
CORECRISIS: Threat-Guided and Context-Aware
Iterative Learning and Fuzzing of 5G Core Networks

Yilu Dong, Tianchang Yang, Abdullah Al Ishtiaq, Syed Md Mukit Rashid, Ali Ranjbar,
Kai Tu, Tianwei Wu, Md Sultan Mahmud, Syed Rafiul Hussain

The Pennsylvania State University
{yiludong, tzy5088, abdullah.ishtiaq, szr5848, aranjbar, kjt5562, tvw5452, mqm7099, hussain1}@psu.edu

Abstract
We develop CORECRISIS, a stateful black-box fuzz-testing

framework for 5G core network (5GC) implementations. Un-
like previous stateful security analysis efforts of cellular net-
works which rely on manually-crafted, static test inputs and
are limited to identifying only logical errors, CORECRISIS
employs a dynamic two-step approach. Initially, CORECRI-
SIS builds an initial finite state machine (FSM) representation
of the 5GC’s implementation using only benign (i.e., posi-
tive) inputs with its efficient and scalable divide-and-conquer
and property-driven equivalence checking learning. During
fuzzing, it utilizes the learned FSM to target underexplored
states and introduces state-aware mutations to generate and
test attacking (i.e., negative) inputs. Based on the responses
observed from the core network, CORECRISIS continuously
refines the FSM to better guide its exploration and find vul-
nerabilities. Evaluating CORECRISIS on three open-source
and one commercial 5GC implementations, we identified 7
categories of deviations from the technical specifications and
13 crashing vulnerabilities. These logical and crashing vul-
nerabilities lead to denial-of-service, authentication bypass,
and billing fraud.

1 Introduction

Unlike the monolithic architectures of previous generations
of cellular networks, 5G introduces a service-based archi-
tecture (SBA) for its core networks. This SBA divides the
core network’s functionalities into various network functions
(NFs). Each NF executes a distinct set of operations as an
individual component, providing Application Programming
Interface (API) access to other NFs. This modular approach
allows operators to distribute NFs with more flexibility. The
5G technical specifications [13–16] defined by the 3rd Gener-
ation Partnership Project (3GPP) aim to provide guidelines
for implementing the 5G core networks. However, previous
research [18, 23–25, 37, 39, 45, 56, 60] found that these speci-
fications are sometimes ambiguous and underspecified. Fur-
thermore, the absence of a reference implementation often

results in misinterpretations of the standards. These ambigu-
ities, underspecifications, and misinterpretations can result
in exploitable logical bugs, including authentication bypass
and billing fraud in the 5G core network implementations.
Additionally, flaws or oversights in implementations could
also lead to errors that result in system crashes due to missing
checks or mishandling of unexpected inputs, causing Denial-
of-Service (DoS) for all user devices connected to the core
network and requiring a complete restart of the affected NF
to restore service. Previous research has shown that 4G core
network implementations are prone to these logical and crash-
ing issues [39, 45, 50]. However, due to the unique challenges
posed by 5GC’s software-centric distributed design, no sys-
tematic security analysis of 5GC implementations has been
conducted before. To bridge this gap, we aim to answer the
following research question in this work: can we develop a
systematic framework that analyzes and uncovers implemen-
tation flaws in 5G core network implementations?

5GC is typically closed from external traffic, preventing
attackers from gaining direct access through its internal APIs.
Instead, by obtaining a valid Subscriber Identification Module
(SIM) card and gaining root control of the user device, the
attacker can send arbitrary malicious messages to the core
network. These messages then trigger the internal API inter-
actions between NFs. Since access to the internal details of
these implementations is often limited in commercial settings,
testing can only be performed without access to the source
code, compiled binaries, or runtime environments of the NFs.
Therefore, we take a black-box fuzzing approach, analyzing
feedback based on responses observed directly from the UE.
We target the 5G Non-Access Stratum (NAS) protocol be-
tween user devices and the core network, as it is crucial for
user authentication, security context setup, and session man-
agement.

Existing works analyzing the security of cellular proto-
cols generally take two directions, stateless or stateful testing.
Stateless analyses often struggle to understand the highly
stateful cellular protocols and are inefficient at exploring the
state space. These methods either depend on complete man-

ual examination [45] or utilize predefined test cases [63]. In
contrast, some stateful testing approaches [24,39,42,60] lever-
age automata learning algorithms to construct a finite state
machine (FSM) representation of the implementation. These
approaches require a predefined static set of input symbols
to construct and test the FSM. As a result, they are limited
to identifying vulnerabilities detectable within the predefined
symbol set, and assembling these symbol sets requires manual
efforts from human experts. Additionally, the limited num-
ber of tests these approaches can employ restricts them to
detecting only logical errors. A recent approach [12] aiming
to identify logical vulnerabilities addresses this limitation and
enables the fuzzer to test symbols beyond the initial symbol
set. However, it cannot dynamically update the initial FSM
to explore deeper protocol states. Moreover, none of these
existing approaches can detect memory safety violations and
crashes, which usually require testing a wide range of inputs.
Conversely, approaches that simultaneously generate diverse
inputs and learn states [52] use ad-hoc learning methods that
depend on randomness, resulting in poor state coverage. Fur-
thermore, these methods lack protocol semantics, restricting
them to only finding memory bugs but not protocol violations.
Proposed approach. To overcome the limitations of pre-
vious methods, we design and implement CORECRISIS, a
context-aware, black-box approach employing a two-step it-
erative learning and fuzzing. In the first step, CORECRISIS
constructs an initial state representation, i.e., a skeleton of
the implementation’s state machine learned using only be-
nign symbols, i.e., messages that are correctly formed and
expected by the core network. To address the challenges of
high learning time and the complexity of learning intricate
5GC implementations, CORECRISIS introduces two novel
methods: (1) divide-and-conquer, which partitions the FSM
learning process into smaller, more manageable segments
based on the functional division of NFs; and (2) property-
driven equivalence checking, which leverages key compliance
properties of 5G control-plane procedures to efficiently refine
the hypothesis FSM and accelerate the learning process.

During the second step, CORECRISIS references and re-
fines the learned FSM to generate state-aware mutated test
inputs (i.e., attacking symbols) that can trigger unexpected
behavior and explore previously underexplored state spaces.
Since this second stage does not impose any restrictions on
the number of attacking symbols CORECRISIS tests, it can
explore a wider search space and find deeply rooted vulnera-
bilities. To avoid generating test sequences that result in mean-
ingless cycles or early rejections, CORECRISIS prioritizes
less-explored or potentially vulnerable states and constructs
state-specific test messages to maximize coverage. It also de-
signs a grammar-aware message mutation strategy to ensure
generated test messages are well-formed, meeting both syn-
tactic (e.g., type, length, structure) and semantic (e.g., value
constraints, inter-field dependencies) correctness. CORECRI-
SIS utilizes a 5G-specific, side-channel-based probing method

to collect feedback and detect vulnerabilities from the limited
black-box response the core network provides to the UE. If
CORECRISIS observes a previously unseen response, it infers
that the corresponding test message has either discovered a
new transition to an existing state or uncovered a new state,
and updates the FSM to represent this finding. The reference
FSM is used to guide CORECRISIS’s test generation, while
results from these tests in turn are used to refine the FSM,
creating an iterative cycle of testing and refining.
Findings. Applying CORECRISIS to 3 open-source and 1
commercial 5GC implementations, we uncovered 3 types of
logical violations that can lead to authentication bypass and
billing fraud, 7 additional types of protocol deviations, and 13
crashing vulnerabilities, leading to denial-of-service (DoS).
Eight CVEs have been assigned to 14 of our findings.
Responsible disclosure and open-sourcing. We reported all
identified issues to corresponding developers and are working
with them to identify root causes and design fixes. Patches for
11 of the 16 identified vulnerabilities are already merged in the
latest release. We open-sourced CORECRISIS at the following
link: https://doi.org/10.5281/zenodo.14735880 and
also on GitHub [4].
Contributions. We make the following contributions:
• We develop CORECRISIS, the first stateful systematic

fuzzing framework for 5G core network implementations.
• We design an efficient divide-and-conquer and property-

driven equivalence checking style automata learning meth-
ods to infer the FSM of 5G core network functions.

• We develop a positive feedback cycle of iterative testing
and refining and novel state-aware mutation techniques to
effectively generate stateful test cases for 5GC.

• We evaluated CORECRISIS on three open-source and
one commercial 5GC implementation, uncovering 16 ex-
ploitable vulnerabilities (both logical and crashing) and 7
additional types of logical deviations. These issues could
lead to DoS, authentication bypass, and billing fraud.

2 Preliminaries

5G core network (5GC). A 5G system consists of three main
components (Figure 1): User Equipment (UE), the Radio
Access Network (RAN), and the 5G core network (5GC).
UEs are end-user communication devices, such as smart-
phones. The 5G RANs, also known as Next Generation Node
B (gNBs), are base stations that enable connections between
5G UEs and the core network. The 5G core network serves as
the back end of the RAN, providing services including con-
nectivity and mobility management, authentication and autho-
rization, and subscriber data handling. Unlike its monolithic
predecessors, 5GC separates its functionalities into several
components called Network Functions (NFs). This service-
based architecture (SBA) provides more flexibility and scala-
bility. However, it has also increased the overall complexity
due to the increased number of components and the intricate

https://doi.org/10.5281/zenodo.14735880

AMF SMF

UE

UPF

RAN

NRFAUSF ...

Tested NFs
Other NFs

5GCN1 N2

Tested Interface
Other Interfaces

Figure 1: 5G system architecture

interactions between them. Among these NFs, control-plane
traffic originating from a UE is primarily handled by two
NFs: Access and Mobility Management Function (AMF) and
Session Management Function (SMF). The AMF directly
communicates with UEs via the 5G Non-Access Stratum
(NAS) protocol over a logical N1 interface [16]. Although
NAS messages on the N1 interface are transmitted through the
RAN, the RAN acts as a conduit, forwarding these messages
to 5GC without processing or interpreting them. The AMF is
responsible for key control-plane tasks, including authenticat-
ing and registering UEs, maintaining security contexts, and
managing handovers. The SMF handles data-plane-related
NAS traffic, responsible for establishing, maintaining, and
releasing Protocol Data Unit (PDU) sessions, enabling data
(e.g., Internet) connectivity for UEs.
Automata learning. Automata learning aims to infer a sys-
tem’s abstract model based on either logged system traces
(passive automata learning [49]) or actively sent queries (ac-
tive automata learning [19]). Active automata learning typ-
ically consists of two alternating phases—hypothesis con-
struction and validation [19, 40]. During hypothesis construc-
tion, the learner sends membership queries to the system
under learning and generates a hypothesis model based on the
responses. After that, to validate the hypothesis model, the
learner sends equivalence checking (EC) queries to check if
the generated hypothesis model is valid or not. EC queries
revealing discrepancies between the hypothesis model and the
system-under-learning are saved as counterexamples, which
are utilized to further refine the hypothesis. However, because
of the vast search space, finding counterexamples requires a
large number of queries and reduces the overall efficiency of
active automata learning.

3 Overview

3.1 Threat Model

We consider compromised UEs controlled by attackers that
transmit arbitrary messages with malicious intent, potentially
disrupting 5G services for benign users or even compromis-
ing the entire network’s stability. For example, by gaining
root access to a user device, an attacker could seize complete
control of the device and interface it with a software-defined
radio [9, 11] to craft and dispatch arbitrary uplink NAS mes-
sages to the 5G core network. The rogue UE equipped with
operator-provided SIM has the full capability of sending per-

fectly encrypted, improper encrypted, or unencrypted NAS
messages of arbitrary message type and content to the core
network through a benign gNB. We assume that the rogue UE
does not have any control over or access to gNBs interfacing
with the core network. The primary objective of the attacker is
to exploit its capability to craft an unexpected input sequence
that can lead to the core network crashing or transiting to
an unexpected state that leads to logical errors. Our threat
model does not consider cases where malicious inputs are
sent directly through the API of each NF, or the gNB directly
initializes malicious or malformed traffic since both gNB and
NFs are deployed and controlled by network operators and
are unlikely to intentionally act maliciously.
Testing scope. Conceptually, CORECRISIS can be applied
to test any protocol layers of cellular networks and any NFs
in 5GC. In this work, we specifically focus on the 5G Non-
Access Stratum (NAS) layer at the 5GC, testing the N1 inter-
face (Figure 1). The NAS protocol messages are critical for se-
curity (e.g., authentication and security context establishment)
and voice/data session management in cellular networks, with
complex message structures and protocol states that make
thorough exploration challenging. We consider both Subscrip-
tion Permanent Identifier (SUPI)-based and Globally Unique
Temporary Identifier (GUTI)-based registration modes. The
AMF and SMF directly process NAS messages UEs send,
though processing these messages often requires the AMF
and SMF to interact with other NFs within the 5GC, creating
dependencies that often extend the impact of these messages
beyond AMF and SMF (Section 7).

