
Logic Gone Astray: A Security Analysis Framework for the
Control Plane Protocols of 5G Basebands

Kai Tu, Abdullah Al Ishtiaq, Syed Md Mukit Rashid
Yilu Dong, Weixuan Wang, Tianwei Wu, Syed Rafiul Hussain

Pennsylvania State University
{kjt5562, abdullah.ishtiaq, szr5848, yiludong, wjw5351, tvw5452, hussain1}@psu.edu

Abstract
We develop 5GBaseChecker— an efficient, scalable, and

dynamic security analysis framework based on differential
testing for analyzing 5G basebands’ control plane protocol
interactions. 5GBaseChecker first captures basebands’ pro-
tocol behaviors as a finite state machine (FSM) through black-
box automata learning. To facilitate efficient learning and im-
prove scalability, 5GBaseChecker introduces novel hybrid
and collaborative learning techniques. 5GBaseChecker then
identifies input sequences for which the extracted FSMs pro-
vide deviating outputs. Finally, 5GBaseChecker leverages
these deviations to efficiently identify the security proper-
ties from specifications and use those to triage if the devia-
tions found in 5G basebands violate any properties. We eval-
uated 5GBaseChecker with 17 commercial 5G basebands
and 2 open-source UE implementations and uncovered 22
implementation-level issues, including 13 exploitable vulner-
abilities and 2 interoperability issues.

1 Introduction

5G devices are pivotal in unlocking the full potential of 5G
cellular system’s unique features— secure, faster, massive,
and ultra-reliable low-latency data communications. These
features, powered by significant paradigm shifts across all lay-
ers of cellular systems from previous generations of cellular
networks, have enabled a plethora of new services, including
mobile broadband, augmented reality, and mission-critical ser-
vices, including public safety and emergency responses. The
security of these services critically hinges on the security of
5G devices, also known as modems or basebands. Therefore,
5G baseband implementations must satisfy the security and
privacy requirements mandated by the specifications. Failure
to satisfy these requirements may result in compromised de-
vices, which often serve as entry points for more catastrophic
attacks on broader systems relying on 5G technology, such as
healthcare and transportation. Also, the global nature of 5G
supply chains further emphasizes the need for robust security,

as vulnerabilities introduced at any point in the manufacturing
process of 5G devices can have far-reaching consequences.
However, due to the extensive volume, complexity, and am-
biguities of 5G specifications, achieving an error-free and
secure implementation remains a formidable challenge. Since
manually analyzing large and complex implementations of
5G basebands is error-prone and time-consuming, we aim to
develop an automated technique to reason about the security
and privacy of 5G baseband implementations.

Only a handful of approaches [15, 58] have attempted
so far to analyze 5G basebands. A majority of them, how-
ever, merely extend the black-box-based testing schemes de-
veloped for analyzing previous generations of cellular de-
vices [15, 42, 44, 50, 51, 53, 54, 58]. Among those, some ap-
proaches [15, 51, 53, 58] follow semi-automated techniques,
i.e., they manually design test cases by reading the specifi-
cations, whereas some others [50] require a reference state
machine as a testing oracle to detect logical bugs leading
to security flaws. Manually designing test cases is, how-
ever, laborious, error-prone, and ineffective in testing a broad
range of security-critical behaviors of complex 5G basebands.
Nonetheless, the lack of a reference state machine by the
cellular standard body, i.e., the Third Generation Partnership
Project (3GPP) [1], necessitates the manual construction of
an oracle in most prior works, a process that is also both
time-consuming and prone to errors. Contrary to black-box
schemes, reverse engineering-based analysis [31, 43, 45] re-
quires an enormous manual effort and expertise that cannot be
easily transferred to the devices of other models and vendors.
This leaves the massive and ubiquitous deployments of 5G
devices largely untested and potentially vulnerable.

In this paper, we, therefore, aim to improve the sub-
optimal state of the existing works and develop a scalable
and automated black-box security analysis technique dubbed
5GBaseChecker. We design 5GBaseChecker based on au-
tomata learning and differential testing principles and thus
obviates constructing hand-crafted test cases or capturing
reference state machines. Performing security analysis in a
black-box fashion makes 5GBaseChecker agnostic to the

basebands’ internal details and underlying microprocessor
architecture, and thus makes this framework flexible to be
used across different models and vendors of 5G basebands.

At a high level, 5GBaseChecker employs differential test-
ing, in which if two basebands produce two different output
sequences for the same input sequence, one of them may vio-
late the security specifications, with the specific one yet to be
determined. This approach sidesteps the challenge of manu-
ally crafting a reference state machine to serve as an oracle.
Besides, rather than manually crafting or arbitrarily searching
for deviation-inducing input sequences, 5GBaseChecker first
systematically learns the finite state machines (FSMs) of 5G
baseband devices in a black-box manner and then checks for
differences in the extracted FSMs through differential testing.
Finally, 5GBaseChecker uses the deviations as guidance to
extract properties from the specification and automates the
process of analyzing similar deviations. It also eliminates the
need for manually identifying properties prior to testing.

To construct an FSM from 5G baseband implementation,
we develop a novel hybrid and collaborative FSM learn-
ing technique called StateSynth. It combines passive au-
tomata and active automata learning by capitalizing on their
strengths, i.e., the ability to learn from traces without exe-
cuting time-intensive over-the-air queries (passive) and to
explore deeper state space (active), and by mitigating their
limitations, i.e., poor coverage of learning and a prohibitively
high amount of queries and time to construct an FSM. To
achieve this, StateSynth first synthesizes an initial FSM of a
5G baseband using the passive automata learning and uses the
synthesized FSM to bootstrap the active automata learning
phase. This approach helps StateSynth reduce a high number
of queries that would otherwise be required by a standalone
active learning technique.

Although this hybrid FSM learning minimizes queries and
time, still a major challenge for active automata learning is
the time-consuming hypothesis validation stage. During this
stage, the learner requires a large number of equivalence
queries to identify a counterexample, which signifies that
the hypothesis model inferred through learning queries in the
hypothesis construction stage is not equivalent to the System
Under Learning (SUL) and requires further refinement un-
til no counterexample is observed. StateSynth handles this
challenge by introducing collaborative learning that utilizes
the following insight. The basebands from different vendors
follow the same protocol specification; hence, the counterex-
amples observed during other basebands’ FSM learning may
serve as potential counterexamples for the current baseband.
Based on this, StateSynth first checks if the counterexamples
identified for other basebands can be reused for the current
baseband under learning. Thus, by learning from each other’s
counterexamples, StateSynth significantly reduces the total
number of queries to learn complex and large 5G FSMs. Al-
though a few prior works [35, 39] attempted to use automata
learning for analyzing implementations, they suffer from scal-

ability challenges due to their straightforward applications
of active automata learning on the target device. In contrast,
5GBaseChecker’s hybrid and collaborative learning mech-
anism significantly enhances 5GBaseChecker ’s efficiency
and scalability in constructing FSMs for 5G devices.

