walkthrough of a pwn2own
baseband exploit.” Insomni’hack, 2018. [Online]. Available:
https://www.insomnihack.ch/conference-2018/#acez

[6] D. K. Nico Golde, “Breaking band.” RECON, 2016. [Online].
Available: https://recon.cx/2016/talks/Breaking-Band.html

[71 R.-P. Weinmann, “Baseband attacks: Remote exploitation of memory
corruptions in cellular protocol stacks,” in 6th USENIX Workshop on
Offensive Technologies (WOOT 12). USENIX Association, 2012.

[8] H. Kim, J. Lee, E. Lee, and Y. Kim, “Touching the untouchables:
Dynamic security analysis of the Ite control plane,” in 2019 IEEE
Symposium on Security and Privacy (SP), 2019, pp. 1153-1168.

[9] C.Park, S. Bae, B. Oh, J. Lee, E. Lee, I. Yun, and Y. Kim, “DoLTEst:
In-depth downlink negative testing framework for LTE devices,” in
31st USENIX Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, Aug. 2022, pp. 1325-1342.

[10] G. Hernandez, M. Muench, D. Maier, A. Milburn, S. Park,
T. Scharnowski, T. Tucker, P. Traynor, and K. R. B. Butler,
“FirmWire: Transparent Dynamic Analysis for Cellular Baseband
Firmware,” in Symposium on Network and Distributed System Secu-
rity (NDSS) , 2022.

[11] C. M. Collin Mulliner, “Fuzzing the phone in your phone.”
Black Hat, 2009. [Online]. Available: https://www.blackhat.com/
html/bh-usa-09/bh-usa-09-speakers.html

[12] D. Maier, L. Seidel, and S. Park, “Basesafe: baseband sanitized
fuzzing through emulation,” in Proceedings of the 13th ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks, ser.
WiSec ’20. Association for Computing Machinery, 2020.

[13] N. Golde, “There’s life in the old dog yet: Tearing new holes into
intel/iphone cellular modems,” 2018, accessed: 2024-06-13. [Online].
Available: https://comsecuris.com/blog/posts/theres_life_in_the_old_
dog_yet_tearing_new_holes_into_inteliphone_cellular_modems/

[14] “All your baseband are belong to us.” DeepSec IDSC, 2010.
[Online]. Available: https://deepsec.net/archive/2010.deepsec.net/

[15] E. Kim, M. W. Baek, C. Park, D. Kim, Y. Kim, and I. Yun,
“BASECOMP: A comparative analysis for integrity protection in
cellular baseband software,” in 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association, 2023.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

G. Delugré, “Reverse-engineering a qualcomm baseband.” Chaos
Computer Club (CCC), 2011. [Online]. Available: https://media.ccc.
de/v/28c3-4735-en-reverse_engineering_a_qualcomm_baseband

T. Scharnowski, S. Worner, F. Buchmann, N. Bars, M. Schloegel, and
T. Holz, “Hoedur: embedded firmware fuzzing using multi-stream
inputs,” in Proceedings of the 32nd USENIX Conference on Security
Symposium, ser. SEC "23. USA: USENIX Association, 2023.

A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov, B. Dolan-
Gavitt, M. Egele, A. Francillon, L. Lu, N. Gregory, D. Balzarotti, and
W. Robertson, “Sok: Enabling security analyses of embedded systems
via rehosting,” in Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security, ser. ASIA CCS °21. New
York, NY, USA: Association for Computing Machinery, 2021.

C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A.
Clements, “Challenges in firmware re-hosting, emulation, and analy-
sis,” ACM Comput. Surv., vol. 54, no. 1, jan 2021.

F. Bellard, “Qemu, a fast and portable dynamic translator,” in Pro-
ceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC 05. USA: USENIX Association, 2005, p. 41.

D. Rupprecht, K. Kohls, T. Holz, and C. Popper, “Breaking Ite on
layer two,” in 2019 IEEE Symposium on Security and Privacy (SP),
2019, pp. 1121-1136.

D. Rupprecht, K. Jansen, and C. Popper, “Putting LTE security
functions to the test: A framework to evaluate implementation correct-
ness,” in 10th USENIX Workshop on Offensive Technologies (WOOT
16). Austin, TX: USENIX Association, Aug. 2016.