3.2 Motivation for CORECRISIS

Testing commercial 5GC implementations poses unique chal-
lenges where access to the source code, compiled binaries,
or the run-time environment is generally unavailable. Mean-
while, the 5G NAS protocol implementation in the 5G core is
inherently stateful, requiring an understanding of the imple-
mentation’s state machine to effectively navigate its behavior
and identify deeply rooted vulnerabilities. In the absence of
direct access to the implementation, one may resort to a man-
ually constructed reference state machine [37, 38] from the
technical specifications to approximate the expected state
space. However, relying solely on a single reference state
machine is insufficient for guiding the testing of all imple-
mentations, primarily for two reasons. First, the granularity of
state implementations can vary between the actual implemen-
tations and the specifications. For instance, a state defined in
the specification might be further divided into multiple sub-
states in a practical implementation. As an example, Figure 3
demonstrates the state space of a 5GC implementation, Ope-
nAirInterface [9], in which states a0, a3, and a4 all represent a
single deregistered state in the 5G specification [14]. Second,
implementations may not strictly adhere to the specifications,
resulting in discrepancies that a single reference model can-

not capture. For example, state a7 in Figure 3 represents a
vulnerable state that deviates from technical specifications
(P3 in Table 2). Therefore, to effectively guide the testing pro-
cess, the reference state machine must capture variations in
different implementations instead of utilizing a uniform state
machine. This signifies that accurate state inference based on
the implementation is critical.

Two primary approaches are commonly used for inferring
state machine from implementations: run-time inference of
states [52] and automata-learning [24,39,60]. Run-time state
inferences often suffer from inaccuracies and incompleteness,
primarily due to their reliance on ad-hoc state learning tech-
niques. The poor quality of state guidance in these approaches
results in input generation that lacks an understanding of the
protocol’s context and semantics. Additionally, these meth-
ods are largely limited to detecting memory errors and are
incapable of automatically identifying logical errors in the
protocol’s behavior.

On the other hand, approaches that use black-box automata
learning to construct state machines also face significant lim-
itations when applied to testing 5GC. (1) These approaches
require a predefined static set of symbols for state machine
construction. Consequently, the learning phase must include
both benign symbols (i.e., valid protocol messages) and mali-
cious symbols (e.g., invalid messages, such as those contain-
ing an invalid message authentication code) to simultaneously
capture regular protocol behavior and enable negative test-
ing [50]. (2) Since there can be an arbitrarily large number
of malicious symbols (e.g., each bit mutation of a message
creates a new symbol), increasing the symbol set to address
the first limitation results in significant growth in the time and
resources required for automata learning. This often extends
the learning process to weeks, imposing strict upper limits
on the number of symbols to keep learning feasible within
reasonable time and resource constraints. (3) Due to the static
nature of automata learning algorithms, adding new symbols
requires existing approaches to re-learn the entire state ma-
chine from scratch. (4) After the state machine is constructed,
these approaches employ differential testings to compare the
learned state machines from multiple implementations to find
vulnerabilities. However, the effectiveness of such methods
heavily depends on the availability of multiple implementa-
tions for comparison. While this approach has shown success
in UE testing, where state machines from dozens of com-
mercial UEs can be compared [39, 60], it is significantly less
effective in the 5GC context. With only three publicly acces-
sible 5GC implementations [5, 8, 9], the ability to identify
inconsistencies or anomalies through differential testing is
greatly limited.

3.3 Challenges of CORECRISIS

To facilitate effective testing and address these complexi-
ties, we develop CORECRISIS, a context-aware, threat-driven,

learn-and-fuzz-based black-box testing framework. CORE-
CRISIS is designed to navigate the complex and stateful na-
ture of 5GC implementations by leveraging an evolving state
model that represents a behavioral abstraction of the imple-
mentation under test. Its workflow is divided into two stages:
an initial FSM learning stage, which constructs a basic skele-
ton FSM of the implementation using only benign symbols,
and a subsequent dynamic testing stage, where CORECRISIS
utilizes the extracted state machine to guide further fuzzing
and exploration of the core network’s internal state space.
Despite its systematic approach, applying CORECRISIS to
5GC implementations presents unique challenges. We next
present a few major challenges that CORECRISIS addresses.
C1 Scalability and efficiency issues of initial automata

learning. Following the black-box design of CORECRISIS,
it learns the initial FSM (also denoted as skeleton FSM) of
the 5GC implementation through black-box automata learn-
ing [19, 40]. The automata learning uses the input/output
messages sent/received from a user device to the core net-
work to infer the skeleton FSM. However, applying vanilla
automata learning, similar to prior works [24, 39], to con-
struct a monolithic FSM that encompasses all NFs, even if
it represents only the regular behavior of the 5G core net-
work, leads to significant scalability issues. Managing the
large state space in a single FSM also poses challenges in
scheduling states for targeted testing and difficulties in effi-
ciently triaging once vulnerabilities are detected. To make
matters worse, existing automata learning approaches suffer
from the slow discovery of counterexamples during the equiv-
alence checking (EC) phase [24, 39]. This phase randomly
generates numerous queries to the target system before even-
tually finding a counterexample that can be used to refine the
hypothesized FSM. The untargeted generation and testing of
these queries, especially for remote targets like 5GC systems,
lead to significant delays in discovering counterexamples, re-
sulting in inefficient FSM learning that could take days to
months to complete [39].
C2 Sequence-level mutations. For existing stateful testing

of protocol implementations [52, 57], each sequence of mes-
sages is perturbed similarly to message-level mutations by
blindly inserting, removing, or shuffling messages within the
sequence or by concatenating sequences without regard to
the logical flow or context/state requirements. This is due
to the inherent difficulty of inferring valid or meaningful se-
quences without detailed guidance from a state machine or
domain knowledge. This method often leads to the generation
of uninteresting or ineffective test sequences. For example, it
generates redundant cycles within the state machine instead
of exploring new states. It can also produce non-compliant
sequences that result in early rejection in the first few mes-
sages. Additionally, such naive sequence-level mutations also
result in unbalanced testing across states, where some states
are explored more often by inputs while others are neglected.
C3 Acquiring fuzzing feedback & oracles in black-box

New States/
Transitions

Learned
Impl. FSM

Learning Symbols

5G Core
Implementation

State
Oracle

Technical
Specification

Labeled
Impl. FSM

 Protocol
 Violations

Initial
Learner

Mutator

Test
Scheduler

 Crashes

Feedback
Analyzer

Test
Executor

Initial FSM
Learning

Dynamic
Testing

Rsp Msgs

Corpus
Selection

4

2

5

7

8

9

10

11

12

13 14

Compliance
Properties

3

6

1 Test Msgs

Figure 2: CORECRISIS architecture
An overview of CORECRISIS’s approach is presented in Section 3.4

settings. Obtaining detailed feedback is essential for uncov-
ering new input coverage, e.g., identifying new states and
transitions discovered by test inputs, and for guiding input
generation, e.g., retaining these inputs for further mutation
to progressively explore the 5GC. However, CORECRISIS’s
black-box approach restricts its access to the source code or
the machines hosting the 5GC, limiting its use of white- or
gray-box feedback methods [20,52], such as code coverage or
dynamic tracing. Since CORECRISIS can only observe over-
the-air (OTA) input and output messages, detecting crashes
or logical deviations in the core network after each test is also
challenging.

3.4 High-Level Approach

Figure 2 presents the workflow of CORECRISIS, including
an initial learning phase and the subsequent dynamic testing
phase. To address the scalability and to significantly reduce
the time and resources needed to learn this initial FSM (chal-
lenge C1), CORECRISIS incorporates two novel techniques,
divide-and-conquer and property-driven equivalence check-
ing in its initial FSM learning phase (1 in Figure 2). Divide-
and-conquer allows CORECRISIS to learn the FSMs of each
NF within the core network individually, thereby mitigating
the significant increase in learning time that typically occurs
when constructing a large monolithic FSM. On the other hand,
property-driven equivalence checking bootstraps the learn-
ing process, using the intuition that the implementation FSM
should follow the key transitions defined in the technical spec-
ifications. Therefore, we first extract the expected behavior
requirements for each key state as described in the technical
specifications [13] (2). These expected behaviors are formu-
lated as compliance properties that help generate queries for
equivalence checking, which can more effectively refine the
learned FSM (3). Initial learning is detailed in Section 4.1.

In the second stage, CORECRISIS leverages the extracted
state machine (4 5) and the state oracle (6) to guide the
exploration of the core network’s internal state space by gen-

erating targeted malicious symbols to uncover flaws in the
deep protocol states of the implementation. To address the
challenge of sequence-level mutations C2 , CORECRISIS em-
ploys a context-aware fuzzing and state space exploration
strategy (detailed in Section 4.2). This approach prioritizes
less-explored or potentially vulnerable states and constructs
state-specific test messages to maximize coverage (7 8 9).
To address the challenge of acquiring feedback and oracles in
black-box settings C3 , CORECRISIS utilizes the observable
black-box feedback, specifically response (i.e., output) mes-
sages of the tested inputs. If CORECRISIS detects previously
unseen responses, signifying the discovery of new states or
transitions, it dynamically refines the guiding FSM to incor-
porate these updates (10 11 12). The refined FSM is then
used to better guide the generation of subsequent test inputs
(Section 4.3). During this iterative process, CORECRISIS au-
tomatically identifies weird states (13) by identifying states
that deviate from expected behaviors defined in the technical
specifications and may lead to exploitable logical vulnerabil-
ities, and detects crashes using side-channel-based probing
messages (14) (Section 4.4). Through this iterative mecha-
nism, test case generation and FSM refinement continually
inform and enhance each other, enabling a systematic and
efficient traversal of the implementation’s entire state space.

The two-step approach of CORECRISIS offers four key ad-
vantages. (1) It allows for the exploration of a large number
of benign symbols during the initial learning stage, enabling
a comprehensive examination of benign protocol behavior.
(2) Since the total number of benign symbols is still signifi-
cantly smaller than the combined set of benign and malicious
symbols used in traditional automata learning approaches,
our learning phase is faster. Additionally, we incorporate di-
vide-and-conquer and property-driven equivalence checking
to drastically improve the efficiency and scalability of this
learning phase. (3) The dynamic testing stage can easily ex-
tend the tested symbols by introducing different malicious
inputs, uncovering more vulnerabilities. This stage imposes
no upper limit on the number of tested symbols as our muta-
tion can generate unlimited test symbols. (4) If a test symbol
reveals new states or transitions not identified during initial
learning, our approach dynamically updates the FSM dur-
ing testing without re-learning the entire state machine. This
updated FSM then further guides fuzz testing to uncover ad-
ditional vulnerabilities in the newly discovered states.

4 Detailed Design of CORECRISIS

4.1 Initial FSM Learning
Before dynamic testing, CORECRISIS learns a skeleton state
machine using benign symbols (i.e., positive inputs), which
serves as a foundation to guide the fuzz testing process. How-
ever, off-the-shelf state learning algorithms face scalability
issues, resulting in the learning phase not completing when

a0

a7

a9

a1 a3

a2

a5

a6

a4

a8
regReq/
authReq

regReq(GUTI)/
identityReq

identityResp/
authReq

deregReq/
deregAcpt

regReq(Mutated)/
regRej

authResp/
SMCmd

authResp(Mutated)/
authRej

authFail/
authRej

deregReq/
deregAcpt

SMRej/
null

SMCompl/
regAcpt

SMCompl/
regAcpt

regCompl/
null

deregReq/
deregAcpt

servReq/
servAcpt

regReq(GUTI)/
regAcpt

SMCompl(Mutated)/
identityReq

s0
s1

s2

PDUEstReq/
PDUEstAcpt

PDURelReq/
PDURelCmd

PDURelCompl/
null

SMF

AMF states learned from initial learning
states learned from testing symbols
transitions learned from initial learning
transitions learned from testing symbols
vulnerable transition
transition connecting divided FSMs

Figure 3: Simplified representation of the learned state machine of a 5GC implementation [9]
Black states and transitions in the diagram represent those learned during the initial FSM learning phase using only benign symbols (§4.1).

