
Athena: Analyzing and Quantifying Side Channels of Transport Layer Protocols

Feiyang Yu1, Quan Zhou2, Syed Rafiul Hussain2, and Danfeng Zhang1

1Duke University
2Pennsylvania State University

1{fy66, danfeng.zhang}@duke.edu
2{qfz5074, hussain1}@psu.edu

Abstract
Recent research has shown a growing number of side-channel
vulnerabilities in transport layer protocols, such as TCP and
UDP. Those side channels can be exploited by adversaries
to launch nefarious attacks. In this paper, we present Athena,
an automated tool for detecting, quantifying and explaining
side-channel vulnerabilities in vanilla implementations of
transport layer protocols. Unlike prior tools, Athena adopts
a novel graph-based analysis, making it scalable enough to
be the first side-channel analysis tool that can comprehen-
sively analyze the TCP and UDP implementations in several
operating systems with significantly higher coverage than
the state-of-the-art. Moreover, Athena uses an entropy-based
algorithm to identify the most important vulnerabilities. Eval-
uation on several benchmarks including Linux, FreeBSD,
OpenBSD and two open-source IPv4 implementations sug-
gests that Athena can narrow down critical side channels to
a single digit (among over 1000 candidates) with a low false
positive rate. Besides covering known side channels, Athena
also discovers 30 new potential attack surfaces.

1 Introduction

Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) are the two most widely used transport layer
protocols for reliable and low-latency data transmission be-
tween network hosts. However, recent research has shown
growing concerns about the susceptibility of side-channel
vulnerabilities in these protocols, which can be exploited
by adversaries to launch nefarious attacks. Some typical
forms of these attacks can expose sensitive information, such
as port numbers [2, 10, 22, 23], the existence of an active
client in the Internet, and even hijack connections between
a server and a targeted client [17]. These side channels pri-
marily lurk in the shared resources that are created and man-
aged by the server’s operating systems; the resources are
shared across multiple connections established with different
clients [6, 7, 10, 11, 13, 16, 19, 22, 23, 25].

Despite an increasing number of identified side channels
in transport layer protocols, the majority of those side chan-
nels are manually identified, which require extensive domain
knowledge and manual effort. Moreover, the manual analysis
cannot guarantee full code coverage as there might still be
unknown side channels lurking in TCP and UDP protocols,
and a new kernel update might introduce new side channels.
Recent work [7,12] follows a more promising approach. They
develop a concrete/abstract model of the stand-alone version
of a TCP implementation and use a static model checking
technique to automatically identify side channels in those
models. For example, Cao et al. [7] were able to detect 10
side channels in their analysis. However, due to the limited
scalability of model checking technique, they were unable to
analyze the entire TCP implementation, and bounded model
checking cannot guarantee full code coverage either. This
resulted in an inadequate analysis of complex protocol behav-
ior and interactions with other components/layers, rendering
poor coverage and an imprecise model of the analyzed TCP
implementation. Finally, existing approaches require further
manual effort to diagnose the root cause of side channels, such
as why the side channels exist, when they can be triggered and
how they can be observed by an attacker. This paper, therefore,
aims to fill this gap by developing an automated approach
for developers to systematically identify side-channel vulner-
abilities in TCP and UDP implementations, as well as an
automated diagnostic mechanism to locate their root causes.

Prior work [7, 12] identifies side channels in transport pro-
tocols as a violation of a non-interference property: given two
instances of the same server state where only security sensi-
tive properties are different, whether sending a set of packets
(inputs) to the two servers will result in different responses.
However, identifying such non-interference violations directly
via model checking is costly. For instance, SCENT [7] reports
an exponentially growing running time with regard to the
number of packets and its execution time reaches over 10,000
seconds with 4 incoming packets. Ensafi et al. [12] report ex-
treme running time (over 3 days) and memory usage (>16GB)
on an abstract model of implementation code. In contrast, our



observation is that one can detect the same violations with
a much lower cost and scalable manner in two stages: (1)
identify all tainted branches whose outcomes are affected by
sensitive properties, and (2) identify the sensitive branches
that influence different responses, i.e., sinks (e.g., the exis-
tence or absence of protocol actions such as sending out a
network packet). Hence, one can detect side channels by ask-
ing the following question: is there any tainted branch (with
respect to the sensitive properties) that leads to different sinks
in a control flow graph (CFG)? Nonetheless, reporting all
tainted branches that might reach a sink is inadequate for at
least two reasons. First, even with a precise static taint analy-
sis, such branches are enormous in the entire implementation
of transport layer protocols (empirically, we found between
572 to 1651 tainted branches in Linux UDP and TCP imple-
mentations). So a manual inspection of all tainted branches
is infeasible. Second, tainted branches do not shed too much
light on why there is a side channel and how to fix it.

Based on the above observations, we design and imple-
ment a static analysis-based systematic side-channel analysis
tool called Athena. Athena first models side channels in the
transport protocols as a graph search problem based on the
abstraction of tainted control flow graph (τCFG). To tackle the
challenges of reporting and diagnosing all tainted/sensitive
branches, Athena introduces an entropy-based approach mo-
tivated by entropy in information theory [28] to localize the
most important side channels, and also develop a set of rules to
automatically explain why the side channels exist (e.g., by ob-
serving whether an ACK message is sent or not in Established
state, an attacker can reveal the secret values used by TCP)
and how the side channels can be observed by an attacker.
Finally, to comprehensively identify side channels under our
threat model in protocol implementations, Athena adopts an
iterative “rank-and-replace” approach that mimics how side
channels are mitigated in transport layer protocols and then
identifies the remaining ones. Our approach greatly improves
scalability and usability of prior protocol side-channel analy-
ses [7, 12] as both static taint analysis and CFG construction
can be directly applied to protocol implementations without
modifying or abstracting the source code, and they both scale
to a large code base. Moreover, entropy-based graph-search
algorithm also enjoys a complexity that is linear to graph
size. Hence, Athena is able to analyze entire implementations
of transport protocols, while prior work only analyzes their
abstract models or partial code due to scalability limit.

We implement Athena and evaluate it on several bench-
marks of TCP and UDP implementations, including Linux
3.19, Linux 4.8, FreeBSD 13.2 and OpenBSD 7.4 IPv4 kernel
code, as well as two open-source IPv4 implementations on
GitHub [24,31]1. Athena reports 34 side channels in the TCP
model and 8 side channels in the UDP model in total. Athena
further extracts information from these flows and provides

1The most starred TCP implementations written in C on Github.

diagnostic information such as the most critical branches and
states needed to trigger the side channel.

Contributions. In this paper, we make the following con-
tributions.

• We model the detection of side-channel vulnerabilities
of transport layer protocols as a graph-search problem.
Based on the graph, we develop an entropy-based ap-
proach to rank side channels according to their im-
portance. Moreover, we develop an iterative rank-and-
replace loop to identify a comprehensive list of side chan-
nels, i.e., no more side channels exist after the reported
ones are fixed;

• We design and implement Athena, an automated tool
that detects, quantifies and explains side-channel vul-
nerabilities thoroughly in the entire implementations
of transport layer protocols. Athena is open-sourced at
https://github.com/athena-paper/athena;

• We evaluate Athena with the TCP and UDP implementa-
tions of Linux 3.19, Linux 4.8, FreeBSD 13.2, OpenBSD
7.4 and two open-source programs (microps [24], pi-
cotcp [31]). Athena reports 42 side-channel vulnerabili-
ties, including 30 new side channels, 7 known ones and
only 5 false positives.

2 Transport Layer Protocols

Transport layer protocols operate at the transport layer of
the TCP/IP Internet protocol stack. They are responsible for
establishing communication between applications running on
different hosts. The two most commonly used protocols are
TCP and UDP.

TCP. TCP (Transmission Control Protocol) is a connection-
oriented protocol that requires a logical connection to be
established between the two hosts through a three-way hand-
shake before data is exchanged. It ensures reliable and ordered
delivery of data packets between applications (e.g., SSH and
FTP) on different hosts through various mechanisms, such
as flow control, congestion control, and error recovery. TCP
is, however, vulnerable to a variety of attacks since security
was not the primary concern in the TCP design. Some typical
attacks include SYN flooding attacks [21], TCP session hi-
jacking attacks [17], and blind RST attacks [27]. Many such
attacks involve guessing certain connection secrets, namely
sequence (SEQ) numbers and acknowledge (ACK) numbers.
Therefore, the inference of these numbers has become a vital
part of TCP attacks [1, 6, 11, 12, 25].