G. Lee, J. Lee, J. Lee, Y. Im, M. Hollingsworth, E. Wustrow,
D. Grunwald, and S. Ha, “This is your president speaking: Spoofing
alerts in 4g lte networks,” in Proceedings of the 17th Annual Inter-
national Conference on Mobile Systems, Applications, and Services,
ser. MobiSys *19. Association for Computing Machinery, 2019.

T. Yang, S. M. M. Rashid, A. Ranjbar, G. Tan, and S. R. Hussain,
“ORANalyst: Systematic testing framework for open RAN implemen-
tations,” in 33rd USENIX Security Symposium (USENIX Security 24).
Philadelphia, PA: USENIX Association, Aug. 2024, pp. 1921-1938.

L. Coppolino, V. D’Alessandro, S. D’Antonio, L. Levy, and L. Ro-
mano, “My smart home is under attack,” in 2015 IEEE 18th Interna-
tional Conference on Computational Science and Engineering, 2015.

L. Janzen, L. Becker, C. Wiesenidcker, and M. Hollick, “Oh no, my
RAN! breaking into an O-RAN 5g indoor base station,” in /8th
USENIX WOOT Conference on Offensive Technologies (WOOT 24).
Philadelphia, PA: USENIX Association, Aug. 2024, pp. 101-115.

C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Karonte: Detecting
insecure multi-binary interactions in embedded firmware,” in 2020
IEEE Symposium on Security and Privacy (SP), 2020, pp. 1544-1561.

NSA, “Ghidra software reverse engineering framework,” 2024. [On-
line]. Available: https://github.com/NationalSecurity Agency/ghidra

C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi,
and D. Teuchert, “NAUTILUS: Fishing for deep bugs with gram-
mars,” Proceedings 2019 Network and Distributed System Security
Symposium, 2019.

P. Srivastava and M. Payer, “Gramatron: effective grammar-aware
fuzzing,” in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2021. New
York, NY, USA: Association for Computing Machinery, 2021.

D. Steinhofel and A. Zeller, “Input invariants,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE 2022. New York, NY, USA: Association for Computing
Machinery, 2022, p. 583-594.

https://www.insomnihack.ch/conference-2018/#acez
https://recon.cx/2016/talks/Breaking-Band.html
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-speakers.html
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-speakers.html
https://comsecuris.com/blog/posts/theres_life_in_the_old_dog_yet_tearing_new_holes_into_inteliphone_cellular_modems/
https://comsecuris.com/blog/posts/theres_life_in_the_old_dog_yet_tearing_new_holes_into_inteliphone_cellular_modems/
https://deepsec.net/archive/2010.deepsec.net/
https://media.ccc.de/v/28c3-4735-en-reverse_engineering_a_qualcomm_baseband
https://media.ccc.de/v/28c3-4735-en-reverse_engineering_a_qualcomm_baseband
https://github.com/NationalSecurityAgency/ghidra

(33]

(34]

[35]

[36]

(371

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

(511

[52]

A. Fioraldi, D. Maier, H. Eif}feldt, and M. Heuse, “AFL++: Combin-
ing incremental steps of fuzzing research,” in /4th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX Association, 2020.

R. Swiecki, “Honggfuzz—coverage-guided mutational fuzzer,” 2021.
[Online]. Available: https://github.com/google/honggfuzz

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in 2012 USENIX Annual
Technical Conference (USENIX ATC 12). Boston, MA: USENIX
Association, Jun. 2012, pp. 309-318.

K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race
detection in practice,” in Proceedings of the Workshop on Binary
Instrumentation and Applications, ser. WBIA ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 62-71.

“UndefinedBehaviorSanitizer.” [Online]. Available:
Ilvm.org/docs/UndefinedBehaviorSanitizer.html

https://clang.

E. Stepanov and K. Serebryany, “Memorysanitizer: Fast detector of
uninitialized memory use in c++,” in 2015 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), 2015.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

A. Fioraldi, D. Maier, D. Zhang, and D. Balzarotti, “LibAFL: A
Framework to Build Modular and Reusable Fuzzers,” in Proceed-
ings of the 29th ACM conference on Computer and communications
security (CCS), ser. CCS ’22. ACM, November 2022.