CORECRISIS references the learned FSM to guide the dynamic testing of 5GC by focusing on underexplored states (§4.2). Newly identified
transitions or states (states and transitions in orange and red) are used to refine the FSM during testing (§4.3).

directly applied to 5GC implementations. To address this
challenge, CORECRISIS incorporates two novel techniques,
divide-and-conquer and property-driven equivalence check-
ing in its initial learning.

4.1.1 Divide-and-conquer FSM learning

CORECRISIS leverages domain-specific knowledge of NF de-
pendencies as described by the technical specifications to take
advantage of the SBA of 5GC to divide the monolithic FSM
into multiple smaller FSMs, each representing a single NF.
This division aligns naturally with the functional separation
of NFs, making the learning process more intuitive and man-
ageable. For instance, the technical specifications explicitly
state the AMF is responsible for handling UE authentication
and registration procedures, while the SMF manages session-
related tasks after the UE has successfully registered with the
core network [16]. Following this functional split, CORECRI-
SIS divides the learning of the NAS procedure into two stages:
first, learning the UE registration procedures, and then ensur-
ing the UE has successfully registered (e.g., reaching state
a6 of the AMF in Figure 3, which corresponds to the initial
state s0 of the SMF) before proceeding to learn session man-
agement procedures. By independently learning FSMs for
the AMF and SMF, CORECRISIS reduces the complexity of
constructing a monolithic FSM into a more manageable task
of linearly combining smaller FSMs. After learning, CORE-
CRISIS sequentially merges the divided FSMs, applying the
insight that session management procedures can only occur
after successful registration (detailed in Section 4.2). The
combined FSM is then used for further targeted testing.

4.1.2 Property-driven equivalence checking

CORECRISIS also incorporates domain knowledge of 5GC
procedures to generate more targeted queries that are more
likely to uncover meaningful counterexamples during equiva-
lence checking (EC). The key insight is that implementations
must adhere to the high-level transitions and the properties

PS State Description Expected Behaviors
D Deregistered Only RegistrationReq accepted
N Registration-Initiated Only plaintext messages accepted

without authentication or
security context

ServiceRequest not accepted

A Registration-Initiated Only plaintext and protected msgs
with authentication SecurityModeComplete accepted
without security context ServiceRequest not accepted

S Registration-Initiated Only protected messages accepted
with security context ServiceRequest not accepted

R Registered Only protected messages accepted

Table 1: Expected behaviors for AMF’s protocol state (PS)

D N A S R

regReq/
authReq

regReq(GUTI)/
identityReq

authResp/
SMCmd

SMCompl/
regAcpt

deregReq/
deregAcpt

regCompl/
null

regReq(GUTI)/
regAcpt

deregReq/
deregAcpt

deregReq/
deregAcpt

deregReq/
deregAcpt

Figure 4: AMF’s protocol FSM with key transitions

of the regular protocol behavior specified in technical docu-
ments, especially when testing benign messages during this
initial learning phase. To leverage this insight, we first ob-
serve that the technical specifications [14, 15] define several
key and high-level transitions, and each key state between
these transitions has distinct requirements. One can extract
these critical protocol states and their transitions to construct a
protocol FSM representing expected key states defined in the
specifications. Table 1 summarizes the key protocol states we
manually extracted for AMF, along with the expected positive
behavior for each state. Figure 4 illustrates the main transi-
tions between these key protocol states. Table 6 and Figure 11
in Appendix C presents the key protocol states and transitions
for SMF.

Using these key transitions, we derive compliance proper-
ties that guide the generation of EC queries. Testing these
queries is more likely to uncover counterexamples used for
hypothesized model refinement and increase the likelihood
of faster discovery of discrepancies between the hypothesis
and the actual implementation-under-testing. This is because

these queries target critical transitions that all 5GC implemen-
tations are expected to follow according to the specifications.
For example, transitions D → N and N → A in Figure 4 can
be translated into the property that states authentication must
be completed before a successful security mode command.
Formally, the property is expressed in regular expression as:
⟨regReq/authReq⟩ · (¬⟨deregReq/deregAcpt⟩)∗ · ⟨authResp/SMCmd⟩

The regular expression format allows for the insertion of
random new symbols in the generated sequences, enabling the
detection of small, unanticipated transitions between the key
transitions that are not specified in the technical documents
but may exist in actual implementations. For example, this
property might guide the generation of multiple EC query se-
quences, including ⟨regReq/authReq,authResp/SMCmd⟩,
⟨regReq/authReq,servReq/null,authResp/SMCmd⟩,
⟨regReq/authReq, identityResp/null,authResp/SMCmd⟩.
By following this, the AMF’s FSM presented in Figure 4 can
be translated to 9 compliance properties, as shown in Table 8
in Appendix C.

Since the regular expression format of these properties can
generate a large number of possible queries, we cap the num-
ber of generated EC queries during each learning iteration. If
a counterexample is identified, the hypothesis is refined, and
the learning proceeds to the next iteration. If a counterexam-
ple is not found within this limit, we heuristically terminate
the learning process. This strategy of capping the number of
queries performed may result in an incomplete but observa-
tionally correct initial FSM. This is an inherent limitation
in black-box automata learning [19]. To address this, CORE-
CRISIS actively updates this learned FSM by the behaviors
observed during the dynamic testing phase, which discovers
states that are missed at this stage (Section 4.3).

4.2 Test Sequences Generation
To address challenge C2 , CORECRISIS implements a two-
phased mutation strategy, which is designed to optimize the
testing process by taking advantage of the guiding FSM to
focus on specific states of interest. Initially, CORECRISIS
selects a target state that it aims to test. From the various
sequences of messages that reach this state, CORECRISIS
selects an under-explored sequence and executes it to set the
system to the desired state. This sequence may include both
benign symbols, which are identified during the initial FSM
learning stage, and mutated malicious symbols, which are
introduced during the testing stage. CORECRISIS employs a
power scheduling algorithm as discussed in Appendix A.

To illustrate, consider testing at state a7 in Figure 3, a state
identified during the fuzzing stage. At this phase, we send a
mutated regReq to first set the core network to state a7. In
the second phase, we introduce a mutated symbol into the
sequence to probe the program exploring new states and tran-
sitions from this set state. Following each test, CORECRISIS
assesses whether the mutated message has led to the discovery

of a new state/transition (Section 4.3), or a vulnerability (Sec-
tion 4.4). To support this two-phased approach, CORECRISIS
maintains a two-level corpus. It saves all unique accessing
sequences to each state, which represent different paths from
the initial state to the target state. At each state, it keeps a
separate message corpus, which contains all messages that
lead to unique transitions from the current state.

To support the separated FSM learned using divide-and-
conquer (Section 4.1), CORECRISIS sequentially combines
the divided FSMs in this dynamic testing phase by lever-
aging our knowledge of NF interdependencies. CORECRI-
SIS first identifies connecting states between separated NFs
as target states and then selects sequences that access these
target states within each divided FSM. Subsequently, these
accessing sequences are concatenated with the connecting
transitions between the divided FSMs to form the complete
accessing sequence. For example, in Figure 3, to test state
s1 of SMF, CORECRISIS first identifies the connecting states
between AMF and SMF, i.e., a6 and s0, respectively. CORE-
CRISIS then constructs separate accessing sequences for the
two divided FSMs: from a0 to a6 (e.g., a0 → a1 → a2 → a5
→ a6) and from s0 to s1 (e.g., s0 → s1). These sequences
are then combined to form a single sequence that accesses s1
from a0, specifically a0 → a1→ a2→ a5→ a6(s0) → s1.

4.2.1 Constructing syntactically and semantically valid
test messages

Existing fuzzing approaches [48, 52, 57] typically employ
byte-level mutations that do not understand the underlying
message structure. Performing simple byte-level mutations
on highly structured NAS messages results in messages that
are almost always rejected by 5GC, as these mutations of-
ten violate the syntax (e.g., type, length, or structure) and
semantics (e.g., value constraints, inter-field dependencies)
requirements. Additionally, existing grammar-aware testing
tools [3] often rely on the manual construction of message
format. Extracting the complex grammar defined in natural
language within specifications is challenging, as it requires
thorough manual parsing of the specifications, which is both
time-consuming and error-prone. Moreover, these messages
require complex protocol-specific computations such as mes-
sage authentication code (MAC), encoding, and encryption to
construct a valid binary message. Documentations for these
processes are scattered across various documents [1,14]. Even
with correct grammar, the complexity of these procedures is
challenging to implement for valid NAS message generation.

To overcome these challenges, we harness existing open-
source software UE implementations [34] that already con-
tain predefined structure definitions for each NAS message
type and function implementations to handle operations like
MAC calculation, encryption, and encoding. The original
software UE implements these codes to construct valid re-
quest messages to communicate with the core network. We

manually identify the relevant structure definitions and corre-
sponding computation functions and transform the existing
message construction code into message mutation functions.
This grammar-aware capability enables CORECRISIS to gen-
erate messages that are either valid or intentionally malformed
across three levels. (1) Semantically, such as omitting en-
cryption where encryption is expected, or using an incorrect
security key for computing the MAC; (2) Syntactically, by
including incorrect field types or unexpected enum values;
and (3) Structurally, by mutating the encoded byte message.
These capabilities provide the foundation for CORECRISIS
to conduct both positive testing (i.e., testing valid messages
to observe their acceptance) and negative testing (i.e., testing
invalid messages to ensure their rejection). CORECRISIS’s
detailed mutation strategy is presented in Appendix B.

4.3 Feedback & New State Learning

As discussed in challenge C3 in Section 3.3, obtaining de-
tailed feedback given CORECRISIS’s black-box design is
challenging but essential for guiding input generation and
uncovering new system states and transitions during testing.
To address this challenge, we draw on the insight that black-
box automata learning algorithms can infer different states by
analyzing the response messages received in reaction to test
messages. CORECRISIS adopts this approach in its testing
stage and enhances it by performing a detailed analysis of
response messages to extract as much information as possi-
ble. This feedback guides targeted input generation, enabling
CORECRISIS to discover and incorporate new states and tran-
sitions to its reference state machine.

4.3.1 Analysis and comparison of responses

To enhance the granularity of the feedback we collect from
such a limited source (i.e., response to a message), we analyze
not only the type and error code of the response message but
also the contents of the response body, which may include
more detailed error messages. Specifically, any response that
differs from previously observed responses at the current
testing state (different type, unique response code, or differ-
ent message in the response body) is used as an indication
of a new state or new transition exploration. The quality of
the feedback depends on the implementation being tested.
If an implementation offers detailed error messages, we can
discern more fine-grained states, enhancing CORECRISIS’s
understanding of the system’s behavior. For example, some
implementations provide a 5GMMCause error message when
it receives unexpected messages. Based on different cause
values, CORECRISIS can differentiate the states. While com-
paring with the previous responses, CORECRISIS ignores
fields having different values in each response, such as se-
quence numbers and MACs, to prevent adding unnecessary
states and transitions. CORECRISIS observes regular network

traffic during initial learning and identifies such fields that are
different for all messages.

4.3.2 Dynamic FSM refinement

CORECRISIS’s initial automata learning process (Section 4.1)
is designed to incorporate only benign symbols to en-
sure scalability. During testing, each mutated message rep-
resents a symbol not encountered in the initial learning
and may elicit a new type of response from the core
network. For example, consider the FSM in Figure 3. If
a UE sends a RegistrationRequest message with an in-
valid user identity, the core network may respond with a
RegistrationReject message (a0 → a7) instead of the ex-
pected AuthenticationRequest that a benign request would
generate (a0 → a1). This divergence suggests a previously
unknown behavior in the implementation. However, existing
FSM learning algorithms [19, 40] require a static, predefined
alphabet set, making them inflexible to the introduction of
new symbols during or after the learning process. In contrast,
CORECRISIS’s mutation engine generates arbitrary messages,
requiring the FSM to be dynamically refined with newly dis-
covered symbols. This iterative refinement enables CORECRI-
SIS to explore refined states and find vulnerabilities that can
only be triggered through multiple mutations.