UDP. Unlike TCP, UDP (User Datagram Protocol) is a
connection-less protocol that does not require any handshake
or logical connection between hosts. As such, it does not pro-
vide any guarantees for reliable delivery of packets or ordered
delivery of data. This feature makes UDP faster and more ef-
ficient than TCP. Hence, it is commonly used in applications

https://github.com/athena-paper/athena
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Figure 1: Threat model. An aided off-path attack also utilizes
an unprivileged processes residing in the victim machines.

where real-time communication and low latency are critical.
One of the most common applications that extensively use
UDP is DNS (Domain Name System). DNS queries and re-
sponses are sent in UDP packets between clients and servers.

An important type of attack in systems using UDP proto-
cols is the UDP port inference attack [22], as applications rely-
ing on UDP usually hide the client port to provide some level
of integrity. Attackers use UDP port inference as a stepping
stone to performing DNS cache poisoning attacks [22,23,29].

3 Overview

3.1 Threat Model

In line with prior work [15], we consider both a client and
a server can be the victims of side-channel attacks. In this
setting, we assume that the victim client and the victim server
have already established TCP/UDP communication, and there
is an off-path attacker (as shown in Figure 1). We also con-
sider two different capabilities for such attackers: (a) Un-
aided off-path attacker (Advu), and (b) Aided off-path attacker
(Adva). In our analysis, we distinguish the two types of threat
models by different sets of sinks observable to an attacker.

Unaided off-path attacker (Advu). In this threat model, we
assume an off-path attacker who can send TCP/UDP mes-
sages (either with their own IP address or spoofed ones with
the target client’s or server’s IP address) to the victim clien-
t/server. However, being off-path, the attacker does not have
the capability to eavesdrop on the active connection or injec-
t/modify the packet transmitting between the client and the
server (shown in Figure 1). Furthermore, the threat model as-
sumes that attackers do not have any control over or aid from
any unprivileged/privileged processes running on the victim
client/server. Instead, attackers attempt to infer the system
connection states only through the side channels discovered in
protocol implementations directly or indirectly, such as global
counters [6], IPID hash collisions [13] and SYN-backlogs [7].
To reflect this threat model in our analysis, we mark packet
transmission functions as sinks, as only transmitted packets
are observable by unaided off-path attackers.

Aided off-path attacker (Adva). In this threat model, we
assume that Adva possesses the same capabilities as Advu and

has additional control over or assistance from an unprivileged
process running on the victim client/server. This attack model
is consistent with the ones in prior work [2, 25, 26], wherein
the unprivileged process is a sandboxed malicious script on
the victim’s machine injected by the attacker. Running on
the application layer, the script cannot directly tamper with
the data sent to/received from another host but can observe
various networking parameters and statistics, or interact with
the network stack on its behalf [2] and stealthily notify the
Advu to help Advu launch attacks. For example, we assume an
unprivileged process in one of the victim’s machines can read
netstat files (located in /proc/net which only requires
normal access privilege) and stealthily report any change to
Adva [2, 26]. To reflect this threat model in our analysis, we
mark functions that modify local counters as sinks.

Attacker’s goals. Attackers attempt to exploit side-channel
vulnerabilities to infer the state of the victim’s connection.
Specifically, they would like to infer (a) the port number of the
client victim used for the connection (for TCP and UDP), (b)
the sequence (SEQ) number from the client (for TCP only),
and/or (c) the acknowledge (ACK) number expected by the
server (for TCP only). Such information is security sensitive
for the following reasons. If an attacker successfully learns
the port number, she can determine whether there exists an ac-
tive connection between the client and server. If SEQ number
is further inferred, she can trick the victims into prematurely
closing the TCP connection by crafting an RST fragment (e.g.,
TCP Reset Attack [27]). If all three numbers are inferred, the
attacker can arbitrarily inject their own data into the connec-
tion, and essentially hijack the connection (e.g., TCP Session
Hijacking Attack [17]).

3.2 Illustrative Example
Figure 2 shows simplified code snippets in the Linux imple-
mentation of TCP; we use it to demonstrate a known side
channel in the Linux implementation of TCP [26].

The first code snippet (from tcp_rcv_established) han-
dles incoming packets when the socket is in the ESTAB-
LISHED state. Here, the system first validates the incoming
packet’s SEQ and ACK number by matching them against the
expected numbers (lines 2-5). If the header length is too short
(line 6), the packet is discarded. Otherwise, it further validates
the incoming packet in function tcp_validate_incoming
(the second code snippet). Only when the sequence num-
ber is legit and RST, SYN flags satisfy required states (line
14-17), sink function tcp_send_dupack is being called; oth-
erwise, the packet is discarded or the system calls a sink
function tcp_send_challenge_ack to send out a SYN chal-
lenge. Similarly, the decision of sending out a SYN challenge
or discard the packet between lines 24 and 29 also depends
on the sequence number and the RST flag.

In this example, the sequence number of the host (i.e., the
value of tp->rcv_nxt) is security sensitive. The sensitive



1 // In tcp_rcv_established(), tcp_input.c:
2 if ((tcp_flag_word(th) & TCP_HP_BITS) ==
3 tp->pred_flags &&
4 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5 !after(TCP_SKB_CB(skb)->ack_seq , tp->

snd_nxt))
6 if (len <= tcp_header_len) {
7 goto discard;
8 }
9 ...

10 if (!tcp_validate_incoming(sk, skb, th, 1))
11 return;
12
13 // In tcp_validate_incoming(), tcp_input.c:
14 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq,
15 TCP_SKB_CB(skb)->end_seq)) {
16 if (!th->rst) {
17 if (th->syn)
18 goto syn_challenge;
19 tcp_send_dupack(sk, skb);
20 }
21 goto discard;
22 }
23 ...
24 if (th->rst) {
25 if (TCP_SKB_CB(skb)->seq != tp->rcv_nxt) {
26 tcp_send_challenge_ack(sk);
27 }
28 goto discard;
29 }

Figure 2: A simplified code snippet of a side channel in TCP

data affects the outcomes of multiple branches in the code,
including the ones at lines 4, 14 and 25. Hence, an attacker
is able to reveal the sequence number of the host by observ-
ing which sink function is executed, or neither of them are
called. For example, prior work [26] demonstrates how to
reveal the sequence number via a side channel attack as il-
lustrated in Figure 3. While an off-path attacker is unable
to observe the existence/absence of a DUP ACK packet be-
tween client and server directly, an unprivileged process on
the victim server can monitor netstat counters (located in
/proc/net/). Depending on if the counter is incremented
or not, the attacker can reveal if the sequence number of an
incoming packet (crafted by the attacker) is smaller or greater
than the sequence number of the host. In the source code,
this vulnerability is reflected by the branch at lines 14-15,
where sink function tcp_send_dupack is called only when
the incoming sequence number is within a specific window.

Prior research [7, 12] recognizes side channels in transport
layer protocols as a breach of the non-interference principle:
when two hosts (e.g., the servers on the left and right respec-
tively in Figure 3) possess identical states, except for sensitive
security attributes, transmitting a particular set of packets to
both hosts should not produce dissimilar responses. Moreover,
they either use bounded model checking [7] on partial code or
model checking on abstract model of implementation [11] to
detect violations of the non-interference principle. While ex-
isting tools were able to unveil side channels in transport layer
protocols, using model checking methods is both expensive
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Figure 3: An illustration of the DUP ACK side-channel attack
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Figure 4: A simplified tainted CFG of the TCP code snippets

and incomplete in terms of code coverage.

3.3 Why is Detecting Protocol Side Channels a
Graph Search Problem?

In this paper, we recognize side channels in transport layer
protocols (e.g., TCP and UDP) as a graph search problem. As
shown in Section 3.2, different values of the host’s sequence
number tp->rcv_nxt lead the protocol executions to take
different control flow paths. Since each distinct control flow
path may eventually refer to disparate behavior of the system
observable from the outside of that system (e.g., sending an
DUP ACK packet, or sending a Challenge ACK packet, or
discard the incoming packet), an off-path attacker can infer
the sensitive status of the socket, thus leading to side-channel
information leakage. In other words, when secret information,
i.e., sources (e.g., tp->rcv_nxt), has any influence on the
existence or absence of protocol actions such as sending out
or dropping off a message, i.e., invocation of sinks, it signifies
the existence of side channels in the transport protocols.