We also design DevScan, which takes the extracted FSMs
as inputs, pairwise compares them, and identifies unique paths
from the initial state to the state where the deviation happens.
Unlike prior works [35,39], which can only find a small subset
of deviating paths, we propose a graph traversal scheme that
enables DevScan to identify many unique deviating paths and
thus uncover a broader spectrum of potential attack sequences.
Since pairwise comparisons of FSMs generate many devia-
tions, manually triaging them to identify the traces violating
security properties is tedious and error-prone [35, 39, 50]. To
address this challenge, we design DevLyzer, which extracts
security properties by following deviating traces and uses
them to analyze other deviating traces automatically.
Findings. We evaluated 5GBaseChecker with 17 commer-
cial 5G basebands and 2 open-source UE implementations.
We identified 2044 unique deviations, which helped us iden-
tify 45 properties. The identified deviations and properties
led to 22 unique implementation issues, 13 of which can
lead to attacks, and 2 may cause interoperability issues. One
of the most critical issues identified by 5GBaseChecker is
mishandling security headers of particular messages in 5G
devices equipped with Exynos basebands, affecting a majority
of mainstream Samsung and Google Pixel devices. Exploiting
this vulnerability, the attacker can force a victim device to
connect to a fake base station without any authentication. The
fake base station can then inject phishing SMSs and eavesdrop
on the victim’s Internet data.
Contributions. This paper makes the following contributions:
• We design 5GBaseChecker— an automatic, scalable, and

black-box security analysis framework based on differen-
tial testing that automatically infers the FSM of 5G base-
bands and uncovers deviations by comparing them.

• We design hybrid and collaborative FSM learning, which
significantly reduces the overall time for inferring FSMs.

• We develop a differential testing mechanism that takes
FSMs as inputs and automatically finds all unique deviat-
ing traces in those FSMs leading to a specific deviation.

• We design a deviation analyzer to find security properties
corresponding to a deviation and use them to automatically
triage similar deviating traces to aid root cause analysis.

• We evaluated 5GBaseChecker with 19 5G basebands and
found 22 distinct deviations, including 13 exploitable is-
sues and 2 potential interoperability issues.

• We open-source 5GBaseChecker at: https://github.
com/SyNSec-den/5GBaseChecker.

Responsible disclosure. We have reported our findings to
the affected vendors. Until now, 5 CVEs have been assigned,
with 1 high and 4 medium severity ratings. We are currently
cooperating with vendors on patching the affected devices.

https://github.com/SyNSec-den/5GBaseChecker
https://github.com/SyNSec-den/5GBaseChecker

2 Preliminaries

5G standalone (SA) preliminaries. The 5G cellular network
primarily comprises three major components: 5G Core Net-
work (5GC), 5G-NR base station (gNodeB), and User Equip-
ment (UE). The 5G Core (5GC) consists of several Network
Functions (NF), including Access and Mobility Management
Function (AMF), User Plane Function (UPF), and Session
Management Function (SMF) to offer a range of function-
alities, including registration, authentication, mobility man-
agement, and voice and data services. The gNodeBs are base
stations supporting 5G radio technologies using which a gN-
odeB communicates with UEs through the Radio Resource
Control (RRC) protocols in the control plane, relays user
plane traffic to UPF, and Non-Access Stratum (NAS) signal-
ing messages to AMF in 5G Core. The UE is the device, also
known as baseband, that enables network connectivity for end
users, e.g., smartphones or other 5G-capable devices. These
devices include a Subscriber Identity Module (a physical SIM
card or e-SIM) containing the user’s credentials, e.g., user
identifier and cryptographic keys.
Finite state machine. 5GBaseChecker uses Mealy machi-
nes/Finite State Machines (FSM) to abstract 5G UE control
plane protocol implementations. A Mealy machine, M, can be
defined as a 6-tuple, (Q,q0,Σ,Λ,δ,λ). Here, Q is a finite set of
states, q0 ∈Q is the initial state, Σ is the input alphabet, and Λ

is the output alphabet. The transition function δ : Q×Σ→ Q
maps a state and an input symbol to the corresponding next
state, and the output function λ : Q×Σ→ Λ maps a current
state and an input symbol to the corresponding output symbol.
Black-box automata learning. Automata learning infers ab-
stract models of systems based on observable behaviors. The
observation data can either be sourced from logged system
traces or obtained by actively sending (receiving) queries
(responses), leading to two categories — passive [48] and ac-
tive automata learning [12]. Passive automata learning builds
the model based on pre-existing data, such as logs or traces,
which makes it suitable for learning models of systems that
are difficult or impossible to interact with directly. However,
if certain behaviors are not recorded or if the logs are not rep-
resentative of the whole system behavior, the resulting model
can be incomplete or inaccurate. On the other hand, active
automata learning algorithms, such as L* [12], interact with
the SUL to learn a model. The algorithm for active automata
learning usually works in two iterative stages: (i) hypothesis
construction stage where given the input alphabet I (e.g., a,
b, c), the algorithm generates a series of membership queries
(e.g., abb, abc, bcca, aacb, . . .), sends them to the SUL and
builds a hypothesis FSM consistent with input-output pairs
seen so far until the hypothesis FSM is complete and consis-
tent. (ii) model validation stage where the learner will query
an equivalence oracle to check if the current hypothesis FSM
model is identical to the black-box system or not. If identical,
the algorithm terminates. Otherwise, the learner refines the

current FSM hypothesis based on a returned counterexample
(CE). Note that ideal equivalence oracles are not available in
most cases. However, it is possible to approximate an equiv-
alence query by using a sequence of carefully constructed
membership queries [21, 41]. In this work, we refer to these
queries as equivalence queries.