D. Tiselice, “pest,” https://github.com/pest-parser/pest, 2022.
“Open5gs.” [Online]. Available: https://github.com/open5gs/openSgs

Samsung, “Product security update.” [Online]. Avail-
able: https://semiconductor.samsung.com/support/quality-support/
product-security-updates/

D. Komaromy, “Cve-2023-21517,” 2023.
https://labs.taszk.io/blog/post/85_ss_esm_bof/

T. Blazytko, C. Aschermann, M. Schlogel, A. Abbasi, S. Schumilo,
S. Worner, and T. Holz, “GRIMOIRE: Synthesizing structure while
fuzzing,” in 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, Aug. 2019, pp. 1985-2002.

A. Mgller and M. 1. Schwartzbach, “Static program analysis,” https:
/fcs.au.dk/~amoeller/spa/, 2018.

K. Tu, A. A. Ishtiag, S. M. M. Rashid, Y. Dong, W. Wang, T. Wu, and
S. R. Hussain, “Logic gone astray: A security analysis framework for
the control plane protocols of 5g basebands,” in 33rd USENIX Secu-
rity Symposium (USENIX Security 24). Philadelphia, PA: USENIX
Association, Aug. 2024, pp. 3063-3080.

S. R. Hussain, I. Karim, A. A. Ishtiaq, O. Chowdhury, and E. Bertino,
“Noncompliance as deviant behavior: An automated black-box non-
compliance checker for 4g lte cellular devices,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS *21. Association for Computing Machinery, 2021.

[Online]. Available:

M. Akon, T. Yang, Y. Dong, and S. R. Hussain, “Formal analysis of
access control mechanism of 5g core network,” in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’23. Association for Computing Machinery, 2023.

Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kriigel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabil-
ities in binary firmware,” in Network and Distributed System Security
Symposium, 2015.

D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards automated
dynamic analysis for linux-based embedded firmware,” 01 2016.

A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A Large-
Scale analysis of the security of embedded firmwares,” in 23rd
USENIX Security Symposium (USENIX Security 14). San Diego,
CA: USENIX Association, Aug. 2014, pp. 95-110.

[53] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on firmware:
Finding vulnerabilities in embedded systems using symbolic execu-
tion,” in 22nd USENIX Security Symposium (USENIX Security 13).

Washington, D.C.: USENIX Association, Aug. 2013, pp. 463—478.
R. Sears, “Sulley,” https://github.com/OpenRCE/sulley, 2014.

J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein:
Advanced wireless fuzzing to exploit new bluetooth escalation tar-
gets,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 19-36.

C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Tjon: Ex-
ploring deep state spaces via fuzzing,” in 2020 IEEE Symposium on
Security and Privacy (SP), 2020, pp. 1597-1612.

V. Paliath, E. Trickel, T. Bao, R. Wang, A. Doupé, and Y. Shoshi-
taishvili, “Sandpuppy: Deep-state fuzzing guided by automatic de-
tection of state-representative variables,” in Detection of Intrusions
and Malware, and Vulnerability Assessment, F. Maggi, M. Egele,
M. Payer, and M. Carminati, Eds. Cham: Springer Nature Switzer-
land, 2024, pp. 227-250.

S. Zhou, Z. Yang, D. Qiao, P. Liu, M. Yang, Z. Wang, and
C. Wu, “Ferry: State-Aware symbolic execution for exploring State-
Dependent program paths,” in 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, Aug. 2022.

M. Zalewski., “Afl—coverage-guided mutational fuzzer.” 2021.
[Online]. Available: https://github.com/google/AFL

[54]
[55]

[56]

[57]

[58]

[59]

Appendix A.
Grammar-Aware Input Generation/Mutation

OTA messages processed by baseband tasks follow
structured input formats specified by 3GPP standards, each
with distinct encoding schemes. NAS messages follows TLV
(Type-Length-Value) encoding [2], including both syntactic
(i.e., structural) and semantic (i.e., value constraint) re-
quirements. Traditional fuzzers [34], [59], however, do not
account for these structured formats and instead rely solely
on random byte mutations (i.e., havoc mutations) to generate
inputs. As a result, most generated inputs fail to conform to
the expected structures and are immediately rejected. Con-
sequently, structure-unaware fuzzers fail to explore deeper
parts of the message-handling process and cannot adequately
test the subtle input validation logic of these protocols.