We leverage this intuition and develop a new graph-based
approach that detects and ranks potential side channels in
implementations of transport layer protocols. We call con-
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trol flow graph (CFG) with tainted branches and distinct
sink nodes a tainted CFG. In essence, we aim to detect side
channels by identifying tainted branches (with respect to the
sensitive sources) that lead to multiple sinks (i.e., packet ex-
changes between the target system and the outside world)
in the corresponding tainted CFG of the transport layer pro-
tocol implementation. For example, Figure 4 represents a
simplified tainted CFG of the example code in Figure 2. In
this graph, red nodes denote tainted branches (whose execu-
tion is dependent on the secret sources), and the sink func-
tions are marked in blue. Note that the red node with label
(BR,14:!tcp_sequence...) is the root cause of the side
channel attack in Figure 3; depending on its outcome, the host
can either reach sink function tcp_send_dupack or simply
discard the packet (i.e., going through no sink function).

Why control-flows? Arguably, data-flow leakage where
sources are directly leaked to sinks (e.g., directly sending out
the sequence number to an off-path attacker) reveals more
information than control-flow leakage. However, TCP and
UDP implementations are unlikely to have any data-flow
leakage due to their designs. We also confirmed this intuition
via a static taint analysis, which detects no explicit data-flow
leakage in Linux and FreeBSD implementations.

3.4 Workflow of Athena
In our approach, Athena takes tainted CFG (e.g., the one in
Figure 4) as an input and reports a list of potential side chan-
nels that are both important and complete (i.e., if the reported
ones are fixed, there are no remaining side channels). While
the approach sounds intuitive, the main technical challenges
are two-fold: (1) how to measure the importance of side chan-
nels, and (2) how to identify a small set of important sensitive
branches that are also complete. For example, even in the sim-
plified CFG in Figure 4, there are 3 distinct sensitive branches
where each might cause a side channel. For the complete TCP
implementation in Linux 3.19 IPv4 kernel, there are 1651
candidates of potential side channels!

To tackle the challenges, Athena follows a novel rank-and-
replace loop to iteratively identify the most important side
channels in each iteration, and then pursue the analysis as if
they had been "replaced" with side-channel-free counterparts,
until no more side channels are detected. Figure 5 shows an
overview of Athena with three major components:

• Leakage analyzer (Section 4.3.1): we introduce an

entropy-based metric to measure the importance of sen-
sitive branches in a tainted CFG. For example, the red
node with label (BR,14:!tcp_sequence...) has the
highest importance as intuitively, it has direct impact
on all possible outcomes: call tcp_send_dupack, call
tcp_send_challenge_ack, or call no sink at all;

• Leakage mitigator (Section 4.3.2): inspired by how side
channels in transport layer protocol implementations are
mitigated in practice, we introduce a special node called
wildcard node to mimic the effect of fixing a side channel
by injecting noise. The revised taint CFG where all top-
ranked branches are replaced by wildcard node is being
analyzed in the next iteration;

• Rule-based classifier (Section 4.4): for each reported
top-ranked branch in each iteration, Athena also utilizes
the tainted CFG to automatically distill useful informa-
tion such as the protocol states (e.g., ESTABLISHED)
needed to trigger the side channel and the distinct out-
puts that an attacker can observe to reveal sensitive data.
For the node with label (BR,14:!tcp_sequence...) in
Figure 4, Athena reports that it can be triggered in ES-
TABLISHED state, and an attacker can observe whether
a local counter is updated or not to reveal sensitive data.

With the innovations above, Athena reports 11 side chan-
nels for the full version of the tainted CFG of the TCP im-
plementation in Linux 3.19, out of 1651 sensitive branches
in the original tainted CFG. Moreover, the reported 11 side
channels cover all previously reported ones that exist in the
Linux code that we have analyzed. Among the 11 reports, 8
are new, only 1 is false positive, and 2 are previously reported
(including the one with label (BR,14:!tcp_sequence...).

4 Design Details

4.1 Sources and Sink Functions

To analyze side channels in TCP and UDP, we first need to
specify the following items for each protocol:

• Sources: secret data that a side channel might reveal,

• Sink functions: a set of functions of TCP and UDP im-
plementations that an attacker might observe directly or
indirectly if a function is called or not,

• Entry point: the starting point of execution. This is typi-
cally the function that receives network packages.

In this section, we use Linux implementation as an example
to illustrate our design. Our design, however, is generic and
can be applied to other operating systems with minimal extra
effort to choose source/sink functions of similar functionality.



4.1.1 TCP

As discussed in Section 3.1, we consider the port number,
SEQ number and ACK number to be the secret sources in
a TCP implementation (called 3-tuple). For example, Linux
implementation stores the sources in the tcp_sock data struc-
ture, and therefore we mark the structure as the source.

A typical transport layer protocol implementation may have
multiple entry points. For instance, the Linux TCP implemen-
tation has two different entry points for handling incoming
packets in different states: (1) tcp_rcv_state_process()
function, which handles all TCP states except ESTABLISHED
and TIME-WAIT states, and (2) tcp_rcv_established()
function, which handles packets in the ESTABLISHED state.

In the unaided threat model, an attacker may observe out-
going packets (sent by function tcp_send_ack() from the
host). We mark a series of functions calling the send func-
tion as sinks. In the aided threat model, the execution of
macro NET_INC_STATS (which increments a counter under
/proc/net by 1) can be detected locally. Hence, the macro
is also marked as a sink with the aided threat model.

4.1.2 UDP

The UDP protocol is more straightforward compared to TCP.
There are two handlers in the Linux UDP implementation: (i)
the udp_rcv() function for handling incoming UDP packets,
and (ii) udp_err() for handling incoming error messages
with embedded UDP packets. They are registered as the two
entry points for UDP analysis. In both routines, the system
checks the sensitive port number to find the existence of UDP
connections (i.e., if there has been communication between
the hosts) by looking up in a structure udp_table. Therefore,
we label udp_table as the source in UDP protocol.

In the unaided threat model, an attacker may observe the in-
vocation of icmp_send() and update_or_create_fnhe().
Hence, they are marked as sinks of UDP. In the aided threat
model, the execution of macro UDP_INC_STATS_BH is marked
as another sink, similarly as in TCP.

4.2 Tainted CFG
In this work, we use a tainted control flow graph, or simply
τCFG, as the basis of side channel analysis. We first intro-
duce τCFG and highlight why it is useful for identifying side
channels in Transport Layer Protocol implementations.

A tainted control flow graph τCFG = ⟨V,E,T,S⟩ consists
of a CFG ⟨V,E⟩, a set of tainted branching nodes T and a
set of sink nodes S. As standard, a CFG ⟨V,E⟩ is a graphic
representation of the control flow of a program. It is a directed
graph where the nodes represent basic blocks of code and
the edges represent the flow of control between the blocks.
Each basic block represents a sequence of instructions that
are executed without any jumps or branches, while the edges
connect the basic blocks to show the flow of control between

them. Conditional statements and loops are represented as
nodes with multiple outgoing edges, each corresponding to a
possible branch or jump target in the program.

Given a set of sources, say H, of a transport layer protocol
implementation, a branching node is tainted if there are two
initial host states m1 and m2 that only differ on the value
of sources H (i.e., for any public variable x ̸∈ H, we have
m1(x) = m2(x)) such that control flows right after that branch
are different when the protocol implementation is executed
under m1 and m2, respectively. Note that with any sound static
taint analysis, which identifies a set of variables whose value
explicitly or implicitly depends on H, computing a set of
tainted branching nodes T is straightforward: we collect the
set of branching nodes whose branching condition uses at
least one tainted variable.

Finally, S is a set of sink nodes where each node represents a
call to a sink function (Section 4.1). For technical connivance,
we assume that the sink nodes set also contains a special
node /0 which represents the absence of any sink function (i.e.,
/0 ∈ S). Moreover, each node in CFG without an outgoing
edge must be a sink node, including the absence node /0. Note
that there might be multiple incoming edges to sink nodes
(including the absence node) in τCFG by definition.

With τCFG, we define a critical branch as follows:

Definition 1 (Critical Branch). Given a tainted CFG
⟨V,E,T,S⟩, a branching node v ∈ V is critical if it is both
tainted (i.e., v ∈ T ) and it can reach at least two distinct sink
nodes in the corresponding CFG ⟨V,E⟩.

We note that the critical branch serves as a proper graphic
abstraction for analyzing side channels in implementations of
Transport Layer Protocols since by definition, the absence of
a critical branch in τCFG implies the absence of side chan-
nels. The reason is that if there is no critical branch, then for
any two instances of the same host state where only security-
sensitive properties are different, sending a set of packets (in-
puts) to the two hosts will always result in the same responses
(i.e., sink function calls). Compared to directly analyzing if a
transport layer protocol implementation can produce different
responses when its host source values change [7, 12], con-
structing τCFG and computing critical branches in a τCFG is
more scalable. τCFG further enables quantification and mit-
igation of side channels as we will elaborate in Section 4.3.
One potential limitation of analyzing τCFG, however, is that
a critical branch does not necessarily always cause a side
channel. For example, a control-flow path in CFG might be
infeasible in program execution (e.g., due to unreachable
code). However, as we show in the evaluation (Section 6), our
analysis built on τCFG is precise enough in practice.