To refine the FSM dynamically, if CORECRISIS encounters
a test input at state si producing a previously unseen response,
instead of re-learning the entire automata, CORECRISIS first
creates a hypothetical state sh and a transition t from si to
sh. To verify if sh is a new state or an existing state in the
FSM, CORECRISIS tests all benign input symbols on sh and
observes the resulting responses. If all input and output pairs
align with those of an existing state s j in the FSM, CORE-
CRISIS empirically confirms that sh is the same state as s j.
It merges sh with s j and updates the FSM to include a new
transition t from si to s j. If no existing state matches the re-
quest/response pairs of sh, CORECRISIS formally introduces
sh into the FSM as a new state, establishing the transition t
from si to sh. At this point, the newly found state sh contains
only one incoming transition edge t, and transitions from sh
to other states in the FSM will be learned in future iterations
following the same approach. Once the FSM is updated, se-
quences leading to the new state or transition with the mutated
message are stored and used in subsequent tests as accessing
sequences to further explore this new state or transition.

4.3.3 Resetting core network

CORECRISIS’s two-phased testing methodology requires
each testing run to start from the initial state. However,
restarting the entire core network or clearing all data signifi-
cantly stalls the testing process (e.g., ∼ 10 seconds to restart
free5gc [5]). CORECRISIS instead uses a domain-informed
solution of assigning a new UE identity (i.e., SUPI) for each

new testing sequence. This allows it to simulate a fresh user
context for each test, effectively resetting the network without
time-consuming restarts. After each test, the connection is
terminated, leaving only a minimal amount of residual context
(e.g., ∼1KB in free5gc [5]), which does not interfere with the
target’s normal operation. While this method may lead to error
propagation between user contexts, such issues would indi-
cate security vulnerabilities that CORECRISIS aims to detect.
However, no such issues were observed during our testing.
To ensure that findings are not influenced by residual SUPI
contexts, all results were validated on a freshly initialized core
network and confirmed to be reproducible.

4.4 Testing Oracles

Defining effective test oracles to detect crashes and logical
errors presents another challenge in CORECRISIS’s black-box
testing approach. To overcome this limitation, CORECRISIS
leverages protocol side-channels to identify crashes and uti-
lizes key protocol transitions to compare the states of the
learned implementation FSM to detect logical deviations.

4.4.1 Protocol side-channel crash detection

First, CORECRISIS employs a probing strategy leveraging
protocol side channels in the 5G NAS layer. CORECRISIS
sends messages that, under normal conditions, guarantee a
response according to the technical specifications [14, 15].
For instance, to check the status of AMF, CORECRISIS sends
a RegistrationRequest with the last-used SUPI; for SMF, it
sends a PDUSessionEstablishmentRequest. If CORECRISIS
receives corresponding responses (AuthenticationRequest
and PDUSessionEstablishmentAccept, respectively), it con-
firms that the corresponding NF is operational. If no response
is observed, it infers the component is non-responsive, sug-
gesting that it has crashed or entered a problematic state. This
probing method is reliable because the technical specifica-
tions mandate responses to these specific messages, ensuring
that any unresponsiveness is indicative of an issue. These mes-
sages are also straightforward to identify due to their clear
and detailed documentation in the specifications.

4.4.2 Logical errors detection

5GC’s expected behaviors specified in the technical docu-
ments vary at different protocol states. For example, the spec-
ification mandates that ServiceRequest messages should only
be accepted after the UE has successfully completed regis-
tration with the core network [13]. Accepting such requests
before a successful registration signifies a logical error. How-
ever, implementation FSMs often differ significantly due to
variations in design and implementation details. Without ac-
cess to source code or detailed implementation information,
mapping an implementation FSM to the states defined in the

a0:D

a7:D

a9:N

a1:N a3:N

a2:A

a5:S

a6:R

a4:D

a8:A
regReq/
authReq

regReq(GUTI)/
identityReq

identityResp/
authReq

deregReq/
deregAcpt

regReq(Mutated)/
regRej

authResp/
SMCmd

authResp(Mutated)/
authRej

authFail/
authRej

deregReq/
deregAcpt

SMRej/
null

SMCompl/
regAcpt

SMCompl/
regAcpt

regCompl/
null

deregReq/
deregAcpt

servReq/
servAcpt

regReq(GUTI)/
regAcpt

SMCompl(Mutated)/
identityReq

Figure 5: Labeled FSM of the AMF presented in Figure 3
Description of each key protocol state is presented in Table 1

specifications becomes challenging. To address this, CORE-
CRISIS leverages the protocol FSM extracted from technical
specifications (illustrated in Figure 4), which was previously
used to guide equivalence checking during the initial imple-
mentation FSM learning (Section 4.1). This protocol FSM
encapsulates the key high-level protocol states defined in the
specifications, the expected behaviors of each state (summa-
rized in Table 1), and the critical transitions between key
states. CORECRISIS simplifies the task of mapping states in
the learned FSM to their corresponding states in the protocol
FSM by focusing on key protocol states and transitions. This
approach is based on the intuition that key states can only be
accessed through specific key transitions. By traversing and
analyzing the transitions in the learned FSM, CORECRISIS
labels each state with its corresponding key protocol state.
Once labeled, CORECRISIS subsequently verifies the speci-
fied requirements for each labeled state, enabling systematic
detection of logical errors.
Key state labeling. CORECRISIS automatically labels states
in the learned FSM by analyzing the transitions (i.e., input/out-
put pairs) associated with each state. Consider a sequence of
transitions in the learned FSM, i1/o1, i2/o2, i3/o3, . . ., CORE-
CRISIS compares each transition with the key protocol tran-
sitions defined in the protocol FSM. If the input/output pair
i1/o1 matches a transition in the protocol FSM’s initial state
p0 to another state p1, CORECRISIS consumes i1/o1 and la-
bels the subsequent implementation states as corresponding
to protocol state p1. The following input/output pairs are then
compared against transitions originating from p1. If, for exam-
ple, i3/o3 matches the transition from p1 to p2, CORECRISIS
updates the current label to p2. After consuming all the sym-
bols in the sequence leading up to each state in the learned
FSM, each learned state is labeled with a corresponding pro-
tocol state, providing a clear mapping between the learned
FSM and the protocol FSM. Figure 5 illustrates the labels for
AMF’s FSM in Figure 3, and Figure 12 in Appendix C shows
the labels for SMF’s FSM.

To illustrate, consider state a5 in Figure 3. The initially
learned FSM, containing only states and transitions learned
from benign symbols (states and transitions in black), has a
path from a0 to a5: a0→ a1→ a2→ a5. State a0 is identified
as the initial key state “Deregistered” (D). Along this path, a
key transition regReq/authReq occurs between a0 and a1, re-

sulting in a1 being labeled as key state “Registration-initiated
w/o authentication or security context” (N). The transition
from a1 to a2 involves the key transition authResp/SMCmd,
so a2 is labeled as key state “Registration-initiated w/ au-
thentication w/o security context” (A). Finally, the transition
from a2 to a5 includes the key transition SMCompl/regAcpt,
leading to a5 being labeled as key state “Registered” (S).
Error identification. CORECRISIS identifies logical errors
through a two-level checking process. First, during the key
state labeling phase, each path from the initial state to a state
under consideration generates a label for that state. CORECRI-
SIS analyzes the labels across all paths leading to each state
to detect discrepancies. If a state is reachable from only one
path, CORECRISIS initially assumes the label is correct. As
new transitions are discovered, uncovering additional paths to
the same state, CORECRISIS reevaluates the labels for consis-
tency. CORECRISIS reports an error when a label discrepancy
is found, and we then manually triage the issue to assign the
correct label, ensuring the state machine accurately reflects
the protocol’s behavior for subsequent tests. For instance, con-
sider again the example state a5 in Figure 3. During testing,
CORECRISIS discovers a new transition from a1 to a5, indi-
cated by the red arrow, revealing a new path from a0 to a5: a0
→ a1 → a5. Here, a0 is labeled as key state D and a1 as N.
Following this path, transition a1→ a5: SMCompl/regAcpt
does not match either the condition or the action of any key
transition outgoing from key state N, thus a5 retains the label
N. However, path a0 → a1 → a2 → a5 labels a5 as key state
S, resulting in a discrepancy. Manual analysis concludes that
state a5 represents key state S, and the problematic path a0
→ a1 → a5 leads to an authentication bypass vulnerability,
presented in Section 6.1.1.

The second level of checks CORECRISIS performs is on
top of the labeled FSM, where each state is annotated with
its corresponding key protocol state. We preform protocol
verification specific to each labeled protocol state, based on
the expected behaviors for each key state extracted from tech-
nical documents, outlined in Table 1. For instance, after a 5G
common-procedure, the protocol regulates that only protected
messages should be processed by the core network. Scenarios
where unprotected messages are accepted are identified as
violations. This protocol-level check ensures compliance with
the technical specifications, and any deviations are recorded
as potential logical errors for manual validation. Deviation
behaviors D1–D7 in Table 2 show the vulnerabilities CORE-
CRISIS identifies from this check.

5 Implementation

We implement CORECRISIS in three components: Message
Adapter, State Inference Module, and Guided Testing Module.

Message Adapter is developed utilizing UERANSIM [34], an
open-source software simulator implementing two 5G com-

ponents, UE and gNB. We modified the software UE with
around 4,000 lines of code (LoC) to implement abstract sym-
bol interpretation and input mutation.

State Inference Module is implemented on top of Learn-
Lib [41] to perform the initial state learning (Section 4.1). We
use TTT [40] as the learning algorithm and develop propery-
driven EC as the equivalence-checking algorithm. State In-
ference Module generates queries from a predefined set of
benign symbols. These symbols (i.e., input messages) and
their corresponding field values are selected for initial learn-
ing from messages and values commonly used in standard
5GC procedures. The selection is based on UERANSIM’s
default configurations, presented in Table 7 in the Appendix.
Each generated query is sent to Message Adapter, which con-
structs and forwards corresponding concrete messages to the
core network. It then collects the response and converts it to
output symbols.

Guided Testing Module is implemented in Python3 with
around 1,200 LoC, including the main fuzzing loop, power
scheduling, feedback processing, and protocol violations ora-
cles. It orchestrates fuzzing by communicating with Message
Adapter and reading state information from the learned FSM.

6 Evaluation

With the following research questions, we evaluate CORE-
CRISIS’s effectiveness when testing 5GC implementations.
• RQ1. How effective is CORECRISIS in finding protocol

errors and crashes in 5GC implementations? (§6.1)
• RQ2. How does CORECRISIS perform compared to state-

of-the-art fuzzing frameworks? (§6.2)
• RQ3. How effective are the novel techniques employed in

CORECRISIS? (§6.3)
Experiment setup. We evaluated CORECRISIS on 1 com-
mercial 5GC implementation, Amarisoft 5GC [2], which we
only have access to the executable binaries, and 3 open-source
implementations, Open5GS [8], free5GC [5], and OpenAirIn-
terface 5G core network (OAI-CN-5G) [9].