3 Overview of 5GBaseChecker

3.1 Problem Statement
The overarching goal of 5GBaseChecker is to uncover secu-
rity and privacy flaws in 5G standalone (SA) UE implementa-
tions. For this, given a set of basebands B = {B1,B2, . . . ,Bn},
a set of input symbols Σ, and a set of output symbols Λ,
5GBaseChecker leverages differential testing as a gateway
to detect flaws and thus decomposes the overarching goal into
three sub-goals: (G1) Uncover the classes of deviant behav-
iors, also called deviations; (G2) Find the set of properties,
i.e., security and privacy requirements whose violations lead
to security or privacy flaws; and (G3) Identify instances of
property violations for each class of deviant behaviors. To
achieve these goals, we ask the following questions: (Q1)
Is there a possible input sequence Sin = σ1σ2 . . .σm, with
σ j ∈ Σ for which a baseband Bi responds with output se-
quence Sout = ϕ1ϕ2 . . .ϕm, where ϕ j ∈ Λ and Sout deviates
from the outputs of other basebands B j (i ̸= j)? (Q2) If it
deviates, which policy ρ is violated by ⟨Sin,Sout⟩ that others
do not violate? (Q3) Are there other input/output sequences
such as ⟨S′in,S′out⟩ which also violate ρ?

3.2 Solution Space
One can approach the problem defined in §3.1 from several di-
rections. First, one can perform fuzz testing with over-the-air
(OTA) messages [30] and check if the responses of differ-
ent devices are different for the same randomly generated
input messages. However, randomly generating OTA inputs
cannot explore the state space (ineffective) and requires a
prohibitively high number of test inputs (inefficient). This is
because 5G UE’s input space is huge, and there is no useful
feedback (e.g., code coverage) to guide the fuzzer due to the
black-box nature of 5G UEs.

Another approach is to extract the FSM of 5G basebands us-
ing automata learning and then analyze them against the poli-
cies (i.e., properties) through formal model checking [34, 40].
However, the 3GPP standard does not provide any curated
list of security or privacy requirements, and in many cases,
they are implicit. As such, manually enumerating all such re-
quirements from the specification is extremely arduous, if not
impossible. In addition, checking a large and complex model
against a property often requires frequent expert intervention
to avoid trivial counterexamples [32, 34]. Consequently, this
approach does not scale well with an increased number of
basebands under test.

Property to
resolve

StateSynth DevScan DevLyzer

... ...

5G SA UE
Implementations

Extracted
FSMs

Deviating Trace
Property Violation

Passive Learner

Active Learner

Network
Trace

OTA
Queries /

Responses

CE

CE

Alphabet

Domain
Expert

Extracted Properties

3GPP
Specifications

Properties,

Deviations

Graph
Traversal Unique

Deviations

Unresolved
Deviations

CEs

Figure 1: Overview of 5GBaseChecker.

3.3 Solution Sketch of 5GBaseChecker

5GBaseChecker works with three main components:
StateSynth, DevScan, and DevLyzer as shown in Figure 1.
StateSynth first extracts the FSMs M = {M1,M2, . . .Mn}
of basebands B1,B2, . . .Bn ∈ B . 5GBaseChecker then uti-
lizes the extracted FSMs and finds out the security policy
violations in each FSM Mi ∈ M . To do this, DevScan of
5GBaseChecker takes the extracted FSMs for all implemen-
tations as input and yields a set of deviations as outputs. By
deviations, we mean that for a particular input sequence, not
all the FSMs respond with the same output sequences. As
such, for a particular input sequence, there can be multiple
distinct output sequences that do not match with each other.

Definition 3.1 (Deviation). Suppose for an input se-
quence Sin as defined in §3.1, the output sequences
in M1,M2, . . .Mn ∈ M are S1

out ,S
2
out , . . . ,S

n
out , respectively.

Among those, let there be k distinct deviating outputs
γ

d,1
out ,γ

d,2
out , . . . ,γ

d,k
out for Sin, where 1< k≤ n, (p ̸= q) =⇒ γ

d,p
out ̸=

γ
d,q
out and ∀Ml ∈M : (∃ j : (1 ≤ j ≤ k)∧Sl

out = γ
d, j
out). A devi-

ation ψd (also termed as a deviation class) is defined by the
input sequence Sin and all k distinct outputs γ

d,1
out ,γ

d,2
out , . . . ,γ

d,k
out .

We denote the set of all extracted deviations as D. More-
over, we define a deviating trace T as a pair of the deviation-
inducing input and a deviating output, i.e., ⟨Sin,γ

d, j
out⟩, where

1≤ j < k. For instance, a deviation ψd ∈ D can have the
input sequence Sd

in = x1x2x3x4, and three distinct outputs
γ

d,1
out = y1y2y3y4, γ

d,2
out = y1y2y3y5, and γ

d,3
out = y1y6y3y7, where

⟨Sd
in,γ

d,1
out⟩, ⟨Sd

in,γ
d,2
out⟩, and ⟨Sd

in,γ
d,3
out⟩ are deviating traces.

For each deviating trace T ∈ ψd , the DevLyzer component
of 5GBaseChecker first finds a set of properties Pd relevant
to ψd from the specifications. DevLyzer uses ψd as guidance
to find such properties from specifications. The sets of all iden-
tified properties for all ψd ∈ D are referred to as P. DevLyzer
then automatically tests if each T ∈ ψd satisfies all ρ ∈ P,
i.e., T |=?

ρ. This reduces the significant manual effort by a
security expert to analyze deviations.

3.4 Threat Model

We consider an active attacker with Dolev-Yao capabilities on
the wireless channel between a victim UE and a gNodeB [24].
In this model, the attacker can set up a Fake Base Station
(FBS) or a Machine-in-the-middle (MitM) relay to modify,
inject, replay, drop, or observe packets on the channel. How-
ever, we assume the cryptographic constructs to be perfectly
secure, i.e., the attacker cannot craft a message with a valid
message authentication code (MAC) or cannot encrypt/de-
crypt a message without cryptographic keys. In the cellular
domain, these assumptions are reasonable, as seen in prior
works [34, 35, 42, 50].