4.3 Identifying Side Channels
Based on τCFG, one naive approach is to report all critical
branches identified in a τCFG. However, the naive approach is
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problematic for a couple of reasons. First, a critical branch is
not necessarily the root cause of a side channel. For example,
consider the τCFG in Figure 6a where the tainted branches
are in red and the sink nodes are marked as blue squares.
Although the top node A is a critical node as it can reach both
sinks S1 and S2, it makes no impact on which sink is reached.
Intuitively, node D constitutes a side channel as depending on
its branch outcome, either node S1 or S2 is reached (i.e., its
branch outcome controls which sink node is reached).

Second, not all critical branches are equally important since
they leak different amount of information, and moreover, they
might be dependent on each other. For example, consider the
τCFG in Figure 6b where the tainted branches are in red and
the sink nodes are marked as blue squares. Intuitively, the
red node B leaks more information than node A since by
observing if S1 or S2 is reached, we can derive which branch
is taken at node B. However, we can only do so for node
A when S1 is reached. Moreover, if node B is replaced by
always producing S2, then node A becomes non-critical since
it can only reach sink S2 after the replacement. In other words,
node A depends on node B in terms of criticalness.

Third, even with a precise static taint analysis, critical
branches are enormous in the full implementation of trans-
port protocols; for example, our analysis finds 185 critical
branches in total in the TCP implementation of Linux 3.19.

4.3.1 Quantifying Critical Branches

To tackle the challenge of simply reporting all critical
branches, we develop a novel quantification algorithm based
on the concept of entropy, which is commonly used in infor-
mation theory [28, 30]. Intuitively, for each node in τCFG, its
entropy quantifies the uncertainty of reaching sink functions
from that node. Moreover, the change of entropy before and
after executing a branch (i.e., a branching node) measures
the knowledge being learnt (by the attacker) via revealing the
branch outcome.

In general, τCFG is not acyclic due to loops. However, to
make entropy computation simple and efficient, we assume
that τCFG is modified to be acyclic by removing backward
edges (i.e., edges from the loop body to the loop condition)

before further analysis. Removing the backward edges needs
extra caution as it might remove a path from a tainted branch
in the loop to an earlier call to a sink in the same loop. Athena
avoids the issue by tainting the top node (loop head) whenever
there is a tainted branch in the loop on backward edge removal.
Hence, the tainted loop head will now reach all sinks in the
loop and consequently detect potential side channels in a
conservative way. Our evaluation results also suggest that the
analysis on acyclic τCFG has high accuracy, as the top results
match previously reported side channels [7] (Section 6.3).

Next, we provide a more formal and precise definition of
node entropy in an acyclic tainted CFG, τCFG. For a node
v in τCFG with sink nodes S, the entropy of v measures the
uncertainty of which sink that v will eventually reach.

Definition 2 (Entropy of node). Let τCFG = (V,E,T,S) be
an acyclic tainted CFG. For a node v ∈ V , let HS(v) be the
entropy of reaching the sink set S from v, defined as:

HS(v) =

{
0, v ∈ S
−∑s∈S P(v,s) log2 P(v,s) v /∈ S

where P(v,s) is the probability that node v reaches node s.

Note that the entropy of any sink node is 0, since it
100% reaches itself but nothing else. For any other node,
HS is defined as the Shannon entropy [28, 30] on the
probability that node v reaches some sink node. For ex-
ample, consider the τCFG in Figure 6b and assume that
each outgoing edge has a 50% chance. Then, we have
H{S1,S2}(A) = −0.25log2(0.25) − 0.75log2(0.75) = 0.81
and H{S1,S2}(B) =−0.5log2(0.5)−0.5log2(0.5) = 1.

While entropy measures the absolute value of uncertainty,
the difference of a node and its successor measures how much
knowledge is learned by the fact that control flow transfers to
the successor. Since a node might have multiple successors,
we define the leakage of a node as the maximum entropy
differences between itself and among its all successors.

Definition 3 (Leakage of node). Let τCFG = ⟨V,E,T,S⟩ be
an acyclic tainted CFG. For a node v ∈V , let succ(v) denote
the set of the successors of v in τCFG. Let L(v) be the leakage
of v defined as: L(v) = maxi∈succ(v) HS(v)−HS(i).

Returning to the τCFG in Figure 6b, given the assumption
that each outgoing edge has a 50% chance, we have L(A) =
0.81−0 = 0.81 and L(B) = 1−0 = 1. Hence, node A is less
critical than node B, which is consistent with our intuition
since by observing if S1 or S2 is reached, we can derive which
branch of B is taken. However, we can only do so for node A
when S1 is reached.

Moreover, we note that the leakage definition also solves
the challenge illustrated in Figure 6a. Assume that each out-
going edge has a 50% chance. It is easy to compute that the
entropy of all nodes, i.e., A, B, C, and D is 1. Hence, the leak-
age of node A is 0, which correctly indicates that the node
itself does not introduce any side channels.



Finally, we fill in an important missing piece in Definition 2,
i.e., P(v,s)— the probability that node v reaches a sink node
s. One subtlety is that for each branching node, we need to
know the probability that it reaches each of its successors. For
a tainted branch, we use a simplification assumption that each
outgoing edge of the same node has the same probability2. For
a public branch, we assume the worst-case scenario that an
attacker can craft public inputs to direct to the more beneficial
successor (i.e., the one with a larger entropy, as taking the
branch might see a bigger leakage down the road). Hence, a
public branch inherits the probability from the successor with
maximum entropy.

Definition 4 (Probability of reaching a node). Let τCFG =
⟨V,E,T,S⟩ be an acyclic tainted CFG. For a node v ∈V , let

• succ(v) denote the set of the immediate successors of v
in G

• mv be the one with maximum entropy among succ(v)

For two nodes u and v, let P(u,v) be the probability that u
reaches v, which is defined as:

P(u,v) =


1, u = v
1/|succ(u)|, v ∈ succ(u)∧u ∈ T
0, v ∈ succ(u) ̸= mv ∧u ̸∈ T
1, v ∈ succ(u) = mv ∧u ̸∈ T
∑i∈succ(u) P(u, i)P(i,v), v /∈ succ(u)

Note that when v /∈ succ(u), u might still reach v indirectly.
Hence, the last case inductively computes indirect reacha-
bility. Moreover, since the graph is acyclic, P(u,v) for any
two reachable nodes u,v, and further, the entropy of each
node, can be computed efficiently by a topological sort and
calculate the probability of reaching and entropy from the
deepest nodes iteratively with dynamic programming. The
computation complexity is just O(|V |).

4.3.2 Ranking and Replacing Critical Branches

The previous approach only finds the most important criti-
cal branches. But fixing only the top-ranked critical branches
is insufficient, as there might be other (less important) critical
branches that are vulnerable to side channel attacks.

To identify all side channels with the given set of sources
and sinks in a tainted CFG, Athena takes an iterative ap-
proach that mimics how side channels are mitigated in real
implementations: Athena first reports all top-ranked critical
branches in iteration 1, say A1. Then, it marks those branches
as “replaced” (by side-channel-free code)3 and reruns the

2We assume the uniform distribution for its simplicity and adequacy in
practice (note that only the relative ranking, rather than the probabilities,
matters in our context). While it is possible to use techniques like profiling
to define a more precise model, we also note the concern that an adversary
may draft inputs so that the system deviates from how it “usually” works -
and thus invalidating the profiling data.

3Note that code replacement does not truly happen during our analysis,
that is just an analysis construct.

1 // vulnerable code in Linux 3.19
2 static unsigned int challenge_count;
3
4 ... reset challenge_count to 0 at fixed

interval ..
5 if (++challenge_count <=

sysctl_tcp_challenge_ack_limit) {
6 NET_INC_STATS_BH(sock_net(sk),

LINUX_MIB_TCPCHALLENGEACK);
7 tcp_send_ack(sk);
8 }

1 // mitgated code in Linux 4.8
2 static unsigned int challenge_count;
3 struct tcp_sock *tp = tcp_sk(sk);
4 u32 count , now;
5
6 ..reset challenge_count to a random number at

fixed interval..
7 count = READ_ONCE(challenge_count);
8 if (count > 0) {
9 WRITE_ONCE(challenge_count , count - 1);

10 NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPCHALLENGEACK);

11 tcp_send_ack(sk);
12 }

Figure 7: Code snippet from tcp_send_challenge_ack
function before and after a side channel is mitigated.

quantification algorithm on the τCFG with replaced nodes
and reports all top-ranked critical branches in iteration 2, say
A2. Athena continues until all critical branches have zero leak-
age. So in the end, when Athena terminates after N iterations,
all reported side channels are A1 ∪A2 ∪·· ·∪AN .