To address these limitations, previous work [30], [31]
has employed context-free grammars (CFGs) to specify
the syntactic structure of input formats. CFGs effectively
capture structural rules, such as optional fields, choices,
lists, repeating elements, and recursive fields. However,
they cannot maintain semantic context across fields, for
instance, CFG cannot express a TLV structure, where the
L (length) field should match the actual length of the sub-
sequent V (value) field. To overcome this limitation, some
systems [32] incorporate SMT solvers on top of CFGs to
evaluate semantic constraints, ensuring that relationships
between fields are enforced. For example, Listing 5 defines
UeSecCap_T4LV, an LV field with a length field L1 and
a value field UeSecCapValue (line 1). The value field
can randomly take one of three lengths (16, 31, or 38 bits),
selected by the random integer variable c (lines 2-5). To
generate a valid LV field, an SMT solver enforces constraints
ensuring L1 matches the actual length of UeSecCapValue
and that c is within the range of possible choices (line 6).

https://github.com/google/honggfuzz
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/pest-parser/pest
https://github.com/open5gs/open5gs
https://semiconductor.samsung.com/support/quality-support/product-security-updates/
https://semiconductor.samsung.com/support/quality-support/product-security-updates/
https://labs.taszk.io/blog/post/85_ss_esm_bof/
https://cs.au.dk/~amoeller/spa/
https://cs.au.dk/~amoeller/spa/
https://github.com/OpenRCE/sulley
https://github.com/google/AFL

While SMT solvers support complex semantic validation,
they introduce significant computational overhead, reducing
fuzzing throughput and limiting scalability.

I UeSecCap_T4LV = Concat (L1, UeSecCapValue)
2 L1 = BitVec(8); c = Int()
3 UeSecCapValue = If(c == 0,

4 BitVec(16),
IF (c == 1, BitVec(31), BitVec(38)))
6 solve ([Length (ueSecCapvalue) == L1, c < 3])

Listing 5. LV Grammar Requiring SMT Solver

Our Approach. To address these limitations, we conduct
a comprehensive analysis of message definitions and spec-
ifications in the technical documents [2], [3] for the NAS
OTA messages we aim to test. We observe that the semantic
constraints for these messages in the 3GPP standards are
limited, allowing us to design a custom grammar with
augmented semantic annotations tailored to this domain.
LoRIs first defines syntactic rules using a CFG-like
structure to capture field layouts, choices, optional elements,
and other structural attributes of OTA messages. It then
augments these rules with semantic annotations to enforce
field dependencies and inter-field constraints without re-
quiring computationally intensive solvers. This allows us
to generate valid OTA messages by incorporating context
directly into the generation process. For example, consider
Listing 6, which illustrates LORIS’s grammar when gen-
erating the same UeSecCapValue format presented in
Listing 5. This grammar contains two components, the CFG
definition specifying the message’s syntactic structure (lines
2-4) and a semantic annotation that enforces a constraint
on the generated message (line 1). The CFG includes two
concatenation operators: ~ for left-associative concatenation
and < for right-associative concatenation. The rule on line 2
generates UeSecCapValue first, followed by L1. On line
4, the optional field operator ? on the BYTE and BITS7
primitives generates random values of one of three possible
lengths for UeSecCapValue. After generating a syntac-
tically valid UeSecCapValue, the semantic annotation
enforces to assign the length of UeSecCapVvalue to L1
(line 1), ensuring consistency between the length and value
fields without requiring an SMT solver, thereby improving
efficiency in valid message generation.
1 #[Ll.value = UeSecCapValue.length]
> UeSecCap_T4LV = { L1 < UeSecCapValue }

3 UeSecCapValue = {
4 BYTE ~ BYTE ~ (BYTE ~ BITS7 ~ BITS7?)?}

Listing 6. LORIS’s Grammar Avoiding SMT Solving

Supported Semantic Annotations. To meet the message re-
quirements outlined in cellular specifications [2], [3], Fuzzer
extends its grammar model with semantic annotations pro-
viding properties and operations that account for inter-
field dependencies, length constraints, and specific value
requirements. The supported semantic properties include:
« length: specifies inter-field length constraints, ensur-
ing that length tags are assigned by the actual byte
count of their respective fields.

o value: assigns specific values to fields, either directly
or through calculated constraints.

e reps: specifies the number of repetitions for a given
field, which is used when a field or subfield can appear
multiple times within a message structure (e.g., a list).