4 Challenges and Solutions

4.1 Challenges of 5GBaseChecker Design

To solve the problems in §3.1, we find the following chal-
lenges and limitations of the prior approaches, which motivate
us to design our proposed approach 5GBaseChecker.
C1: Slow inference of 5G FSM with active learning. The
standard active automata learning algorithm starts from an
empty knowledge base to build the FSM. As a result, it learns
the basic interactions of the protocol very slowly during its
first few iterations of hypothesis construction. Further, as dis-
cussed in §2, active automata learning algorithms require an
equivalence oracle to validate the hypothesis models, which is
approximated using carefully crafted membership queries in
prior works [21, 41]. However, this approximation results in a
very large number of queries being generated in the model val-
idation stage. For example, Wp-method [41] requires an order
of O(n2|Σ|k−n+1), where Σ is the input alphabet of the FSM,
n is the number of states in the FSM, and k is the upper bound
on the number of states of the target system. As a result, the
model validation stage often requires 5-10 times more queries
than the hypothesis construction stage [23, 35, 39, 57]. As
executing an OTA query in 5G requires a substantial amount
of time (∼40 seconds/query), this stage becomes a critical

bottleneck for active automata learning-based FSM extrac-
tion.
C2: Difficulty in finding unique deviations. Prior works [28,
35, 39] have developed automated ways to find deviations
from the extracted FSMs. Although these works are effec-
tive in identifying deviations, they do not explore unique
variations of a single deviation. In other words, in case of a
deviation, prior works often fail to identify multiple traces
between the initial state and a deviation-inducing state— the
state at which the outputs of two or more FSMs differ for the
same input. Multiple such deviations imply that attackers can
execute the same attack using various attack sequences.
C3: No comprehensive list of security policies. Once unique
deviations are detected, one must check if deviating traces
violate any security properties. However, it is difficult and
time-consuming to find a comprehensive list of critical se-
curity properties without any hints as there are thousands
of properties in 5G specifications; for instance, the 5G NAS
specification of Release 17 itself has ∼8000 such require-
ments [10].
C4: Lack of automation in triaging deviations. If we test a
large number of 5G UEs, there would be a large number of
deviations among the extracted FSMs. However, following
previous approaches [35, 39], manually triaging each such
deviation consumes a huge amount of time and effort. Even
when security properties are in place, one has to check the
properties against complex and large FSMs, which also re-
quires significant time and frequent expert interventions.

4.2 Our Approach

A1: Combining passive automata learning and counter-
example reuse. To address C1, we propose the idea of hybrid
and collaborative learning. In hybrid learning, we combine
active and passive automata learning in order to reduce the
number of OTA learning and equivalence queries. First, we
leverage passive automata learning [38] to synthesize an ini-
tial FSM called Mp from the available 5G network traces. We
then use Mp as a guide for active learning. In other words, Mp

helps active learning optimize the number of queries and time
to refine the hypothesis models. On the other hand, since all
basebands implement the same protocol specified by 3GPP,
the FSMs would largely be similar, and any counterexam-
ples (CEs) found during the FSM construction of one device
are highly likely to be the CEs for other basebands as well.
Thus, using collaborative learning during the model valida-
tion stage, we first try to reuse the CEs found during the FSM
constructions of other devices instead of directly executing
the expensive off-the-shelf model validation algorithms (e.g.,
Wp-method). If any of the CEs are valid, we directly use them
to refine the hypothesis model of the current SUL. Identi-
fying CEs in such a collaborative way significantly reduces
equivalence-checking queries and time.
A2: Graph traversal-based model refinement. To address

C2, similar to previous work [35, 39], we first convert the
differential testing problem to a model-checking problem with
a safety property. This eliminates the requirement for expert
intervention and a comprehensive list of security properties.
However, to address the limitations of previous works, which
cannot find all unique deviations, we propose a graph traversal
mechanism. Specifically, when a deviation-inducing input
sequence is found, we perform a graph traversal from the
initial state to the state where the deviation is found and log
all unique paths that can lead to the deviation.
A3: Guided search of security policies using deviation. To
address challenge C3, we leverage the obtained deviations to
look up the specifications and extract corresponding security
policies. More specifically, we manually examine the speci-
fication to detect the correct output behavior corresponding
to the input sequence of a deviation. As an example, for an
input sequence that provides a plaintext ue_info_req with-
out performing access stratum (AS), i.e., RRC layer’s security
activation, consider an output sequence where the device re-
sponds with ue_info_resp. This behavior contrasts with
other devices that discard ue_info_req. When analyzing
such a deviation, we can easily obtain the required security
property by examining the portions of the specification that
deal with unprotected ue_info_req messages. Thus, the devi-
ation guides us to obtain the security property of not accepting
plaintext ue_info_req before AS security activation.
A4: Efficient triaging of deviations. To address challenge
C4, we adopt an iterative approach. We formally verify the
extracted properties against automatically generated formal
models of each of the deviating traces instead of verifying the
entire FSMs of devices. This approach eliminates the time
and scalability challenges of formally verifying the extracted
FSMs with desired properties. Additionally, we observe that a
single property often helps us automatically resolve multiple
deviations. As a result, we need to manually analyze only a
small subset of all identified deviations (as discussed in §9.5),
significantly reducing the manual effort required.

5 StateSynth: FSM Construction

Given a set of input and output alphabets, Σ and Λ, respec-
tively, StateSynth aims to efficiently extract the FSM for each
5G baseband under test. Figure 1 also shows the overview
and components of StateSynth, whereas Figure 2 shows its
workflow with an example. In what follows, we discuss in
detail the design and workflow of StateSynth.

5.1 Hybrid Learning for Bootstrapping
Passive FSM construction. As discussed in §2 and §4.2,
passive automata learning synthesizes an FSM from a given
execution traces instead of actively interacting with the system
under learning. This approach requires a diverse set of traces
to build a comprehensive FSM suitable for analyzing the se-
curity of the system. However, only a limited 5G standalone

s1 s2 s4x1/y1 x3/y3

s3
x2/y2 x4/y4

Network
Traces

Passive
Learner

Passive Learner

s5x5/y5

Active Learner

s1 s2 s4x1/y1 x3/y3

s3
x2/y2 x4/y4

Hypothesis Model,

s5x5/y5

s6
x1/y1

x1/y4

Model
Refinement

CEs

Model
Validation

Valid CE,

New CEs

CE

s1 s2 s4x1/y1 x3/y3

s3
x2/y2 x4/y4

Hypothesis Model,

s5x5/y5

s6
x1/y1

x1/y4

s7 x4/y5x2/y2

 Iteration i

s1 s2 s4x1/y1 x3/y3

s3
x2/y2 x4/y4

Final Model,

s5x5/y5

s6
x1/y1

x1/y4

s7 x4/y5x2/y2
s8

x5/y6

x3/y2

Generated FSM,

FSM
Comparator PCEs

s1

Initial Hypothesis,

Figure 2: Workflow of StateSynth with an illustrative example.

(SA) control plane traces can be observed by monitoring a
UE’s regular interactions with 5G networks. Due to the ab-
sence of diverse traces for 5G UEs, it is thereby challenging
to apply passive learning to comprehensively infer 5G base-
bands’ FSMs. To tackle this, we first utilize the limited avail-
ability of 5G SA traces to construct only an initial FSM using
passive learning. We then use that FSM to bootstrap/guide
Active Learner , specifically during the first few iterations of
Active Learner’s model validation phase. This bootstrapping
helps StateSynth significantly reduce OTA queries and time
to learn diverse system behaviors.