One challenge of the iterative approach is to model “re-
placed” nodes and incorporate them into the quantification
algorithm (Section 4.3.1). To do so, we first observe that side
channels of Transport Layer Protocols are typically mitigated
by adding noise [6]. Compared to completely removing a side
channel by unifying outcomes of a sensitive branch (e.g., en-
suring that a packet is always sent whichever branch is taken),
injecting noise is more suitable (though less secure) since im-
plementations of Transport Layer Protocols must obey their
protocol specifications (e.g., RFC 793).

For example, consider the code snippets in Figure 7 where
the code on the top (from Linux 3.19) has a side chan-
nel at line 5. The reason is that variable challenge_count
is tainted by sensitive information: the number of times
that ++challenge_count is executed reveals a sensitive
host state (expected sequence number). Hence, by ob-
serving the absence of an acknowledgement packet when
challenge_count reaches the limit, an attacker reveals sensi-
tive host state. The code at bottom (from Linux 4.8) mitigates
the side channel by resetting challenge_count to a random
number instead of 0 at line 6 (we omit the details on the spe-
cific random number for simplicity). Therefore, observing
the absence of an acknowledgement packet only reveals the
fact that the random counter reaches 0 after it is decreased by



tcp_reset(sk)
tcp_send_

challenge_ack
(sk)

TCP_SKB_CB(skb)->seq == tp->rcv_nxt

∅ tcp_send_ack
(sk)

++challenge_count <= 
    sysctl_tcp_challenge_ack_limit

…

…

tcp_reset(sk)
tcp_send_

challenge_ack
(sk)

TCP_SKB_CB(skb)->seq == tp->rcv_nxt

∅

*
tcp_send_ack

(sk)

++challenge_count <= 
    sysctl_tcp_challenge_ack_limit

…

…

(0, 0, 1)

(0, 1, 0) (0, 0, 1)

(0, 1, 0)

(0.5, 0.5, 0)

(0.5, 0.5, 0)(0, 1, 0)

(0.25, 0.75, 0)

Fix

Figure 8: Simplified τCFG before and after the top-ranked crit-
ical branch is replaced by wildcard node. The blue triple rep-
resents the probability of reaching sink node tcp_send_ack,
absence node /0, and wildcard node * respectively.

one in each execution of tcp_send_challenge_ack. Hence,
it no longer reveals the sensitive host state. It is worth men-
tioning that such randomization-based mitigation are very
common, and there has been similar mitigation in FreeBSD.

To model such replaced/fixed branches, we note that the
replaced code neither calls sink function tcp_send_ack(sk)
100% of the time nor skips the call (i.e., reach absence node /0)
100% of the time. Although there is uncertainty on which sink
will be reached, the uncertainty is due to randomness rather
than public or secret inputs. To reflect this observation, we
introduce a special sink node called wildcard node, denoted by
∗ and replace each replaced node with a wildcard node. Most
rules of Definition 4 remain the same with a wildcard node.
The only change is that we redefine successors of a node to
exclude nodes that surely reach wildcard node, i.e., succ∗(v)=
{i | i ∈ succ(v)∧ P(i,∗) ̸= 1} and use succ∗(v) instead of
succ(v) in Definition 4, as well as include an additional rule
in case all successors are * nodes.

P(u,∗) = 1 if succ∗(u) is empty
P(u,v) = 0 if succ∗(u) is empty∧ v ̸= ∗

The special rules of handling wildcard nodes are motivated
by the randomness introduced to each replaced node, e.g., a
uniform distribution on reaching all normal sink nodes by the
injected noise. Therefore, its distribution does not contribute
to its parent unless all of its siblings are also wildcard nodes.

Example. Consider a simplified τCFG of the vulnerable
code in Linux 3.19 shown on the left of Figure 8. Based
on the revised algorithm above that handles wildcard node,
we can compute the probability of reaching each sink as the
blue triple attached to each node. Since there is no wildcard

node, the distributions are identical to the ones according
to Definition 4. Since the lower red node has the maximum
leakage of 1, Athena reports it and replaces it with a wildcard
node as shown on the right of Figure 8.

In the revised graph, the wildcard node, say node A, has
P(A,∗) = 1 as it is a wildcard node (case 1 of Definition 4).
Hence, the leakage of the wildcard node is 0 according to
Definition 2. The interesting case is the leakage of the nodes
above it. The parent of node A, say node B, has no successors
according to the revised successor definition succ∗. Hence,
P(B,∗) = 1 and P(B,v) = 0 for other nodes. For the top red
node, say node C, succ∗(C) only contains its left child. Hence,
by Definition 2 with succ∗ instead of succ, node C inherits the
distribution from its left child, as shown in the figure, resulting
in a leakage of 0. Therefore, there is no more side channels
in the replaced τCFG on the right. The intuition behind why
nodes that 100% reach wildcard node are excluded in the
computation is that such nodes can cast to any distribution,
such as the triple (0,1,0) on the left child of node C, meaning
that the probability that reaching sink node tcp_send_ack,
absence node /0, and wildcard node * are 0%, 100% and 0%
respectively. Hence, the combined distribution is the same as
simply excluding the casted distributions.

4.4 Categorizing Side Channels

Next, we categorize the detected side channels based on
(1) the packet handler function being called, and (2) the
distinct reachable sink nodes, to gain a better understand-
ing of the detected side channels. In particular, the TCP re-
ceive routine invokes one of the several packet handler func-
tions w.r.t. the state of the current connection. For example,
tcp_rcv_established() handles incoming packets when
the connection is in the ESTABLISHED state. By tracking
which function is called along the control-flow path, Athena
outputs the TCP state required for triggering the side chan-
nel. For UDP, the results are categorized based on the initial
packet handler function called (udp_rcv() or udp_err()).

To compute the distinct reachable sink nodes, recall that
in the process of entropy calculation, we also keep track of
the probability that a critical branch reaches one of the sinks
(or does not reach the sinks at all). For example, if a branch-
ing block has 0.5 probability to reach tcp_send_ack(), and
another 0.5 probability of reaching the absence sink, then
an attacker learn sensitive data by observing two different
outputs: Immediate ACK vs NULL.

5 Implementation

In this section, we briefly discuss the implementation details
of the main components of Athena.

Static taint analysis. We implemented the static taint analysis
toolchain in C++ within the LLVM framework. The toolchain



is inherited from PIDGIN [18], which is built on top of a
summary-based points-to analysis, DSA [20]. Our extension
to the original implementation consists of ∼3K LOC. With
context-sensitivity, we perform inter-procedural information
flow analysis to find out the branches tainted by the sensitive
sources. For soundness, both explicit and implicit flows are
analyzed. The branches help us annotate the program’s CFG,
producing the τCFG discussed in Section 4.2. We also add an
edge from each non-sink node without any outgoing edge to
a special absence node /0.

Leakage analyzer and leakage mitigator. The leakage ana-
lyzer and the leakage mitigator are written in Python together
as a combined component. In a nutshell, this component reads
the original τCFG or τCFG from the previous iteration and
performs ranking and replacement according to the methods
in Section 4.3.1 and Section 4.3.2. The leakage analyzer calcu-
lates each node’s entropy and leakage in a bottom-up fashion
through graph search. Once each node’s entropy is computed,
it reports the top-ranked branches with the highest leakage.
These identified branches are then processed with the leakage
mitigator to generate the τCFG with wildcard nodes. Athena
iterates over these steps until there are no more side channels.

Rule-based classifier. After retrieving the finalized list of
top-ranked branches from the previous steps, we use a rule-
based classifier written in Python to categorize the nature of
the side channels. The algorithm extracts control-flow paths
from τCFG and examines their target source code, to check
1) which sinks will the critical branches lead to, and 2) what
system state would be needed to trigger the critical branches.

6 Evaluation

We evaluate Athena with several implementations of
TCP/UDP IPv4, including Linux 3.19 and 4.84, FreeBSD
13.2, OpenBSD 7.45, as well as two open-source implementa-
tions named microps [24] and picotcp [31].

• Reduction: Can entropy-based rank-and-replace ap-
proach significantly reduce the number of reported side
channels?

• Efficacy: Can Athena detect all known side channels
and uncover new side channels in the TCP and UDP
implementations being analyzed?

• Precision: How many of side channels reported by
Athena are false positives?

• Performance: Does Athena scale to the full implemen-
tations of TCP and UDP?