6.1 Identified Vulnerabilities (RQ1)
To address RQ1, we present and analyze the logical deviations
and crashes detected by CORECRISIS in Table 2. In the table,
Stateful indicates issues that cannot be detected in the initial
state without the guidance of the state machine, while Refine
refers to issues that can only be discovered through FSM
refinement (i.e., in dynamically learned states or by dynami-
cally found transitions). In summary, CORECRISIS uncovers
3 exploitable protocol violations, P1-P3, 7 additional cate-
gories of protocol deviations from the technical specifications,
shown as D1-D7, and 13 new unique crashes triggered by
unexpected payloads that could lead to AMF or SMF crashes,
listed as C1-C13. Below, we detail a few discovered logical

Flaw Target Vulnerability/Deviation Comp. Impact CVE Number New Stateful Refine
C1 Open5GS assertion failure AMF DoS CVE-2024-34476 Y Y N
C2 Open5GS assertion failure AMF DoS CVE-2024-34475 Y Y N
C3 Open5GS assertion failure SMF DoS CVE-2024-33232 Y Y N
C4 Open5GS assertion failure SMF DoS CVE-2024-33232 Y Y N
C5 Open5GS assertion failure SMF DoS CVE-2024-33232 Y Y N
C6 free5GC array index out of bound AMF DoS CVE-2024-22728 Y N N
C7 free5GC array index out of bound SMF DoS CVE-2024-31838 Y Y N
C8 OAI-CN-5G null pointer dereference AMF DoS CVE-2024-33236 Y N N
C9 OAI-CN-5G null pointer dereference AMF DoS CVE-2024-33236 Y Y N
C10 OAI-CN-5G heap buffer overflow AMF DoS CVE-2024-33236 Y Y N
C11 OAI-CN-5G heap buffer overflow AMF DoS CVE-2024-33236 Y Y N
C12 OAI-CN-5G invalid memory access AMF DoS CVE-2024-33236 Y Y N
C13 Amarisoft segmentation fault AMF DoS N/A Y N N
P1 Open5GS sink state AMF DoS CVE-2024-33233 Y N N
P2 OAI-CN-5G Incorrect message handling AMF A.B. CVE-2024-33241 Y Y Y
P3 free5GC Missing validation check of IMEI/IMEISV AMF I.S. - Y Y Y
D1 Open5GS, OAI-CN-5G Incorrect transition AMF None - Y Y Y
D2 free5GC, OAI-CN-5G Respond to invalid SHT (≥ 5) AMF None - Y N N
D3 Open5GS, OAI-CN-5G,

Amarisoft
Respond to protected messages before
SMCompl

AMF None - Y Y Y

D4 Open5GS, OAI-CN-5G Accept wrong SHT in SMCompl AMF None - Y Y N
D5 Open5GS, free5GC, OAI-

CN-5G, Amarisoft
Accepts integrity-protected only messages
when the selected algorithm is both integrity-
protected and ciphered

AMF None - Y Y N

D6 Open5GS, free5GC, OAI-
CN-5G, Amarisoft

Respond to wrong SHT protected messages AMF None - Y Y N

D7 Open5GS, OAI-CN-5G Respond to wrong SHT plaintext messages AMF None - Y Y N

Table 2: Implementation flaws found in our testing. C: Crashes; P: Protocol Violations; D: Logical Deviation
Impact: A.B: Authentication Bypass, I.S.: Identity Spoofing

vulnerabilities and deviations in Section 6.1.1 and discuss the
crashes CORECRISIS found in Section 6.1.2.

6.1.1 Identified Protocol Violations

Authentication bypass due to incorrect message handling
(P2). TS 24.501 [14] mandates that the registration proce-
dure is performed only after the core network has successfully
authenticated the UE and finished the security mode control
procedure, i.e., has derived encryption keys to protect further
communications. CORECRISIS discovers a critical vulner-
ability in OAI-CN-5G that violates this requirement, illus-
trated in Figure 6. After sending an AuthenticationRequest
message (1 2), the core network is expected to wait for
AuthenticationResponse from the UE before initiating the
security mode control procedure (3 4). However, at this
state, if an attacker sends a plaintext SecurityModeComplete
message from the UE (5), OAI-CN-5G accepts this mes-
sage and responds with a plaintext RegistrationAccept mes-
sage (6). The attacker can then send back a plaintext
RegistrationComplete message to complete the UE registra-
tion with the core network (7). This unauthorized access
allows attackers to impersonate legitimate users, bypassing
the authentication procedure, and potentially leading to billing
fraud and privacy breaches (8 9). If the attacker spams its
unauthorized access and registers multiple illegitimate UEs,
it may also degrade network performance and service quality
for legitimate benign users. At an extreme, the attacker may
operate a zombie network of malicious UEs registering to
the core network and consuming all its resources, thereby
causing DoS for legitimate users. The detection of this au-

thentication bypass vulnerability relies on the dynamically
learned transition from a1 to a5 (Figure 3). The plaintext
SecurityModeComplete message is a mutated message that
is not in the initial benign symbol set since this plaintext mes-
sage should not be accepted in any state of the registration
procedure. Without this dynamically learned transition, this
vulnerability cannot be detected.

Registration Request (Impersonate victim)

Authentation Request

Authentation Response

Security Mode Command

Security Mode Complete

Registration Accept

Core NetworkMalicious
UE

Billing Fraud (Overcharging victim)
Illegal Activity (Using victim's identity)

Free Internet Access

Registration Complete

1

2

3

4

5

6

7

8

9

Figure 6: Illustration of authentication bypass attack (P2)

Identity spoofing due to missing validation check of
IMEI/IMEISV (P3). During testing, CORECRISIS identi-
fied a vulnerability in free5GC where invalid IMEI/IMEISV

values are accepted during user registration. This issue was
discovered in a dynamically learned state following state
a2 in Figure 3. The fuzzer identified it after sending a mu-
tated securityModeComplete message to the core network.
Usually, a securityModeComplete message should include a
registrationRequest containing the user’s identity. However,
in the mutated message, this field was removed, prompting
the core network to send an identityRequest to request the
user’s identity again. This dynamically discovered state is
represented in Figure 3 as state a8. Subsequent testing of this
state revealed that when CORECRISIS sent a mutated message
containing an invalid IMEI value, free5GC accepted the iden-
tifier and completed the registration process. IMEI/IMEISV is
a unique identifier for mobile devices, providing manufacturer
information and enabling user tracking. It has a fixed length
and includes a checksum for validation. In this vulnerability,
free5GC fails to validate the IMEI/IMEISV field properly.
The impact of this oversight depends on how the network
operator utilizes this identifier in its systems. Exploiting this
vulnerability, an attacker could compromise any system that
relies on IMEI values. For example, operators often maintain
IMEI blacklists to block stolen devices from accessing their
networks [7,35]. Attackers could forge IMEIs to bypass these
restrictions. Additionally, systems relying on user-provided
IMEI values may be exposed to injection attacks if malicious
input is supplied, potentially leading to the compromise of
internal databases. Furthermore, operators may rely on IMEI
values to enforce network access restrictions or grant privi-
leged access. Exploiting this vulnerability, an attacker could
inject arbitrary identifiers to gain unauthorized access to privi-
leged systems, potentially leading to privilege escalation, data
leakage, and network disruptions.
Fingerprinting (D1-D7) CORECRISIS also uncovers some
behaviors that deviate from technical specifications but do not
lead to directly exploitable vulnerabilities. The attacker may
utilize these behaviors to fingerprint 5GC implementations to
launch targeted attacks, such as sending specific payloads to
trigger DoS on the core network (Section 6.1.2) or combine
these deviations with other vulnerabilities to launch attacks.
In addition, some deviations may also allow attackers to evade
intrusion detection systems. Below we discuss several notice-
able deviations.
• Incorrect state transition (D1). CORECRISIS identified
an incorrect state transition issue in Open5GS. If the core
network receives an IdentityResponse message without first
receiving a RegistrationRequest message, it responds with
an AuthenticationRequest message. According to TS 24.501
[14], only the RegistrationRequest message can initiate a
state transition from the 5GMM-DEREGISTERED state to
the 5GMM-COMMON-PROCEDURE-INITIATED state.
• Early acceptance of protected message (D3). We found
Open5GS, OAI-CN-5G, and Amarisoft 5GC accept protected
messages before receiving a SecurityModeComplete mes-
sage, while free5GC only accepts protected messages after

receiving this message from UE. After further investigation,
we conclude that this issue is caused by the ambiguity of the
specifications in TS 24.501 [14] clauses 4.4.2.5 and 5.4.2.1.

6.1.2 Identified Crashes (C1-C13)

A commercial 5GC may provide services to thousands of
UEs. These vulnerabilities lead to the crashing of NFs, result-
ing in DoS attacks against the core network and disrupting
the connectivity of all the user devices registered to the net-
work. In mission-critical services such as defense, manufac-
turing, and emergency treatment, such disruptions can have
severe and potentially life-threatening consequences. When
these NFs crash, they require a complete restart to restore
services, which may also require UEs to re-establish connec-
tivity through new registration requests. This process leads
to wasted resources and increased downtime. Additionally,
an attacker could repeatedly exploit these vulnerabilities to
cause recurring crashes, amplifying the impact.
Improper handling of Security Hearde Type (SHT).
Among the thirteen crashes, five (C1, C6, C8, C9, C10) are
related to inappropriate handling of Security Header Type
(SHT). Open5GS, free5GC, and OAI-CN-5G assume an in-
coming NAS message with a non-zero security header type
must have a message Authentication code (MAC). Under this
assumption, these implementations perform byte operations
on the message directly without input validation. For example,
Figure 10 in the Appendix shows a crashing input that exploits
vulnerability C6 in Table 2. The crashing input, 0x7E025F74,
represents a plaintext SecurityModeReject message with a
security header type 2 (integrity-protected and ciphered) con-
taining only 4 octets. Assuming the message contains a MAC,
the decoder attempts to access the plaintext NAS message
starting from octet 8, without checking for the message length,
resulting in a crash.
Malformed message field. Other crashes (C2, C3, C4, C5,
C7, C11, C12, C13) are triggered by some malformed fields
inside the message. For example, in Amarisoft 5GC, if the
attacker sends a RegistrationRequest with an invalid SUCI
that exceeds its maximum length, the decoder cannot decode
the message, resulting in a segmentation fault that crashes the
AMF (C13 in Table 2). In addition, we found that the message
handlers for the PDUSessionModificationRequest message
in Open5GS and free5GC’s SMFs miss length checks for
some fields, leading to four vulnerabilities (C3, C4, C5, C7).

6.2 Comparison with Existing Methods (RQ2)

6.2.1 Quantitative Comparison with Existing Fuzzers

We conduct a comparative analysis with state-of-the-art pro-
tocol testers. None of these tools can support 5GC testing or
generating NAS messages off-the-shelf, and we summarize
the modifications we made to extend their implementations.

Boofuzz [3] is a widely-used protocol fuzzer and a successor
to Sulley [10]. To make Boofuzz suitable for testing 5GC, we
take a similar approach as other research [29, 62] by defining
and generating each message as a hexadecimal string.
Fuzzowski [6] is another successor to Sulley. Similar to Boo-
fuzz, we generate hexadecimal strings as test input.
AFLNet [52] is a state-of-the-art stateful fuzz testing tool for
protocol implementations. It utilizes the error/response code
received from SUT to identify the program state and guide
the mutation process. To support black-box 5GC testing, we
extend AFLNet to enable communication with UERANSIM,
and use message identities as a response code.

0h 6h 12
h

18
h

24
h

Open5GS

12
00

0
16

50
0

21
00

0

Br
an

ch
 C

ov
er

ag
e

CoreCrisis AFLNet Fuzzowski BooFuzz

0h 6h 12
h

18
h

24
h

Free5GC

70
00

85
00

10
00

0

0h 6h 12
h

18
h

24
h

OAI

80
00

12
50

0
17

00
0

Figure 7: Discovered branches in comparative testing

Comparison results. We evaluated each tool on three open-
source implementations for 24 hours, using the same initial
corpus set. For fairness, all compared fuzzers use the same
reset method (Section 4.3) to minimize the overhead associ-
ated with restarting the core network. Each experiment was
repeated 10 times to ensure statistical significance [22]. Exper-
iment results are detailed in Table 3 as averages and visualized
in Figure 7, where the lines represent the average values and
shaded regions indicate the minimum and maximum range.

We evaluate with the following metrics: (i) branch cover-
age, (ii) line/block coverage, (iii) number of generated corpora,
(iv) protocol violations/crashes discovered, and (v) the testing
speed. Coverage metrics differ by implementation due to the
use of different languages and coverage tools. For mutation
fuzzers, a corpus is saved if it explores new code regions,
so the metric roughly represents the fuzzer’s ability to gen-
erate meaningful inputs. For generation-based fuzzers (i.e.,
Boofuzz and Fuzzowski), the corpus metric reflects the total
number of inputs tested. Fuzzowski completed testing all gen-
erated test cases within 24 hours, resulting in the same value
across all implementations. In contrast, Boofuzz finished test-
ing all test cases for Open5GS but did not complete testing
for free5GC and OAI. In a black-box setup, AFLNet strug-
gles to generate interesting inputs that can find new feedback,
as shown by its low corpus count across all targets. CORE-
CRISIS shows the slowest testing speed among the evaluated
tools due to its intricate feedback processing, state inference,
and state refinement mechanisms. For fairness in compari-
son, the reported speed metric is measured in messages per
second across all tools. However, each stateful test sequence

CORECRISIS generates consists of multiple messages (e.g.,
the sequence speed for Open5GS is only 0.218 sequences/sec-
ond). Despite its slower speed, CORECRISIS achieves the
highest code coverage and identifies the most vulnerabilities,
demonstrating its superiority in uncovering critical issues.
CORECRISIS also detects 3 logical vulnerabilities, while all
other compared tools can only find crashes.