Note that the limited 5G SA traces contain only regular
(i.e., positive) behavior, whereas the classic passive automata
learning algorithm, such as Regular Positive and Negative In-
ference (RPNI) [49], a widely used technique in networks and
cyber-physical systems, requires both positive and negative
execution traces to infer a system’s FSM. To sidestep this,
we leverage Trace2Model [38], a passive automata learning
technique that learns an FSM only from positive traces. To
this end, we first collect network traces of the registration
procedures between the baseband and a 5G SA network and
represent each input/output in that trace as an observation for
Trace2Model. Trace2Model uses a program synthesis tech-
nique called synthesis from examples to construct transition
predicates and then uses the predicates to find counterexam-
ples used for refining the hypothesis model. We use the traces
of registration procedure because the scope of our analysis is
mainly the NAS and RRC procedures related to registration.

As an example, consider the two traces– ⟨x1x3x5,y1y3y5⟩
and ⟨x2x4x5,y2y4y5⟩. Here, a trace is a tuple of an input
sequence and corresponding output sequence. The Passive
Learner takes these traces as input and generates the initial
state machine Mp, as shown in Figure 2. In this figure, self-
loop transitions are not shown for clarity and conciseness.
Trace collection. We collect 5G SA traces by connecting the
devices to both (i) open-source 5G testbeds, and (ii) nearby
commercial 5G base stations with valid user credentials. This
ensures that the traces are diverse, covering behavior in both
testbed environments and commercial network settings.
Bootstrapping active learning with passive learner-
generated FSM. To complement the behavior learned and

captured in Mp by Passive Learner, StateSynth’s Active
Learner first assimilates the information present in Mp and
thus bootstraps the overall learning. We use TTT [37] as the
active learning algorithm for 5G basebands. As discussed in
§2 and §4.2, Active Learner systematically generates queries
as sequences of input alphabets, observes the responses, and
infers the underlying FSM by iteratively constructing and val-
idating hypothesis models. Since 3GPP specifications do not
provide a reference FSM for 5G basebands, during the model
validation phase, Active Learner uses the Wp-method [41]
as an approximate equivalence checking mechanism, which,
however, requires a prohibitively high number of queries and
time to find counterexamples in hypothesis models. This be-
comes particularly worse for 5G UEs as their protocols are
complex and have a higher number of input and output alpha-
bets than previous generations. This results in a significant
slowdown during the initial iterations of FSM learning.

StateSynth bootstraps Active Learner by first utilizing Mp

during Active Learner’s model validation phase. More specifi-
cally, StateSynth compares the TTT-generated initial (empty)
hypothesis M0 with Mp, and treats the differences, i.e., deviat-
ing traces between them as potential counterexamples (PCEs).
During model validation, instead of using the Wp-method in
the first place, Active Learner considers these PCEs as candi-
date CEs and uses them first to refine the hypothesis if they
are proved valid. This helps Active Learner quickly boot-
strap the learning of regular 5G protocol interactions (e.g., a
correct flow of the registration procedure) by consuming the
knowledge that Passive Learner learns from network traces.
For example, in Figure 2, initial hypothesis M0 contains only
one state with self-loop transitions for each symbol in the
alphabet. By comparing M0 with Mp, as shown in Figure 2,
we find several PCEs, e.g., ⟨x1x3,y1y3⟩, ⟨x2x4x5,y2y4y5⟩, etc.

5.2 Collaborative Learning for Validation

Since 5G SA UEs implement the same protocol following
3GPP specifications, their FSMs are also largely similar. We
use this insight to propagate the learned behavior from one
UE to the next if such behavior is valid. More specifically, we
store the CEs found during model validation of one baseband
as potential counterexamples for other basebands. During

model validation of other basebands, we first apply those
PCEs if valid. To check the validity, the StateSynth executes
the PCEs as OTA queries to the device under learning. If the
observed response does not match with the hypothesis model,
StateSynth marks those as valid CEs. Such collaborative
learning significantly reduces the number of OTA queries
and time. Finally, after applying all PCEs, to find remaining
counterexamples and refine the learned model, we use Wp-
method [41] in a limited way for model validation until the
termination condition is met as defined in §5.4. We detail the
algorithm of StateSynth in Appendix B.

We demonstrate the workflow of Active Learner , showing
one iteration of model validation and refinement for baseband
Bt in Figure 2. In the ith iteration, Active Learner initially has
the hypothesis model Mi. If there are any unused CEs remain-
ing, Active Learner first checks if such CEs are valid and then
uses a valid one for Mi refinement. Otherwise, as shown in
Figure 2, Active Learner performs model validation with the
Wp-method to find a new CE, uses it (if any) for model refine-
ment, and saves it as a PCE to apply to other basebands. For
example, assume that for input sequence x2x2x4, Bt responds
with y2y2y5. However, according to Mi, it responds to the
last message with y4. Thus, in this iteration, Active Learner
uses ⟨x2x2x4,y2y2y5⟩ as CEi, refines the model, and generates
a new hypothesis, Mi+1, as shown in Figure 2. Finally, this
iterative model refinement and validation is performed until
termination, when Active Learner provides the final learned
model, Mfinal for Bt .

5.3 Alphabet Selection

In StateSynth, the number of queries generated by TTT and
Wp-method [41] increases significantly with alphabet size
(state explosion). Therefore, one needs to carefully select the
alphabet in a way that can strike a balance between the scope
and the termination of FSM learning.
Selection strategy. Since the goal of this work is to identify
security policy violations in 5G SA control plane protocol
implementations, we create alphabets based on critical NAS
and RRC layers’ messages and 3GPP-provided high-level se-
curity policies: confidentiality, integrity, and non-replayability.
More precisely, we use the following four strategies. (A) We
consider messages required to learn valid/regular protocol
flows, such as the completion of the registration procedure.
This includes both plaintext messages allowed before NAS
and AS security activation and security-protected messages
(i.e., ciphered and/or integrity protected)1 used after security
activation. (B) For messages that must not be accepted with-
out security protection (i.e., encryption and/or integrity), we
consider their plaintext and/or non-integrity-protected coun-
terparts. (C) For non-replayability, we construct the replay
version of integrity-protected messages. (D) We also take se-

1Security-protected messages are considered only for FSM learning. They
do not reflect the attacker’s capabilities.

curity headers of messages into account as they influence the
acceptance of plaintext and security-protected messages.