4Due to the limitation of the points-to analysis DSA used by PIDGIN,
the latest Linux version we can analyze by a compatible LLVM is 4.8. We
present the results of 3.19 and 4.8 in this section and discuss the number of
vulnerabilities remaining in the latest Linux kernel in Section 6.6.

5The latest product release.

# tainted # critical # reported
branches branches branches

Linux/TCP (Advu) 1651 185 6
Linux/TCP (Adva) 1651 528 5
Linux/UDP (Advu) 572 59 3
Linux/UDP (Adva) 572 354 3
FreeBSD/TCP (Advu) 843 199 10
FreeBSD/UDP (Advu) 310 28 1
OpenBSD/TCP (Advu) 751 173 10
OpenBSD/UDP (Advu) 302 27 1
microps 204 35 2
picotcp 505 75 1

Table 1: Reported branches by various strategies.

• Exploitablity: For the detected side channels, how fea-
sible is it to exploit them to launch real-world attacks?

6.1 Evaluation Setup
Sources and sinks of interest. As discussed in Section
4.1, we marked several sources and sinks in our analysis.
In Linux, we mark the struct sock variable sk (tcp_input.c:
L1593) as the source in the TCP protocol, tcp_send_ack() and
tcp_send_delayed_ack() as sinks (for unaided attacker model
Advu), tcp_send_challenge_ack() and tcp_send_dupack() as
sinks (for aided attacker model Adva). For UDP, we mark
the struct udp_table variable udp_table (udp.c: L117)
as the source, icmp_send(), ipv4_sk_update_pmtu(),
ipv4_sk_redirect(), UDP_STATS_INC_BH as sinks.

Sources and sinks in FreeBSD and OpenBSD are sim-
ilar to those in Linux. We mark the struct tcpcb variable
tp (tcp_input.c: L611) as the source, tcp_output() and
tcp_response() as the sink. For UDP, we mark the struct
inpcbinfo variable pcbinfo as a sink, and icmp_error() as
a sink function. In BSD systems, the local counters are not ex-
posed to unprivileged processes, and therefore the aided threat
model Adva is not applicable for FreeBSD and OpenBSD.

In the open source implementations, we mark the equiva-
lent structures tcp_pcb pcb (microps) and pico_tcp_hdr
hdr (picotcp) as sources, and the function tcp_send() as the
sink.

6.2 Reduction
To evaluate the effectiveness of the iterative rank-and-replace
approach of Athena, we compare it with two plausible solu-
tions that report (1) all tainted branches, and (2) all critical
branches (see Definition 1) to further demonstrate how much
reduction (in terms of # reported sensitive branches) does
Athena achieve. The result is summarized in Table 1.

In the Linux TCP module, there are 1651 tainted branches
in both threat models. The total tainted branches are the same
as the two settings only differ in their sink functions. By count-
ing only the critical branches (i.e., the ones that at least reach
two distinct sinks, including the absence sink), the number



of suspicious branches drops to 185 (88.7% drop) and 528
(68.0% drop) in the Advu and Adva settings, respectively. Fi-
nally, Athena only reports 6 (99.6% drop) and 5 (99.7% drop)
most important branches responsible for all side channels in
the analyzed code. In the Linux UDP module, the reduction
rate is also significant. We see reduction rates of 88.8% (under
Advu setting) and 32.7% (Adva) when using critical branches,
and reduction rates of 99.3% (Advu) and 99.4% (Adva) by
counting only the most critical ones.

In the FreeBSD modules, Athena shows a similar reduction
rate (recall that only the unaided threat model is applicable
for FreeBSD). There are 843 tainted branches in TCP, which
are reduced to 199 (76.3% drop) and finally, 10 are reported
(98.8% drop). In UDP, 310 tainted branches are reduced to
28 (91.0% drop) and finally only 1 is reported (99.7% drop).

Similarly, 751 (resp. 302) tainted branches are reduced to
173 (resp. 27) in OpenBSD TCP (resp. OpenBSD UDP) –
for a 77.0% drop (resp. 91.1% drop). On the open source
implementations, Athena has reduction rates of 82.8% (204
to 35, microps) and 85.1% (505 to 75, picotcp) in terms of
critical branches. By counting only the most critical ones, the
reduction rates are 99.0% (204 to 2, microps) and 99.8% (505
to 1, picotcp).

It is worth noting that the non-reported critical branches are
either removed while replacing the reported ones, or reported
and replaced in later iterations. Since our algorithm only ter-
minates when there are no more reported critical branches
left, it soundly detects all side channels per our threat model.
We further discuss the precision of Athena in Section 6.4.

6.3 Efficacy
Next, we evaluate Athena’s efficacy of identifying side chan-
nels by answering whether Athena can (1) detect existing side
channels (under the same threat model as ours) that were man-
ually identified by prior work [6, 22, 23, 26]; and (2) uncover
new ones. Table 2 and 3 show the side channels in all bench-
marks, reported by prior work under the same threat models
(as described in Section 3.1, marked in yellow). Athena suc-
cessfully reported all side channels in those works. We note
that [7] reports 6 more side channels (entries 6-C, 7-C, 8-
C and 9-B, 10-B, 11-B in the Table 3 of [7]), which were
not identified by Athena. We manually verified that these re-
ported branches do not exist in the Linux kernel code base that
we have analyzed. We also searched for them in the GitHub
repository associated with the paper6, but we still did not find
those branches or similar branches in the repository.

Other than those 6 entries that we confirmed to be absent
in the Linux code base, Athena fully covers all other previ-
ously reported side channels [6, 7, 22, 23, 25, 26] in Linux and
FreeBSD; it also uncovers new side channels because of more
complete source code coverage. We further analyze those new
side channels in Section 6.6.

6https://github.com/seclab-ucr/SCENT.

6.4 Precision
Next, we evaluate the precision of Athena’s reported side
channels. For this, we count the number of branches which
are true positives (i.e., their branch outcomes depend on the
sources) among the reported most critical sensitive branches.

As shown in Table 2 and Table 3, Athena reports 42 side
channels in 5 transport layer protocol implementations. Af-
ter manual investigation, we found that 5 out of the 42 side
channels are false positives (the red entries in both tables)
due to the imprecision of our static taint analysis. The root
cause of the false positives is originated from the underlying
points-to analysis used by Athena. In some cases, the points-
to analysis falsely links data structures of inconsistent types
to the same alias, resulting in a field-insensitive taint of cer-
tain objects. For example, entry 2 in Table 2 reports a branch
if (th->ack), which checks the ack flag of an incoming
packet’s header. Although the structure th is derived from
a non-sensitive field in a sock structure, it is tainted as the
points-to analysis is unable to differentiate sensitive fields
from non-sensitive fields in the sock structure. We manually
confirmed that all 5 false positives have the same root cause
in the points-to analysis.

The remaining side channels are all true positives, which
include 7 that were reported in prior works, and 30 remaining
ones newly identified by Athena.

6.5 Performance

Running time.. On a commodity desktop computer with a
3.8GHz 8-core CPU and 32GB of RAM, Athena takes 12
minutes (7 minutes on static taint analysis and 5 minutes on
graph search) and 5 minutes (2 minutes on static taint analysis
and 3 minutes on graph search) for the Linux TCP and UDP
modules. For the FreeBSD’s and OpenBSD’s TCP and UDP
modules, it takes 9 minutes (6 minutes on static taint analysis
and 3 minutes on graph searching) and 3 minutes (2 minutes
on static taint analysis and 1 minute on graph searching)
respectively. The analysis takes less than 1 minute on the
open-source implementations microps [24] and picotcp [31].

Code coverage.. Athena covers 15,020 and 7,436 LoC of
Linux v3.19 TCP/UDP implementations, 11,507 and 4,120
LoC of FreeBSD 13.2 TCP/UDP implementations, 10,068
and 2,503 Loc of OpenBSD 7.4 TCP/UDP implementations,
3,498 LoC of microps and 5,678 LoC of picotcp, respectively.
We did not analyze the whole TCP module of Linux and BSDs
since the rest of the code is unreachable from the input/receive
functions, the entry functions of our analysis.