6.2.2 Feature Comparison with Other Methods

Many prior works testing UEs or core networks only sup-
port previous generations of mobile networks and cannot
easily be adapted to 5GC. Therefore, we conducted additional
experiments comparing the supported capabilities of CORE-
CRISIS with existing works listed in Table 4. Among the
works compared, DoLTEst [50], DIKEUE [39], and Chlosta
et al. [24] can only detect protocol violations but not crashes.
AFLNet [52] and BooFuzz [3] are state-of-the-art fuzzers de-
signed to find crashes but cannot uncover protocol violations.
Additionally, AFLNet’s gray-box design requires program
binaries for its instrumentation and feedback collection, while
BooFuzz cannot understand the program states or perform
state-guided exploration of the target.

6.3 Ablation Studies of CORECRISIS (RQ3)

6.3.1 Effectiveness of property-driven EC

To evaluate the impact of property-driven equivalence check-
ing (introduced in Section 4.1), we conducted FSM extraction
with and without this technique (with the divide-and-conquer
technique in both cases) on two targets—free5GC [5] and
Open5GS [8]. From the 9 compliance properties (shown
in Table 8 in Appendix), we empirically limit the number
of queries generated for equivalence checking (EC) to 400.
In free5GC, these 400 queries learn 20 states, taking 1815
queries in total (1415 learning queries and 400 EC queries).
Without this technique, to learn the same number of 20 states,
15104 queries are required (1497 learning and 13607 EC).

For Open5GS, 15 states are learned with these EC queries,
taking 1,169 queries in total (769 learning and 400 EC). With-
out this technique, 7,753 queries are required to learn 15 states
(877 learning and 7851 EC). In conclusion, property-driven
equivalence checking reduces the number of total queries
required to learn the same number of states by 87.98% and
84.92% in free5GC and Open5GS, respectively, and reduces
the number of EC queries required by 97.06% and 94.91%,
respectively.

6.3.2 Effectiveness of fuzzing components

We performed ablation studies to evaluate the contributions
of our fuzzer’s individual components to its overall effective-
ness. Specifically, we compared CORECRISIS’s performance

5GC Impl. Open5GS free5GC OAI-CN-5G
Fuzzer branch line # corpus PV crash speed branch block # corpus PV crash speed branch line # corpus PV crash speed

AFLNET 15582.8 32054.9 21.0 0.0 0.0 13.01 7838.2 14744.2 21.0 0.0 0.0 11.19 10208.8 15183.8 21.0 0.0 0.0 11.53
BooFuzz 14148.7 28734.6 174408.0 0.0 0.0 3.83 7610.0 14206.9 117086.0 0.0 1.0 1.36 8917.6 13299.2 174408.0 0.0 2.0 3.15
Fuzzowski 15707.4 32387.4 23626.0 0.0 0.0 2.15 7775.8 14567.1 23626.0 0.0 1.0 2.14 8560.8 12880.2 23626.0 0.0 1.0 1.78
CORECRISIS 20925.6 43559.5 461.7 1.0 2.0 1.08 9933.3 18738.7 594.3 1.0 1.0 1.01 15534.5 24330.7 597.4 1.0 3.3 0.87

Table 3: Comparative testing results. PV: Protocol Violation. Speed is in messages/second.

Approach Stateful Black-box
Testing

Identify
Protocol

Violations

Identify
Crashes

Dynamic
Test Cases

Context-
Aware

Mutation

DoLTEst [50]
DIKEUE [39]
BooFuzz [3]
AFLNet [52]
Chlosta et al. [24]
5GBaseChecker [60]
CORECRISIS

Table 4: Comparison with existing testing approaches
: Supported. : Unsupported.

under the following conditions: (i) without feedback collec-
tion, (ii) without FSM guidance, (iii) without using message
grammar for test input generation, (iv) relying solely on the
protocol FSM extracted from technical specifications (e.g.,
Figure 4), and (v) restarting the core network after each exper-
iment instead of using a new identifier to avoid restarts. Each
experiment was repeated 10 times, for 24 hours in each run,
using the same initial corpus set.

Figure 8 shows the coverage growth over time for two tar-
gets, Open5GS and free5GC. The lines represent the average
coverage, while the shaded regions indicate the minimum
and maximum values. Figure 9 summarizes the number of
discovered issues (both crashes and logical deviations) over
time. In this figure, the lines represent the average time at
which a specific number of issues were discovered, and the
shaded regions indicate the minimum and maximum times
for discovering those issues. The results of these ablation
studies demonstrate that CORECRISIS consistently achieves
the highest coverage and discovers more crashes and protocol
deviations significantly faster than the other configurations.
Our incorporation of stateful testing contributes the most to
CORECRISIS’s effectiveness, as performance without FSM
or with only the specification FSM shows the weakest results.

Additionally, of the 23 identified issues presented in Ta-
ble 2, 18 (78.3%) are stateful, meaning they cannot be de-
tected in the initial state without the guidance of the state
machine. Furthermore, 4 vulnerabilities are only identifiable
in refined states or transitions, highlighting the importance
of CORECRISIS’s feedback and refinement mechanism. Be-
sides refinement, logical error detection also relies on un-
derstanding the state space associated with mutated inputs,
as the requirements for protocol behavior vary across differ-
ent states (explained in Section 4.4). This makes it essential
to determine whether mutated inputs uncover new states or
transitions and incorporate these discoveries into the guiding

state machine. Without this comprehensive feedback oracle
and refinement mechanism, CORECRISIS would be unable
to identify any logical errors in its dynamic testing (i.e., P1-
P3 and D1-D7), as shown in Figure 9. Overall, CORECRISIS
finds the most vulnerabilities, which is the most critical metric
for security testing [22].

0 3 6 9 12 15 18 21 24
Time (hour)

9500

10000

10500

11000

11500

Br
an

ch
 C

ov
er

ag
e

Open5GS

CoreCrisis
No Feedback
No FSM
No Grammar
Specification FSM
Restart Core

0 3 6 9 12 15 18 21 24
Time (hour)

4500

5000

5500

6000

6500

free5gc

Figure 8: Ablation studies coverage evaluation

6.3.3 Crash detection accuracy

We evaluate the accuracy and effectiveness of CORECRISIS’s
crash probes (Section 4.4) using the AMF of Open5GS and
free5GC, where ground truth is available through runtime
logs. Over 10 runs, the logs reveal an average of 27.3 crashes
in Open5GS (2 unique, C1 and C2 in Table 2) and 471.2
crashes in free5GC (C6), all of which are successfully de-
tected by CORECRISIS. In contrast, an alternative approach
could infer crashes based solely on the absence of response
messages, but it has significant limitations. Some messages,
such as regCompl, normally do not produce responses, result-
ing in missed detections of crashes (i.e., false negatives) if
the message triggers a crash. Additionally, mutations may
produce test inputs that are dropped without any responses,
despite the NF has not crashed, leading to false positives. Our
evaluation shows that this response-based approach yields
average false negatives of 4.3 in Open5GS (C1) and 267.5
in free5GC (C6), and false positives of 8,433 in Open5GS

2s 1m 1h 24h
Time (log scale)

0
1
2
3
4
5
6
7
8

Iss

ue
s F

ou
nd

Open5GS
CoreCrisis
No Feedback
No FSM
No Grammar
Specification FSM
Restart Core

2s 1m 1h 24h
Time (log scale)

0

1

2

3

4

Free5GC

Figure 9: Unique crashes/logical deviations found over time

and 3,592.4 in free5GC per run. Furthermore, CORECRISIS
demonstrates its effectiveness in black-box testing by suc-
cessfully detecting a crash in a commercial Amarisoft 5GC
deployment (C13).

7 Discussion

Multi-NF interactions. CORECRISIS maintains state ma-
chines only for AMF and SMF, leveraging domain knowledge
for dividing the FSM of these NFs (Section 4.1). However,
as CORECRISIS conducts black-box testing over the N1 in-
terface (Section 3.1), it cannot directly observe or infer the
internal division and organization of NFs within the 5GC.
Handling UE requests involves interactions among multiple
NFs beyond just AMF and SMF, but many of these internal
interactions and states are not directly observable over N1.
For example, AMF’s retrieval of subscriber information from
UDM is an internal operation abstracted in the transition a1
→ a2/a3 in Figure 3. While these interactions are not di-
rectly observable, they may result in different behaviors over
N1. For example, if a subscriber_info_not_found_in_UDM
error occurs, it could lead to an observable AMF response to
the UE, such as a registration_reject_with_cause_illegal_UE
message. In such cases, the AMF FSM would be updated to
reflect the observable outcome, even though the underlying
transition originates from a different NF.
Manual effort. We manually extract the key protocol states
(Table 1) from 3GPP specifications [14]. The construction of
Message Adapter (§ 5) and message grammar (§ 4.2) require
manual work. However, these efforts are one-time and can
be reused for all subsequent tests across all implementations,
which are completely automated. The triaging of crashes and
verification of protocol violations are manual.
Correctness of learned FSM. The TTT automata learning
algorithm [40] used by CORECRISIS guarantees the result-
ing FSM is observationally correct but not complete [19],
which motivates CORECRISIS’s dynamic refinement (§ 4.3).
Evaluating the correctness and completeness of learned FSM
beyond observational correctness is challenging, especially
in a black-box setting, and previous works [24, 60] do not
address it either. We leave it as future work.
Further enhancement of CORECRISIS. CORECRISIS fo-
cuses on NAS messages and AMF/SMF in the core network
(Section 3.1). Extending CORECRISIS’s methodology to test
other messages (e.g., RRC messages) and other NFs (e.g.,
NRF and UDM) is an interesting future direction. Addition-
ally, applying program analysis techniques could automate the
construction of message grammar and mutation functions.

8 Related Works

Fuzzing. Among existing protocol fuzzers, SGFuzz [20],
Nyx-Net [57], and Bleem [46] apply different approaches to

infer protocol states and increase test efficiency. However,
they cannot effectively generate valid test cases to test 5GC
implementations, and their exploration cannot cover the com-
plex 5GC state space. Learn&Fuzz [33] tests PDF parsers
employing statistical machine learning techniques to generate
inputs more likely to expose faults. Our method employs au-
tomata learning to develop an implementation state machine,
which allows for a guided exploration of highly stateful cellu-
lar protocol implementations. Additionally, existing methods
combining state learning and fuzzing [51] cannot dynamically
update FSM during fuzzing to reflect new states and miss vul-
nerabilities caused by multiple mutated inputs (e.g., P3 in
Table 2). In contrast, CORECRISIS employs a novel two-step
approach that iteratively performs testing and FSM-refining.
Automata learning-based testing. Among passive automata
learning approaches, Prospex [26] learns botnets’ states by
analyzing observed network traffic, while Hsu et al. [36] pas-
sively learn an automaton of message formats for fuzz testing.
In contrast, active state machine learning has been applied
to analyze various network protocols, including TLS [28],
DTLS [31], TCP [30], IoT [59], OpenVPN [27], QUIC [53],
SSH [32], and Bluetooth [42]. In the area of cellular net-
works, Hussain et al. [39] and Chlosta et al. [24] have
applied automata learning to LTE protocols. Additionally,
5GBaseChecker [60] applies automata learning and differ-
ential testing to find logical vulnerabilities in commercial
5G UEs. However, 5GBaseChecker’s FSM learning requires
both positive and negative symbols, which results in a slow
learning process. It can only detect vulnerabilities triggered
by messages in this initially constructed symbol set. In con-
trast, CORECRISIS employs a scalable divide-and-conquer
and property-driven equivalence-checking style learning ap-
proach, taking advantage of the service-based architecture
and the properties of regular protocol behavior of 5GC. Also,
CORECRISIS requires only a small benign symbol set for
its initial FSM learning. The subsequent mutation and FSM
refinement stage systematically explore the target to discover
vulnerabilities triggered by messages that are not in the initial
benign set. Additionally, CORECRISIS’s compliance prop-
erties automatically identify logical vulnerabilities, whereas
5GBaseChecker’s differential testing is ineffective with a
small number of targets and cannot find vulnerabilities that
exist in all implementations. To our knowledge, this work is
the first to combine automata learning with mutation-based
testing that iteratively refines the learned model.
Cellular network security. Most of the previous works in
cellular network security [39, 43, 44, 47, 54–56, 58, 60–62]
focus on attacks on the UE or RAN side. Existing efforts
on core network security generally employ formal verifica-
tion [17, 21, 37, 38], which rely on the protocol specifications,
target specification errors, and cannot catch implementation
flaws. Other efforts focusing on the security and privacy of the
core network rely entirely on manual [25] or semi-automated
stateless [45] methods. Only Chlosta et al. [24] adopt an au-

tomata learning approach for LTE core networks and uncov-
ered several implementation flaws. However, their approach
aims to identify logical bugs and cannot find crashing bugs.