Among the 16 security-header types, security headers 0 to 4
denote plain (0), integrity protected (1), integrity protected and
ciphered (2), integrity protected with a new security context
(3), and integrity protected and ciphered with a new security
context (4), while the remaining 11 are reserved. We consider
security header types 0, 2, 3, and 4 in our alphabet set. We in-
clude header 0 to test plaintext messages. Moreover, headers
2 and 3 are required to learn the regular flow of the protocols
for protected messages. They are vital for security analysis
because some exploitable vulnerabilities can still occur after
receiving protected messages, e.g., accepting plaintext Au-
thentication Request messages after security activation, and
replayed Security Mode Command messages after registration.
We do not include header 1 as it is not required to learn the
regular protocol flow. Finally, header 4 is a special type used
only for an uplink message Security Mode Complete, and thus,
receiving this header may lead to unexpected behavior in the
UE under test. With these strategies, we construct the alpha-
bet based on TS 24.501 version 17.8.0 [10] and TS 38.331
version 17.6.0 [11], as shown in Table 9 in the Appendix.
Scope. The alphabet used by StateSynth spans a subset of
the 5G SA control plane procedures. More specifically, in
the NAS layer, the alphabet covers registration, identification,
authentication, security mode control, UE configuration up-
date, and de-registration procedures. On the other hand, in the
RRC layer, the alphabet covers AS security mode control, UE
capability transfer, counter check, UE information request,
and RRC reconfiguration procedures. We excluded NAS layer
reject messages and RRC layer reject and release messages
as they would drop the connection and, consequently, hin-
der FSM construction. Also, currently, open-source 5G stack
implementations that we employed to send messages to the
UE do not support RRC Resume, paging, and handover pro-
cedures, and implementing them would require significant
engineering efforts. We exclude these procedures from the
scope of 5GBaseChecker as well.

5.4 Termination Strategy

The termination condition is critical in active learning. Termi-
nating early results in incomplete FSM construction, whereas
keeping StateSynth running even after capturing a representa-
tive FSM leads to superfluous OTA queries and time. As seen
in prior works [23, 35, 39], most OTA queries are generated
in model validation using the Wp-method [41] during FSM
construction. To reduce such queries and balance between
early termination and FSM completeness, in this work, after
using the PCEs to refine the hypothesis models, we use Wp-
method in a controlled way through configurable parameters
N0, N1, and N2 to further validate and refine the hypotheses.
In summary, we use the following termination strategy.
• If any of the output symbols (Table 9 in Appendix) have not

been observed yet, StateSynth continues FSM extraction.
• For the first UE, when Active Learner does not have PCEs

from any previously learned basebands, we limit the num-
ber of equivalence queries to a certain value N0 for each
iteration of the Wp-method. If a CE is not found within
N0, model construction terminates. Otherwise, we refine
the model with the CE and re-run model validation. In
contrast to DIKEUE’s termination strategy [35], which ter-
minates whenever the registration procedure is completed,
this ensures learning implementation behavior even after
the procedure.

• For the subsequent phones, if another baseband from the
same vendor (e.g., Qualcomm, MediaTek, etc.) has already
been learned, we set the limit of equivalence queries per
round of model validation at N1, such that N1 < N0. This
utilizes the insight that FSMs from the same baseband ven-
dor are similar and may require fewer equivalence queries.

• If the device under learning is the first phone from its
baseband vendor, we set the above-mentioned limit to N2,
such that N1 < N2 < N0. It ensures that the first baseband
under learning from a vendor is explored sufficiently.

5.5 Efficient and Consistent Learning
OTA query caching. As discussed in prior works [13,55], Ac-
tive Learner can generate some equivalence queries in model
validation, which are already executed during hypothesis con-
struction. Following this insight, we store the results of all
OTA queries in a cache to use in subsequent queries for the
same baseband.
Avoiding inconsistency. Due to unreliable wireless commu-
nication channels used for transmitting OTA messages and
responses, Active Learner may experience observational in-
consistencies in the responses. To ensure consistent learning,
we apply majority voting following prior works [35, 47]. In
this scheme, we run an OTA query twice and use the output if
the outputs are the same. Otherwise, we run the query another
time to resolve the correct output.
Minimizing duplicate states. We also observe that some
UE implementations incorrectly reset their state machines
after receiving particular messages (e.g., auth_req_plain)
at certain states and then restart learning of the entire FSM
from scratch from those states. This leads Active Learner
to spawn many duplicate states in the hypothesis models,
causing a large amount of similar query generation and delay
in termination. To address these inconsistent behaviors, Active
Learner automatically detects such behaviors during each
query execution and interprets subsequent outputs in that
query as null_action.

6 DevScan: Finding Deviations

DevScan takes the extracted FSMs of basebands as inputs
and automatically identifies the set of deviations.

s1 s2 s4 s5x1/y2 x2/y2 x5/y5

s3
x3/y3 x4/y4

 FSM,

s1 s2 s4 s5x1/y2 x2/y2 x5/y6

s3
x3/y3 x4/y4

 FSM,

Figure 3: Example deviations in two FSMs.

6.1 Unique Paths For Deviations

Prior research has utilized deviations to detect vulnerabilities
in protocol implementations [25, 35, 39]. However, efficiently
identifying all deviations from a set of implementations or
even a set of representative FSMs is non-trivial because the
search space is exponentially large depending on the size of
the alphabet and the length of the traces. Although previous
works have identified deviations in a reasonable amount of
time, they lack the support for identifying all unique paths
leading to these deviations [35,39]. As all these unique devia-
tions are essential for a comprehensive analysis of the FSMs,
we opt for a graph traversal algorithm to find all unique paths
from the initial state to a deviation-inducing state in an FSM
leading to a deviation.

For example, Figure 3 shows deviations in FSMs M1 and
M2. Prior tools [35,39] can only identify the deviation with de-
viating traces ⟨x1x2x5,y1y2y5⟩ and ⟨x1x2x5,y1y2y6⟩, whereas
there is another path in these FSMs (highlighted in Figure
3) leading to another unique deviation with deviating traces
⟨x3x4x5,y3y4y5⟩ and ⟨x3x4x5,y3y4y6⟩. DevScan, with the help
of graph traversal-based model refinement, successfully iden-
tifies such unique deviations in extracted FSMs.