6.6 Exploitability of Reported Side Channels
Tables 2 and 3 show the violations that Athena found in
the TCP and UDP implementations. Athena discovered 37
true positives in total. Based on the criteria we described in



Index System Critical branch Iteration Triggering state Different outputs

1

Linux
(Advu)

if (((tp->rcv_nxt - tp->rcv_wup) >
inet_csk(sk)->icsk_ack.rcv_mss &&
__tcp_select_window(sk) >= tp->rcv_wnd) ||
tcp_in_quickack_mode(sk) ||
(ofo_possible && skb_peek(&tp->out_of_order_queue)))

1 Any non-closing
Immediate ACK vs

Delayed ACK

2 if (th->ack) 2 SYN-SENT ACK pkt vs NULL

3 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 2 ESTABLISHED ACK pkt vs NULL

4 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) 3 Any non-closing ACK pkt vs NULL
5 case TCP_FIN_WAIT1 3 ESTABLISHED ACK pkt vs NULL
6 case TCP_FIN_WAIT2 3 ESTABLISHED ACK pkt vs NULL

7

Linux
(Adva)

if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq,
TCP_SKB_CB(skb)->end_seq)) 1 ESTABLISHED

Local counter
update vs NULL

8
if (TCP_SKB_CB(skb)-end_seq !=

TCP_SKB_CB(skb)->seq
before(TCP_SKB_CB(skb)->seq, tp-rcv_nxt))

1 ESTABLISHED
Local counter

update vs NULL

9 if (++challenge_count <=
sysctl_tcp_challenge_ack_limit) 1 ESTABLISHED

Local counter
update vs NULL

10 if (before(ack, prior_snd_una - tp->max_window)) 1 ESTABLISHED
Local counter

update vs NULL

11 if (!tcp_validate_incoming(sk, skb, th, 1)) 1 ESTABLISHED
Local counter

update vs NULL
12

FreeBSD
(Advu)

if (needoutput || (tp->t_flags & TF_ACKNOW)) 1 Any non-closing TCP pkt vs NULL
13 if (th->th_ack != tp->snd_una) 1 LAST-ACK TCP pkt vs NULL
14 if (DELAY_ACK(tp, tlen)) 1 Any non-closing TCP pkt vs NULL
15 if (tp->snd_una == tp->snd_max) 1 Any non-closing TCP pkt vs NULL
16 if (avail > 0 || tp->t_flags & TF_ACKNOW) 1 LAST-ACK TCP pkt vs NULL
17 if (SEQ_GT(onxt , tp->snd_nxt)) 1 LAST-ACK TCP pkt vs NULL

18
if (tp->t_state == TCPS_SYN_RECEIVED &&

(thflags & TH_ACK) && (SEQ_GT(tp->snd_una , th->th_ack)
|| SEQ_GT(th->th_ack , tp->snd_max)) )

1 SYN-RCVD ACK pkt vs NULL

19 if (SEQ_LT(th->th_ack , tp->snd_recover)) 2 Any non-closing TCP pkt vs NULL
20 if (pps > 0) 1 SYN-RCVD TCP pkt vs NULL

21 if (V_tcp_insecure_rst || tp->last_ack_sent
== th->th_seq) 1

Except LISTEN/
SYS-SENT

ACK pkt vs NULL

22

OpenBSD
(Advu)

if (so->so_snd.sb_cc || tp->t_flags & TF_NEEDOUTPUT) 1 Any non-closing TCP pkt vs NULL
23 if (tp->t_flags (TF_ACKNOW|TF_NEEDOUTPUT)) 1 Any non-closing TCP pkt vs NULL
24 if (SEQ_LT(th->th_ack , tp->snd_last)) 1 Any non-closing TCP pkt vs NULL
25 if (tp->t_flags (TF_ACKNOW|TF_NEEDOUTPUT)) 1 FIN TCP pkt vs NULL
26 if (SEQ_LT(th->th_ack , tp->snd_last)) 1 LAST-ACK TCP pkt vs NULL
27 case TCPS_TIME_WAIT 2 TIME-WAIT TCP pkt vs NULL
28 case TCPS_LAST_ACK 2 LAST-ACK TCP pkt vs NULL
29 if (tp->t_flags & TF_ACKNOW) 3 SYN-RCVD TCP pkt vs NULL
30 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) 1 ESTABLISHED TCP pkt vs NULL

31 if (opti.ts_present && (tiflags & TH_RST) == 0
&& tp->ts_recent && TSTMP_LT(opti.ts_val , tp->ts_recent)) 1

Except LISTEN/
SYN-SENT

TCP pkt vs NULL

32
microps

if (seg->ack <= pcb->iss || seg->ack > pcb->snd.nxt) 1 SYN-SENT RST pkt vs NULL
33 if (!acceptable) 1 TIME-WAIT ACK pkt vs NULL

34 picotcp if ((t->cwnd >= t->in_flight) &&
(t->snd_nxt > t->snd_last_out)) 1 Any non-closing RST pkt vs NULL

Table 2: Reported Branches on TCP. No color: new positives, Yellow: previously reported positives, Red: False positives



Index System Critical branch Iteration Different outputs
1

Linux (Advu)
if (fib_lookup(dev_net(dst->dev), fl4, res) == 0) 1 PMTU update vs NULL

2 if (fib_lookup(net, fl4, res) == 0) 2 Gateway update vs NULL
3 if (sk != NULL) 3 ICMP pkt vs NULL
4

Linux (Adva)
if (count) 4 Local counter update vs NULL

5 if (count) 5 Local counter update vs NULL
6 if (sk != NULL) 6 Local counter update vs NULL
7 FreeBSD (Advu) if (rc == -ENOMEM) 7 ICMP pkt vs NULL
8 OpenBSD (Advu) if (inp == NULL) 8 ICMP pkt vs NULL

Table 3: Reported Branches on UDP. No color: new positives, Yellow: previously reported positives, Red: False positives

Section 4.4, the reported positives can be categorized into 3
classes, which shed light on their exploitability.

Exploitable under unaided off-path attacker model.: Side
channels 4, 20 in Table 2 and side channels 3, 7, 8 in
Table 3 are caused by certain global rate limits on out-
going packets. In Linux, there are two frequently used
global rate limits: sysctl_tcp_challenge_ack_limit and
sysctl_icmp_msgs_burst (V_icmp_rates is the equiva-
lent in BSD systems). Prior work has exploited these limits
for remote attackers to infer whether a port is in use [22],
or whether a guessed ACK number is correct [6] by sending
spoofed packets and observe the response from the victim sys-
tem. Side channel 8 in Table 3 is newly discovered by Athena.
It is very similar to the reported ones in Linux (side channel 3)
and FreeBSD (side channel 7), and it can be exploited using a
similar attack. For the previously reported TCP side channels
in Linux and FreeBSD (side channels 4 and 20 respectively
in Table 2), no equivalent side channel exists in OpenBSD.

Side channels 1 and 2 in Table 3 involve changes in the
routing table, specifically the Path MTU and gateway address
for certain hosts. Both the global rate limits aforementioned
and the routing table affect whether an outgoing packet (TCP
or ICMP) would be sent. Prior work has shown a remote two-
stage attack that infers UDP port number without observing
the direct responses from the victim system [23]. No equiva-
lent side channels are found in FreeBSD and OpenBSD.

Exploitable under aided off-path attacker model.: Side
channels 7-11 in Table 2 and 5 in Table 3 are induced by the
sink netstat counter that Linux maintains for diagnostic and
statistical propose. When a certain operation is executed, the
system increments one of these non-decreasing counters, and
moreover, the value of the counter is shared globally across
all users and processes on the host machine. Furthermore, the
file that contains the netstat counters (under /proc/net)
is set to be readable by all users (i.e., has the -r--r--r--
permission on Linux). This allows even an unprivileged mali-
cious process (similar to the one in the aided off-path attacker
model Adva described in Section 3.1) to be able to observe if
such an operation is performed. All the side channels in this
category can be exploited by constantly checking the corre-
sponding local counter. A proof-of-concept attack covering

all such side-channels is described in Section 6.7. Since BSD
systems do not maintain a publicly visible set of statistical
counters, the equivalent side channels are not found.

Uncertain exploitability.: It is uncertain whether the remain-
ing side channels can lead to exploitable in practice, but most
of them do exhibit possible vulnerabilities. Side channels 1,
14, 23, 25, and 29 in Table 2 are associated with a TCP socket-
specific option quick_ack, which controls whether to send a
response ACK packet immediately. If an adversary is able to
measure the response time of certain crafted packets and filter
out network noise, they may reveal SEQ numbers.

Side channels 5, 6, 13, 16, 17, 27, 28 and 33 in Table 2
involve branches that trigger a system state transition into a
closing state. Since the transition from an active state into a
closing state in TCP is one-way, an attacker cannot learn infor-
mation about the active connections. However, if the attacker
can also control system-level processes that can prevent the
connection from actually closing (i.e., staying in the state for
a long time), they may exploit these branches. We leave a
more thorough study of these side channels as future work.

Results on different Linux versions.: Athena analyzed both
Linux 3.19 and 4.8, and the results of the latter are mostly the
same as 3.19, except for a minor branch condition change and
randomness-based mitigation for side channel 4 in Table 2.