9 Conclusion

In this work, we present CORECRISIS, a context-aware black-
box testing framework for 5G core network implementations.
CORECRISIS utilizes a dynamic two-step approach, first con-
structing an initial FSM using only benign symbols, and then
refining this FSM through targeted dynamic testing. Through
this approach, CORECRISIS dynamically generates and re-
fines test inputs, ensuring comprehensive coverage of state
spaces and effective identification of potential vulnerabilities.
Our evaluation across various 5G core network implementa-
tions demonstrates that CORECRISIS excels in identifying
both protocol violations and component crashes, significantly
improving test coverage compared to existing approaches.

Acknowledgements

We thank the anonymous reviewers and the shepherd for their
feedback and suggestions. We also thank the corresponding
developers for cooperating with us during our responsible
disclosure. This work has been supported by the NSF un-
der grants 2145631, 2215017, and 2226447, the Defense Ad-
vanced Research Projects Agency (DARPA) under contract
number D22AP00148, and the NSF and Office of the Un-
der Secretary of Defense—Research and Engineering, ITE
2326898, as part of the NSF Convergence Accelerator Track
G: Securely Operating Through 5G Infrastructure Program.

Ethics Considerations

All conducted experiments use either open-source 5GC im-
plementations or commercial implementations with explicit
permission. Our testing is performed exclusively in controlled
environments using our own testbed, ensuring that no com-
mercial networks are involved. We have reported all identified
issues, as summarized in Table 2, to the respective develop-
ers. We are actively collaborating with them to triage the root
causes and develop appropriate fixes. Currently, patches for 11
of the 16 identified vulnerabilities have already been merged
into the latest releases.

Open Science

We made the source code of CORECRISIS and the modifica-
tions of all other fuzzers evaluated in Section 6.2 at the follow-
ing link: https://doi.org/10.5281/zenodo.14735880,
and also on GitHub [4]. This will ensure that our work is
accessible and reusable by the broader research community.

References
[1] 5G; Security architecture and procedures for 5G System (3GPP TS

33.501 version 17.5.0 Release 17). [Online]. Available: http://www.
3gpp.org/dynareport/33501.htm.

[2] Amarisoft. https://www.amarisoft.com/.

[3] boofuzz: Network protocol fuzzing for humans. https://github.
com/jtpereyda/boofuzz.

[4] CoreCrisis. https://github.com/SyNSec-den/CoreCrisis.

[5] Free5gc. https://www.free5gc.org/.

[6] fuzzowski: the network protocol fuzzer that we will want to use. https:
//github.com/nccgroup/fuzzowski.

[7] Lost or stolen phone: What to do and how to protect your data.

[8] Open5gs. https://open5gs.org/.

[9] OpenAirInterface. https://openairinterface.org/.

[10] Openrce/sulley: A pure-python fully automated and unattended fuzzing
framework. https://github.com/OpenRCE/sulley.

[11] srsran. https://www.srsran.com/.

[12] Aglfuzz: Automata-guided fuzzing for detecting logic errors in security
protocol implementations. Computers & Security, page 103979, 2024.

[13] 3GPP. 5g security assurance specification (scas); access and mobility
management function (amf). Technical Specification (TS) 33.512, 3rd
Generation Partnership Project (3GPP), 2023. Version 18.0.0.

[14] 3GPP. Non-access-stratum (nas) protocol for 5g system (5gs); stage
3. Technical Specification (TS) 24.501, 3rd Generation Partnership
Project (3GPP), 2023. Version 18.3.0.

[15] 3GPP. Procedures for the 5g system (5gs). Technical Specification
(TS) 23.502, 3rd Generation Partnership Project (3GPP), 2023. Version
18.1.1.

[16] 3GPP. System architecture for the 5g system (5gs). Technical Specifi-
cation (TS) 23.501, 3rd Generation Partnership Project (3GPP), 2023.
Version 18.2.0.

[17] Mujtahid Akon, Tianchang Yang, Yilu Dong, and Syed Rafiul Hussain.
Formal analysis of access control mechanism of 5g core network. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pages 666–680, 2023.

[18] Abdullah Al Ishtiaq, Sarkar Snigdha Sarathi Das, Syed Md Mukit
Rashid, Ali Ranjbar, Kai Tu, Tianwei Wu, Zhezheng Song, Weixuan
Wang, Mujtahid Akon, Rui Zhang, et al. Hermes: Unlocking se-
curity analysis of cellular network protocols by synthesizing finite
state machines from natural language specifications. arXiv preprint
arXiv:2310.04381, 2023.

[19] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and computation, 75(2):87–106, 1987.

[20] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roy-
choudhury. Stateful greybox fuzzing. In 31st USENIX Security Sympo-
sium (USENIX Security 22), pages 3255–3272, Boston, MA, August
2022. USENIX Association.

[21] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf
Sasse, and Vincent Stettler. A formal analysis of 5g authentication. In
Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, pages 1383–1396, 2018.

[22] Marcel Böhme, László Szekeres, and Jonathan Metzman. On the
reliability of coverage-based fuzzer benchmarking. In Proceedings
of the 44th International Conference on Software Engineering, ICSE
’22, page 1621–1633, New York, NY, USA, 2022. Association for
Computing Machinery.

[23] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang, Xi-
aozhong Liu, Haixu Tang, and Baoxu Liu. Sherlock on specs: Build-
ing {LTE} conformance tests through automated reasoning. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 3529–3545,
2023.

https://doi.org/10.5281/zenodo.14735880
http://www.3gpp.org/dynareport/33501.htm
http://www.3gpp.org/dynareport/33501.htm
https://www.amarisoft.com/
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://github.com/SyNSec-den/CoreCrisis
https://www.free5gc.org/
https://github.com/nccgroup/fuzzowski
https://github.com/nccgroup/fuzzowski
https://open5gs.org/
https://openairinterface.org/
https://github.com/OpenRCE/sulley
https://www.srsran.com/

[24] Merlin Chlosta, David Rupprecht, and Thorsten Holz. On the chal-
lenges of automata reconstruction in lte networks. In Proceedings of
the 14th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, pages 164–174, 2021.

[25] Merlin Chlosta, David Rupprecht, Thorsten Holz, and Christina Pöpper.
Lte security disabled: misconfiguration in commercial networks. In
Proceedings of the 12th conference on security and privacy in wireless
and mobile networks, pages 261–266, 2019.

[26] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel,
and Engin Kirda. Prospex: Protocol specification extraction. In 2009
30th IEEE Symposium on Security and Privacy, pages 110–125. IEEE,
2009.

[27] Lesly-Ann Daniel, Erik Poll, and Joeri de Ruiter. Inferring openvpn
state machines using protocol state fuzzing. In 2018 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), pages
11–19. IEEE, 2018.

[28] Joeri De Ruiter and Erik Poll. Protocol state fuzzing of tls implemen-
tations. In 24th USENIX Security Symposium (USENIX Security 15),
pages 193–206, 2015.

[29] Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu, Minhui Xue, Sheng Wen,
Dongxi Liu, Surya Nepal, and Yang Xiang. Snipuzz: Black-box fuzzing
of iot firmware via message snippet inference. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 337–350, 2021.

[30] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. Combin-
ing model learning and model checking to analyze tcp implementations.
In Computer Aided Verification: 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28,
pages 454–471. Springer, 2016.

[31] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri De Ruiter,
Konstantinos Sagonas, and Juraj Somorovsky. Analysis of dtls im-
plementations using protocol state fuzzing. In 29th USENIX Security
Symposium, Online, August 12–14, 2020, pages 2523–2540, 2020.

[32] Paul Fiterău-Broştean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits
Vaandrager, and Patrick Verleg. Model learning and model checking
of ssh implementations. In Proceedings of the 24th ACM SIGSOFT
International SPIN Symposium on Model Checking of Software, pages
142–151, 2017.

[33] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Ma-
chine learning for input fuzzing. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 50–59.
IEEE, 2017.

[34] Ali Güngör. Aligungr/ueransim: Open source 5g ue and ran (gnodeb)
implementation. https://github.com/aligungr/UERANSIM.

[35] Abida Haque, Varun Madathil, Bradley Reaves, and Alessandra Scafuro.
Anonymous device authorization for cellular networks. In Proceedings
of the 14th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, WiSec ’21, page 25–36, New York, NY, USA, 2021.
Association for Computing Machinery.

[36] Yating Hsu, Guoqiang Shu, and David Lee. A model-based approach to
security flaw detection of network protocol implementations. In 2008
IEEE International Conference on Network Protocols, pages 114–123.
IEEE, 2008.

[37] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino.
Lteinspector: A systematic approach for adversarial testing of 4g lte.
In Network and Distributed Systems Security (NDSS) Symposium 2018,
2018.

[38] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowd-
hury, and Elisa Bertino. 5greasoner: A property-directed security and
privacy analysis framework for 5g cellular network protocol. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 669–684, 2019.

[39] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq, Omar Chowd-
hury, and Elisa Bertino. Noncompliance as deviant behavior: An auto-
mated black-box noncompliance checker for 4g lte cellular devices. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1082–1099, 2021.

[40] Malte Isberner, Falk Howar, and Bernhard Steffen. The ttt algorithm: a
redundancy-free approach to active automata learning. In Runtime Veri-
fication: 5th International Conference, RV 2014, Toronto, ON, Canada,
September 22-25, 2014. Proceedings 5, pages 307–322. Springer, 2014.

[41] Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source
learnlib: a framework for active automata learning. In Computer Aided
Verification: 27th International Conference, CAV 2015, San Francisco,
CA, USA, July 18-24, 2015, Proceedings, Part I 27, pages 487–495.
Springer, 2015.

[42] Imtiaz Karim, Abdullah Al Ishtiaq, Syed Rafiul Hussain, and Elisa
Bertino. Blediff: Scalable and property-agnostic noncompliance check-
ing for ble implementations. In 2023 IEEE Symposium on Security and
Privacy (SP), pages 1082–1100. IEEE Computer Society, 2022.

[43] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun, and Yongdae
Kim. Basespec: Comparative analysis of baseband software and cellular
specifications for l3 protocols. In NDSS, 2021.

[44] Hongil Kim, Dongkwan Kim, Minhee Kwon, Hyungseok Han,
Yeongjin Jang, Dongsu Han, Taesoo Kim, and Yongdae Kim. Break-
ing and fixing volte: Exploiting hidden data channels and mis-
implementations. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 328–339, 2015.

[45] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. Touching the
untouchables: Dynamic security analysis of the lte control plane. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1153–1168.
IEEE, 2019.

[46] Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang,
Ting Chen, Abhik Roychoudhury, and Jiaguang Sun. Bleem: Packet
sequence oriented fuzzing for protocol implementations. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 4481–4498,
Anaheim, CA, August 2023. USENIX Association.

[47] Dominik Maier, Lukas Seidel, and Shinjo Park. Basesafe: Baseband
sanitized fuzzing through emulation. In Proceedings of the 13th ACM
conference on security and privacy in wireless and mobile networks,
pages 122–132, 2020.

[48] Roberto Natella. Stateafl: Greybox fuzzing for stateful network servers.
CoRR, abs/2110.06253, 2021.

[49] José Oncina and Pedro Garcia. Identifying regular languages in polyno-
mial time. In Advances in structural and syntactic pattern recognition,
pages 99–108. World Scientific, 1992.

[50] CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee, Eunkyu Lee,
Insu Yun, and Yongdae Kim. {DoLTEst}: In-depth downlink nega-
tive testing framework for {LTE} devices. In 31st USENIX Security
Symposium (USENIX Security 22), pages 1325–1342, 2022.

[51] Andrea Pferscher and Bernhard K. Aichernig. Stateful black-box
fuzzing of bluetooth devices using automata learning. In Jyotirmoy V.
Deshmukh, Klaus Havelund, and Ivan Perez, editors, NASA Formal
Methods, pages 373–392, Cham, 2022. Springer International Publish-
ing.