6.2 Graph Traversal-Based Model Refinement

To identify all unique paths, DevScan at first uses a prior
tool [39] to find the set of deviations by performing pair-
wise comparison. For each of the deviations, in both FSMs,
DevScan inspects the state in which the deviation has oc-
curred and performs a depth-first-search-based algorithm to
find all paths from the initial state to the deviation-inducing
state. For all these paths, DevScan identifies the sequences
of input symbols along the paths and checks both FSMs to
discover if these new sequences also lead to deviations.

7 DevLyzer: Triaging Deviations

Given the set of deviations D, DevLyzer identifies a set of
properties ρ ∈ P where ρ is violated by at least one deviating
trace ⟨Sin,γ

i, j
out⟩ ∈ ψi of a baseband. It also finds deviating

traces in other deviations ψk that also violate ρ. DevLyzer
aims to minimize the manual effort required to extract relevant
properties and corresponding violations of the properties.

7.1 Extracting Properties
For each deviation (also called deviation class) in D,
DevLyzer iteratively finds relevant properties and checks for
violations of those properties by basebands. It compiles the
extracted properties represented with Linear Temporal Logic
(LTL) formula into P. In each iteration, DevLyzer attempts to
resolve any unresolved deviation ψd ∈ D by leveraging the
properties in P. We consider a deviation resolved when we
have at least one property ρ ∈ P for each pair of deviating
outputs in the deviation class such that one of the deviating
outputs satisfies ρ but others violate. Formally, a deviation ψi

is considered resolved only if:

∀p̸=qγ
d,p
out ,γ

d,q
out ∈ ψ

d : ∃ρ ∈ P : ⟨Sin,γ
d,p
out ⟩ |= ρ∧⟨Sin,γ

d,q
out⟩ ̸|= ρ

(1)
Initially, all deviations ψd are unresolved, and P= /0. Dur-

ing each iteration, DevLyzer first picks an unresolved devi-
ation ψd

u and provides it to the security expert for manual
analysis. This is a guided property extraction procedure, as
the deviating trace will provide guidance to the security expert
regarding what and where (e.g., message sequences and pro-
cedures) to look for in the specification to extract properties.
The expert then consults with the 5G specification to identify
the correct output behavior for the input sequence Sin of ψd

u
and represent that as an LTL property ρ. Also, if there are ks
number of correct output behaviors prescribed by the specifi-
cation for input Sin, we represent ks properties ρ1,ρ2, . . . ,ρks

such that each ρm (1≤ m≤ ks) characterizes one of the cor-
rect behaviors. Also, if there are kw wrong outputs for Sin, we
write properties ρ1,ρ2, . . . ,ρkw such that each ρn (1≤ n≤ kw)
is violated only by one of the outputs γ

i, j
out ∈ ψi

u. DevLyzer
adds all such properties to P.

7.2 Checking Properties For Violation

For all trace ⟨Sin,γ
i, j
out⟩ in a deviation ψi ∈D, DevLyzer checks

whether the trace satisfies all properties ρ∈P. To perform this,
DevLyzer first automatically models each trace as an FSM
Mi, j

dev, and performs model checking (using nuXmv [16]) to
determine if Mi, j

dev |= ρ. If a ρ∈ P is violated by any ⟨Sin,γ
i, j
out⟩,

DevLyzer can immediately infer that all bl ∈ B that outputs
ϕl

out = γ
i, j
out when provided Sin also violates the property ρ.

Automatic construction of a model from a trace. To con-
struct Mi, j

dev for ⟨Sin,γ
i, j
out⟩, DevLyzer creates |Sin| number of

states for Mi, j
dev, where at each state sk (1 ≤ k < |Sin|) there

is only one transition that takes the k-th message of Sin as
input, outputs the k-th message in γ

i, j
out and goes to state sk+1.

Since Mi, j
dev represents the model of a single trace, its size

is much smaller than extracted FSMs for 5G devices. This
helps DevLyzer automatically analyze them against extracted
properties. DevLyzer thus iteratively triages all unresolved
deviation ψi

u and marks them as resolved when the condition
in Equation 1 is satisfied.

7.3 Illustration of DevLyzer
Consider two deviations ψ1 and ψ2, as shown in Figure 4.
For ψ1, the input sequence is S1

in = x1x2x3x4x5, and it has
two deviating output sequences γ

1,1
out = y1y2y3y4y5 and γ

1,2
out =

y1y2y3y4y7. For ψ2, we have S2
in = x1x2x8x3x5 and two devi-

ating outputs γ
2,1
out = y1y2y8y3y5 and γ

2,2
out = y1y2y8y3y7.

s1 s2 s3 s4 s5 s6
x1/y1 x2/y2 x3/y3 x4/y4 x5/y5

s1 s2 s3 s4 s5 s6'
x1/y1 x2/y2 x3/y3 x4/y4 x5/y7

Figure 4: Example models for M1,1
dev and M1,2

dev for the example
in 7.3. Colored areas show the point of deviation.

Initially, P is /0, and all deviations are unresolved. Suppose
DevLyzer first triages ψ1. It creates models M1,1

dev and M1,2
dev

using (S1
in,γ

1,1
out) and (S1

in,γ
1,2
out), respectively, as shown in

Figure 4. To resolve ψ1, we assert property ρ1: After
response y3, if x5 is provided as input, it will always be
responded with y5. We represent ρ1 as an LTL formula as
G(output=y3) =⇒ (G(input=x5) =⇒ X(output=y5)),
which the output sequence γ

1,1
out does not violate but γ

1,2
out does.

DevLyzer utilizes model checking and finds out M1,1
dev |= ρ1

but M1,2
dev ̸|= ρ1 since output γ

1,2
out violates property ρ1. Now,

ψ1 will be marked as resolved, and P will be {ρ1}. DevLyzer
also detects the devices producing γ

1,2
out , which violates ρ1.

Next, DevLyzer examines ψ2, and builds models M2,1
dev using

(S2
in,γ

2,1
out) and M2,2

dev using (S2
in,γ

2,2
out). It will test all properties

in P and observe M2,1
dev |= ρ1 but M2,2

dev ̸|= ρ1. Thus, it will
mark ψ2 as resolved. violating ρ1. Here, DevLyzer saves the
manual effort to analyze ψ2. We summarize DevLyzer in
Algorithm 1 in Appendix A.

8 Implementation

StateSynth. For the Passive Learner of StateSynth, we use
Network Signal Guru [5] to collect the network traces and
Trace2Model [38] to generate an FSM. Active Learner is
built on TTT’s [37] and Wp-method’s [41] implementations
in LearnLib [36]. For the termination strategy, we empirically
set N0 = 10000, N1 = 1000, N2 = 2000, which preserves the
balance between termination and coverage for the 5G UE
implementations (listed in Table 8).