In addition, we manually checked the source code of the
most recent Linux kernel (v6.4.0, as of July 2023) to verify
the number of the vulnerabilities reported by Athena are still
present in the latest version of the Linux kernel. We found
that 12 out of 14 vulnerabilities reported by Athena are still
present in the latest version. The exceptions are side channels
1 and 3 in Table 3. The reason is that the code in the latest
version has been rewritten and the problematic branches are
removed. It is also worth mentioning that the critical branch
of side channel 2 in Table 3 has slightly different conditions
in the latest version. However, the side channel still persists.

6.7 A Sample Proof-of-Concept Attack
In this section, we show a Proof-of-Concept (PoC) attack
based on side channel 9 in Table 2. The attack flow is shown
in Figure 9 where we have a victim server S, a victim client
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Figure 9: The flow of the PoC attack

C, and an attacker A. In line with previous work [26], we
assume that the victim server and victim client have an active
TCP connection (in ESTABLISHED state) and Attacker A
controls an unprivileged process on S.

Attack Steps.: (1) The attacker A reads the file
/net/proc/netstat (readable to all processes) on S through
the controlled process. The attacker thus monitors the value
of the field TCPChallengeACK. (2) The attacker then sends a
spoofed RST packet to the server S, with client C’s IP address,
correct port numbers (the port used for the connection), and a
guessed sequence number. (3) The attacker checks whether
the monitored value of TCPChallengeACK has increased. If
so, she can infer that the previously guessed number is in-
window. Otherwise, the guessed number is far from the true
sequence number. (4) If the guessed number is not in-window,
the attacker repeats step 2.

Experimental results.: We have implemented and tested this
PoC attack on a Debian 10-based machine with 100 attempts.
In each attempt, the attacker starts with a random guess and
then adjusts the guess depending on the outcome of each
step. The PoC attack succeeds 69 out of 100 attempts where
the failures are due to time-outs when the guessed sequence
numbers are all far from the true sequence number. It takes
an average of 4.2 seconds when the attack succeeds.

7 Related Work

Side-channel detection.. The most related works are
SCENT [7] and the work by Ensafi et al. [12] as they also
target side channels in transport layer protocols. They are both
built on model checking, a form of static analysis that is likely
to be more precise than static taint analysis and CFG-based
analysis. For instance, model checking is immune to unreach-
able code and infeasible execution paths in CFG. However,
the very precision also comes with a cost as they are unable to
analyze the full vanilla implementations of TCP and UDP and
suffer from long running time due to scalability limitation of
model checking and inherent coverage limitation of bounded
model checking. Moreover, they are unable to diagnose the
root cause of the side channels, such as why the side chan-
nels exist, when they can be triggered, and how they can be
observed by an attacker. In contrast, Athena trades precision
for efficiency and full code coverage. Moreover, it automati-

cally ranks side channels according to their importance and
provides an informative report on each detected side channel.

Detecting secret-dependent branches is a common practice
in identifying timing side channels in programs. For example,
cryptographic libraries follow constant-time programming
paradigm [3] to rule out timing side channels. Essentially, the
constant-time programming paradigm prohibits both control-
flow paths and memory-access patterns from depending on
program secrets. Hence, information flow analysis can be
used to detect both branch conditions (the same as tainted
branches in this paper) and memory access addresses that are
tainted by secrets [5, 32, 34]. However, as shown in Table 1,
simply reporting tainted branches is infeasible for detecting
side channels of transport layer protocols; Athena success-
fully reduces the reported tainted branches from thousands to
a single digit number.

TCP side-channel attacks.. TCP side channels have been
widely studied in the literature. Researchers have shown that
various globally shared resources could be exploited as side
channels to reveal secrets in TCP connections, such as IPID
[13, 14], challenge ACK limit [6, 7], SYN-backlog [7] and
local netstat counters [26]. The leakage of such connection
secrets may grant attackers the capability to learn information
about, or even manipulate, the victim’s connection. Prior work
has also shown that an attacker may utilize these side channels
to scan idle ports [12], infer the existence of connection [6],
count packets in transmission [19], measure round-trip-time
[1, 33], detect intentional packet drop [11], and even hijack
the connection [6, 9, 16, 25].

UDP side-channel attacks.. UDP side-channel attacks
mainly target application-layer programs, particularly the Do-
main Name System (DNS). Several studies have exposed
various vulnerabilities due to side channels in UDP, such as
the works by Man et al. [22, 23]. SADDNS [22] discovered
that the global ICMP rate limit, which was implemented to
minimize bandwidth usage, forwarding costs, and mitigate the
possibility of ICMP flooding attacks [4, 8], may be exploited
by malicious attackers to infer the port numbers utilized by
UDP-based services. With the revealed port number, an at-
tacker could launch more powerful attacks, such as a DNS
cache poisoning attack. In addition, another study by Man et
al. [23] demonstrated yet another ICMP-based side channel
that permits attackers to infer the UDP port number by forging
ICMP error messages with an embedded UDP header, which
enables the attacker to alter the host’s routing table.

8 Discussion and Future Work

Limitations of the static analysis. There are several approxi-
mations in the static analysis of our approach. We discuss the
impact of each next.

• Field-sensitivity issues in the current version of the
points-to analysis have negative impacts on precision



(exemplified in Section 6.4). While the empirical study
shows that the resulting implementation produces a low
false-positive rate for TCP/UDP code we have analyzed,
this might not be the case for other implementations. For
example, the use of complex data structures and union
types usually downgrade analysis precision as they are
challenging for sound points-to analyses. So Athena
might have more false positives when the program has
frequent use of those features.

• For the soundness of our analysis, Athena taints the loop
head whenever there is a tainted branch in the loop on
backward edge removal (Section 4.3.1). However, doing
so may over-taint call paths, which leads to an over-
approximation of critical branches and hence, imprecise
branch possibilities/entropy computation. Athena’s ap-
proach of removing backward edges does not result in
any false negatives in the TCP/UDP implementations
being analyzed, but it remains an open question of how
to remove backward edges in a both sound and precise
manner beyond those implementations.

• The uniform distribution assumption on branch out-
comes might deviate from the ground-truth distribution
of branch outcomes. Take an example of a branch leading
to both a sink node and an absence node. If there is prac-
tically 75% chance of reaching the sink, then the branch
has 0.811 entropy. Meanwhile, the uniform assumption
would approximate the branch to have 1 entropy, thus
resulting in different entropy values of the branch. But
we note that the change in entropy values may or may
not change the overall ranking of critical branches. More-
over, a change in the ranking only affects the quality of
reports (i.e., the number of top-ranked positives in each
iteration and how many iterations Athena takes until ter-
mination). The uniform distribution assumption will not
lead to false negatives.

Generalizability of Athena. While we present the instanti-
ations of Athena exclusively in TCP/UDP implementations,
our insight and algorithm are general and they can be ap-
plied to other network protocols, and even other scenarios
with some extra effort. We believe that the workflow of the
analysis would remain the same for other scenarios, though
extra domain knowledge is needed. One example is manual
specification of sources and sinks. For TCP/UDP implementa-
tions, such manual efforts are relatively low since the sources
are usually specified in TCP/UDP standards (e.g., RFCs) and
attack papers, and the sinks are specified by the threat model.
However, the task of identifying sources and sinks may not
be as easy for other scenarios as it may require domain ex-
pertises. In addition, one also needs domain knowledge to
understand the severity and the exploitability (e.g., what could
be the potentially different outputs) of reported side channels.
Moreover, as discussed earlier, several approximations in the

static analysis of our approach might turn out to be problem-
atic for other scenarios. For example, some coding styles with
intensive use of pointer arithmetic, design of complex data
structures, and different memory allocation strategies might
have negative impacts on analysis precision. In such cases,
fine-turning the static analysis used by Athena is required to
achieve a low false-positive rate.

Responsible disclosure.. We have reported our findings to
the Linux, FreeBSD, and OpenBSD community.

9 Conclusion

This paper presents Athena, an automated tool for developers
to detect side-channel vulnerabilities in vanilla implementa-
tions of TCP and UDP. Additionally, an automated diagnostic
mechanism is developed to rank these vulnerabilities accord-
ing to their importance, and further, pinpoint their origins.
We evaluate Athena on several TCP and UDP implemen-
tations including Linux, FreeBSD and OpenBSD kernels;
Athena successfully detects both previously reported side-
channel vulnerabilities and new vulnerabilities within our
threat model, with a low false positive rate. In the future, we
plan to address the limitations of our static analysis, extend
our approach to other protocols, such as QUIC, as well as
more general scenarios, such as network traffic analysis.
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