To modify these properties, Fuzzer employs semantic
operations that allow precise control over field values:

e Arithmetic Operations (+, —): Used to incre-
ment or decrement values as required by the message
specification. For instance, if a field length must ac-
count for header bytes, Fuzzer uses these operations to
adjust the length value accordingly.

e Logical Operations (AND, OR, XOR, RSHIFT,
LSHIFT): Used to enforce bit-level constraints. For ex-
ample, if a technical document specifies that a specific
bit within a field must always be set to 0, Fuzzer can
use an AND operation with the appropriate bitmask.

e Assignment Operation (=) for direct value set-
ting, enabling fields to take on specific values or
modified values based on conditions derived from the
protocol’s semantic requirements.

Corpus Generation. Using the defined grammar, LORIS
generates a diverse set of initial inputs to cover each speci-
fied message type. For each type, the generation algorithm
employs a tree-based structure to explore all branching
variations, ensuring coverage of possible formats.

Input Mutation Strategies. LORIS applies several muta-
tion strategies for its test input generation. Grammar-aware
random mutation. LORIS randomly selects a field from
the message and regenerates it using the defined grammar.
Grammar-aware splice mutation. This strategy combines
elements from two messages to create a new valid test
input. It randomly selects two messages of the same type
(i.e., generated by the same grammar), identifies a random
cut point within a field of the first input, and finds a
compatible splice point in the second message based on the
grammar. LORIS then joins the left portion of the first input
with the right portion of the second, creating a new input,
and ensuring the semantic annotations of the corresponding
grammar are still satisfied. Probabilistic havoc mutation.
LORIS also applies a havoc mutation strategy that introduces
random changes at the raw-message level, without regard
to grammar or structure, to create slight deviations from
the defined grammar to test the decoding logic. Specifi-
cally, LORIS performs bit flips, arithmetic mutations, and
insertion/deletion operations on initially grammatically valid
inputs (or corpus mutated by previous havoc mutations).
This mutation is probabilistically applied with a configurable
probability (set to 0.3 in our tests) during each mutation
round. Since havoc mutations break the syntax of the test
input, any further grammar-aware mutations (i.e., the first
two strategies) are no longer applicable to that message. For
each mutation round, LORIS probabilistically applies one of
the three mutation strategies up to a configurable number
of times (set to 8 in our tests), enabling the generation of
test inputs that range from slight modifications of the initial
message to significant deviations.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

LORIS is a new cellular baseband fuzzer, which makes
various improvements compared to prior work to uncover
new vulnerabilities. It explores the state required to reach
specific parsing functionality in an efficient way, enabling
it to cover code that previous fuzzers could not reach with
similar inputs. LORIS will be open-sourced, enabling future
researchers to verify and built upon its exceptional results.

B.2. Scientific Contributions

« Creates a New Tool to Enable Future Science

« Identifies an Impactful Vulnerability

e Provides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) Real-world impact: It uncovers new security vulnera-
bilities affecting real devices.

2) Strong experimental results: It outperforms state-of-the-
art fuzzers like FirmWire and Grimoire.

3) Technical analysis: Explanation of techniques used, in-
cluding state variable detection, precondition inference,
and grammar-aware fuzzing.

B.4. Noteworthy Concerns

Exploitability: The authors described how the vulnera-
bilities can be exploited but did not create a proof of concept
exploit.

	Introduction
	Background
	Threat Model & Motivation
	Threat Model
	Motivating Example

	Challenges of Designing Loris
	C1: Target Task Identification & Isolation
	C2: State and Dependency Management
	C3: Effective State Analysis

	Design Overview
	Identifying State Preconditions
	Candidate State Variables Identification
	Iterative Symbolic Analysis
	State Variable Ranking
	Further Alleviating State Explosion

	Stateful Fuzzing
	Implementation
	Evaluation
	Discovered Vulnerabilities
	Previously Unknown Vulnerabilities
	Over-the-Air Exploit Validation
	Known Vulnerability Discovery
	Vulnerability Discovery Accuracy

	Benchmark Comparisons & Ablation Studies
	Benchmark Comparisons
	Ablation Study on State Analysis

	Discussions
	Related Work
	Conclusion
	References
	Appendix A: Grammar-Aware Input Generation/Mutation
	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