[52] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Aflnet: a
greybox fuzzer for network protocols. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST),
pages 460–465. IEEE, 2020.

[53] Abdullah Rasool, Greg Alpár, and Joeri de Ruiter. State machine
inference of quic. arXiv preprint arXiv:1903.04384, 2019.

[54] David Rupprecht, Kai Jansen, and Christina Pöpper. Putting lte se-
curity functions to the test: A framework to evaluate implementation
correctness. In WOOT, 2016.

https://github.com/aligungr/UERANSIM

[55] David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pöp-
per. Breaking lte on layer two. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 1121–1136. IEEE, 2019.

[56] David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pöp-
per. Call me maybe: Eavesdropping encrypted lte calls with revolte. In
USENIX Security Symposium, pages 73–88, 2020.

[57] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi,
and Thorsten Holz. Nyx-net: network fuzzing with incremental snap-
shots. In Proceedings of the Seventeenth European Conference on
Computer Systems, EuroSys ’22, pages 166–180, New York, NY, USA,
2022. Association for Computing Machinery.

[58] Altaf Shaik, Ravishankar Borgaonkar, N Asokan, Valtteri Niemi, and
Jean-Pierre Seifert. Practical attacks against privacy and avail-
ability in 4g/lte mobile communication systems. arXiv preprint
arXiv:1510.07563, 2015.

[59] Martin Tappler, Bernhard K Aichernig, and Roderick Bloem. Model-
based testing iot communication via active automata learning. In 2017
IEEE International conference on software testing, verification and
validation (ICST), pages 276–287. IEEE, 2017.

[60] Kai Tu, Abdullah Al Ishtiaq, Syed Md Mukit Rashid, Yilu Dong, Weix-
uan Wang, Tianwei Wu, and Syed Rafiul Hussain. Logic gone astray:
A security analysis framework for the control plane protocols of 5g
basebands. In 33rd USENIX Security Symposium (USENIX Security
24), pages 3063–3080, Philadelphia, PA, August 2024. USENIX Asso-
ciation.

[61] Hojoon Yang, Sangwook Bae, Mincheol Son, Hongil Kim, Song Min
Kim, and Yongdae Kim. Hiding in plain signal: Physical signal over-
shadowing attack on LTE. In 28th USENIX Security Symposium
(USENIX Security 19), pages 55–72, Santa Clara, CA, August 2019.
USENIX Association.

[62] Tianchang Yang, Syed Md Mukit Rashid, Ali Ranjbar, Gang Tan, and
Syed Rafiul Hussain. ORANalyst: Systematic testing framework for
open RAN implementations. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 1921–1938, Philadelphia, PA, August
2024. USENIX Association.

[63] Chuan Yu, Shuhui Chen, Ziling Wei, and Fei Wang. Secchecker: In-
specting the security implementation of 5g commercial off-the-shelf
(cots) mobile devices. Computers & Security, 132:103361, 2023.

Appendix

A Power Schedule

CORECRISIS uses a two-layer power schedule algorithm to
select the most suitable state and message for testing. Each
corpus c is associated with a specific message and the state
from which the message is sent (i.e., the sequences of mes-
sages needed to reach that state). The probability of selecting
a corpus c for further mutation and testing is determined by
its associated energy ec:

Pc =
ec

∑c′∈C ec′

This approach ensures that seeds with higher assigned energy
are more likely to be selected in subsequent fuzzing rounds.

All corpora are initialized with a base energy e0. If muta-
tions of a corpus lead to the discovery of new states/transi-
tions (i.e., finding a new corpus), its energy is significantly

increased; otherwise, it is slightly decreased. All newly dis-
covered corpora are initialized with e0. The underlying intu-
ition is that if CORECRISIS discovers a new response using a
particular state and message, the corresponding corpus likely
represents unexplored state space and should be prioritized.

To prevent starvation, CORECRISIS employs rules to adjust
the energy of seeds dynamically. First, it tracks the visit count
for each seed. If a seed in the corpus has been visited less
frequently than the average visit count (i.e., is_rare(c) is true),
additional energy is assigned to it:

e′c = ec + erare × is_rare(c)

Here, erare is computed as a fraction of the average energy
across all seeds, ensuring fairness while prioritizing underex-
plored seeds:

erare = α× ∑c∈C ec

|C|
where α is a scaling factor that determines the extent of prior-
itization for rare seeds.

To mitigate extreme bias, CORECRISIS caps the adjusted
energy of each seed to ten times the lowest original energy in
the corpus:

e′c = min(ec,10×min(E))

The adjusted energy values are recalculated before each seed
selection to ensure up-to-date prioritization.

B Mutation Operators

The format of 5G NAS messages is defined in 3GPP TS
24.501 [14], with strict syntactical (i.e., structural) and se-
mantic (i.e., value-based) constraints. Randomly generated
inputs are highly likely to be rejected by the decoder due to
these restrictions. To address this, CORECRISIS employs a
grammar-aware mutation approach to systematically explore
the input space.
Structure-aware mutation operator. Structure-aware mu-
tation is applied only to syntactically-valid corpus messages.
The mutation strategies incorporated in CORECRISIS are sum-
marized in Table 5. Here, semantically-valid values refer to
values defined as acceptable by the technical specifications
(e.g., valid enum values and values within constrained ranges),
while semantically-invalid values refer to disallowed or un-
expected values. CORECRISIS randomly selects an Informa-
tion Element (IE) within the corpus for mutation. Addition-
ally, it generates unused fields to explore code paths that are
not reachable with the initial corpus. For further exploration,
CORECRISIS also mutates the value of the Security Header
Type and encodes messages with and without a MAC and
with or without encryption. Some unexpected values in cer-
tain message fields may cause incorrect state transitions or
even trigger crashes, enabling CORECRISIS to detect potential
vulnerabilities.

Type Available Mutations
Security Generate a random value
Header Choose a semantically-valid value
Type Choose a semantically-invalid value
Encryption Randomly select between plaintext,

integrity-protected, and
both integrity-protected and ciphered message

Fixed-size Generate a random value with the same size
IEs Choose a semantically-valid value

Choose a semantically-invalid value
Octetstring Generate a string with the same length
IEs Generate a string with a random length

Generate an empty string
Modify a random byte
Delete a random byte
Insert a random byte

Full NAS Modify a random byte
message Delete a random byte

Insert a random byte

Table 5: Mutation strategies

Byte-level Mutation Operator. To explore flaws in the NAS
message decoder, CORECRISIS also applies a probabilistic
byte-level mutation operator to break syntactical constraints.
Byte-level mutations are randomly chosen from three op-
erations: (1) generate a random byte at a random location,
(2) insert a byte at a random location, or (3) delete a byte at
a random location. These operations result in syntactically
invalid messages, allowing CORECRISIS to uncover deeper
implementation flaws.

Both structure-aware and byte-level mutations are per-
formed prior to any MAC calculation and/or ciphering opera-
tions. This ensures that the core network can correctly decode
integrity-protected and ciphered test messages.

C Figures & Tables

Extended protocol discriminator

Message authentication code (MAC)

Security header type associated with a
spare half octet

Sequence number

Plain 5GS NAS Message

octet 1

octet 2

octet 3

octet 7

octet 8

octet n

octet 6

7E

02

5F

74 ...

...

Figure 10: Example of a malformed message

PS State Description Expected Behaviors
NE PDU session not established Only PDUEstReq accepted
ES PDU session established PDURelReq and PDUModReq

can be accepted
RI PDU session release initiated Only PDURelCompl accepted
MI PDU session modification initi-

ated
Only PDUModCompl accepted

Table 6: Expected behaviors for SMF’s protocol state (PS)

NE ES

RI

MIPDUEstReq/
PDUEstAcpt

PDUModReq/
PDUModCmd

PDUModCompl/
nullPDURelReq/

PDURelCmd

PDURelCompl/
null

Figure 11: SMF’s protocol FSM with key transitions

s0:NE

s1:ES

s2:RI

PDUEstReq/
PDUEstAcpt

PDURelReq/
PDURelCmd

PDURelCompl/
null

Figure 12: Labeled FSM of the SMF presented in Figure 3

Symbol Used 5G NAS Message Name Direction
regReq RegistrationRequest Uplink

regReq(GUTI) RegistrationRequest with GUTI Uplink
regRej RegistrationReject Downlink

regAcpt RegistrationAccept Downlink
regCompl RegistrationComplete Uplink

idReq IdentityRequest Downlink
idResp IdentityResponse Uplink

authReq AuthenticationRequest Downlink
AuthRej AuthenticationReject Downlink

AuthResp AuthenticationResponse Uplink
AuthFail AuthenticationFailure Uplink
SMCmd SecurityModeCommand Downlink

SMCompl SecurityModeComplete Uplink
SMRej SecurityModeReject Uplink
CUCmd ConfigurationUpdateCommand Downlink

CUCompl ConfigurationUpdateComplete Uplink
SMRej SecurityModeReject Uplink
servReq ServiceRequest Uplink
servAcpt ServiceAccept Downlink
servRej ServiceReject Downlink

deregReq DeregistrationRequest Uplink/Downlink
deregAcpt DeregistrationAccept Uplink/Downlink

PDUEstReq PDUSessionEstablishmentRequest Uplink
PDUEstAcpt PDUSessionEstablishmentAccept Downlink
PDURelReq PDUSessionReleaseRequest Uplink
PDURelCmd PDUSessionReleaseCommand Downlink

PDURelCompl PDUSessionReleaseComplete Uplink
PDUModReq PDUSessionModificationRequest Uplink
PDUModCmd PDUSessionModificationCommand Downlink

PDUModCompl PDUSessionModificationComplete Uplink
null No response from Core N/A

Table 7: Symbols used in initial learning

Property
ID Description

A1 When the UE is deregistered, if the AMF receives a regReq message, it should send an authReq message.
A2 If the authentication is successful, the AMF should send a SMCmd message after it receives an authResp message.
A3 If the security context is established, the AMF should send a regAcpt message after it receives a SMCompl message.

A4 If the security context is established and the AMF has sent a regAcpt message, the AMF should move to registered state if it receives a regCompl
message.

A5 After the AMF has initiated the authentication procedure, if it receives a deregReq request message, it should respond with a deregAcpt message
and not respond to anything other than regReq.

A6 After authentication is successful and the AMF has initiated the security mode control procedure, if it receives a deregReq request message, it
should respond with a deregAcpt message and not respond to anything other than regReq.

A7 After the security context has been established and the AMF has sent a regAcpt message if it receives a deregReq request message, it should
respond with a deregAcpt message and not respond to anything other than regReq.

A8 After registration is complete, if it receives a deregReq request message, it should respond with a deregAcpt message and not respond to
anything other than regReq.

A9 After registration is complete, if it receives a regReq(GUTI) request message, it should respond with a regAcpt message and not respond to
anything other than regCompl.

S1 When no PDU session is present, if the SMF receives an PDUEstReq message, it should send an PDUEstAcpt message.

S2 When the PDU session is established, if the SMF receives an PDUModReq message, it should send an PDUModCmd message and not respond
to anything other than PDUModCompl.

S3 When the PDU session is established, if the SMF receives an PDURelReq message, it should send an PDURelCmd message and not respond
to anything other than PDURelCompl.

Table 8: List of properties used to generate property-driven equivalence queries

	Introduction
	Preliminaries
	Overview
	Threat Model
	Motivation for CoreCrisis
	Challenges of CoreCrisis
	High-Level Approach

	Detailed Design of CoreCrisis
	Initial FSM Learning
	Divide-and-conquer FSM learning
	Property-driven equivalence checking

	Test Sequences Generation
	Constructing syntactically and semantically valid test messages

	Feedback & New State Learning
	Analysis and comparison of responses
	Dynamic FSM refinement
	Resetting core network

	Testing Oracles
	Protocol side-channel crash detection
	Logical errors detection

	Implementation
	Evaluation
	Identified Vulnerabilities (RQ1)
	Identified Protocol Violations
	Identified Crashes (C1-C13)

	Comparison with Existing Methods (RQ2)
	Quantitative Comparison with Existing Fuzzers
	Feature Comparison with Other Methods

	Ablation Studies of CoreCrisis (RQ3)
	Effectiveness of property-driven EC
	Effectiveness of fuzzing components
	Crash detection accuracy

	Discussion
	Related Works
	Conclusion
	Power Schedule
	Mutation Operators
	Figures & Tables