As the Active Learner needs active interactions with the
basebands, we build an adapter consisting of gNodeB and 5G
core to translate abstract symbols provided by the learning
algorithm to over-the-air messages and vice-versa. For this,
we modify existing open-source 5G SA gNodeB and 5G core
(5GC) implementations. These modifications are required to
enable the open-source gNodeB and 5GC to send arbitrary
sequences of OTA messages as generated by Active Learner .

Moreover, available open-source gNodeB implementations
do not support a broad range of frequencies. To facilitate
learning of all implementations under test, we employ two
different gNodeB implementations (OpenAirInterface [7] and
srsRAN [8]). We modify Open5GS [6] for the 5G core of the
adapter.
DevScan and DevLyzer. As discussed in §6, we extend the
FSM equivalence checker of BLEDiff [39] to implement
DevScan. DevLyzer uses nuXmv [16] for model checking.

9 Evaluation

We evaluate 5GBaseChecker with respect to the following
research questions:
• RQ1. How effective is 5GBaseChecker in finding devia-

tions and security policy violations (§9.2)?
• RQ2. How efficient is the StateSynth in extracting FSMs

from baseband implementations (§9.3)?
• RQ3. What is the efficacy of DevScan in detecting devia-

tions (§9.4)?
• RQ4. How efficient is DevLyzer in finding security poli-

cies and analyzing deviations (§9.5)?’
• RQ5. How does 5GBaseChecker perform compared to

existing UE testing approaches (§9.6)?

9.1 Evaluation Setup
To evaluate 5GBaseChecker, we analyze 17 Commercial
off-the-shelf (COTS) 5G SA capable devices, and 2 open-
source 5G UE implementations— srsRAN UE (srsUE) [8]
and OpenAirInterface UE (OAI UE) [7], as listed in Table 8.
We use USRP B210 as our radio front end to test COTS 5G
SA devices and leverage software-simulated radio connection
to test srsUE and OAI UE. We perform the evaluations on
an Ubuntu 20.04 machine with an AMD Ryzen 9 7950X3D
CPU and 64 GB DDR5 RAM.

9.2 Deviations and Flaws
To address RQ1, we use StateSynth to extract FSMs from
the implementations and analyze the deviations found by
DevScan through DevLyzer. 5GBaseChecker uncovers 22
unique issues, 20 of which are newly discovered in 5G UEs,
including 13 attacks and 2 potential interoperability issues.
We present these issues in Table 2 and categorize them into
12 types according to the flaw types in Table 1.

9.2.1 Mishandling Messages (I1− I7)

•Mishandle unprotected message before AS security ac-
tivation (III111-III222). As per TS 38.331 [11], UE Information Re-
quest and Counter Check messages should not be accepted
before AS security activation. Correctly implemented de-
vices shall drop these messages before AS security activation.

Flaw Type Description
M1 Mishandle unprotected message before authentication
M2 Mishandle unprotected message after authentication but before

NAS security activation
M3 Mishandle unprotected message after NAS security activation,

before AS security activation and before registration completed
M M4 Mishandle unprotected message after NAS security activation and

registration completed, but RRC security not activated
M5 Mishandle protected message after NAS and RRC security activa-

tion, but before registration completed
M6 Mishandle sequence number for certain message type

S S Accept invalid security header type for certain message type
I I Accept prohibited IE values

U1 Incomplete information for mandatory features/messages
U U2 Incomplete information for optional feature

U3 Conflicting information
D D Design specification issue

Table 1: Description of flaw types. M: mishandling messages,
S: mishandling security headers, I: mishandling information
elements (IEs), U: underspecification, D: Design flaw.

By observing the responses to these messages, the attacker
can first fingerprint devices up to the baseband manufacturer
level [50]. The attacker can then launch other attacks such as
5G AKA bypass discussed in §10.1.
•Mishandle unprotected message after NAS security ac-
tivation (III333, III444). Based on TS 24.501 [10], all NAS com-
munications should be ciphered and integrity protected after
NAS security activation. However, some UEs accept Identity
Request and Authentication Request in plaintext even after
NAS security context establishment. As a result, the attacker
can capture the plaintext Authentication Request message for
the victim UE from a benign 5G network and send this mes-
sage later to the victim UE. Since the victim UE accepts and
responds to this message, an attacker can exploit this vulnera-
bility to launch traceability [14] and SUCI-Catching [20, 33]
attacks or regenerate session keys, causing a key desynchro-
nization between the victim UE and the AMF.
•Mishandle protected message after NAS and AS security
activation (III555). Several UEs accept Deregistration Request
and deregister from the core network before the registration
procedure is completed. However, the 5G NAS specification
[10] mandates that the UE has to proceed with the registration
process by discarding the Deregistration Request. This may
result in interoperability issues during handover.
•Mishandle sequence number for certain message types
(III666, III777). According to TS 24.501 [10], a replayed NAS mes-
sage cannot be accepted after security establishment. How-
ever, some UEs accept replayed NAS Security Mode Com-
mand messages during the registration procedure (III666), and
some UEs accept this message even after the registration is
complete (III777). This is fatal since the attacker can exploit the
NAS Security Mode Command Replay message to perform
traceability attacks [32].

9.2.2 Mishandling Security Headers (I8− I9)

The Registration Accept and Configuration Update Command
messages should only be accepted using security header type
2 (integrity protected and ciphered) [10]. However, in III888, we

Issue Description Flaw Type Impact New
III111 UE accepts ue_info_req_plain before AS security activation M1, M2, M3, M4 F
III222 UE accepts the counter_check_plain before AS security activation M1, M2, M3, M4 F
III333 UE accepts identity_req_plain after NAS security activation M3, M4 IL
III444 UE accepts auth_req_plain after NAS security activation M3, M4 LL, DoS
III555 UE accepts dereg_req_protected before completing the registration procedure M5 II
III666 UE accepts nas_sm_cmd_replay when sent immediately after nas_sm_cmd_int M6 F
III777 UE accepts nas_sm_cmd_replay even after registration complete M6 LL
III888 UE accepts the reg_accept_header4_plain, bypassing the authentication and security activation S PS, IL

III999
Plain header NAS messages (i.e., reg_accept_plain, conf_update_cmd_plain) bypass the integrity
check S IS, DoS

III111000 UE accepts nas_sm_cmd_NIA0_plain, bypassing NAS layer security activation I IL
III111111 UE accepts the rrc_sm_cmd_NIA0_plain, bypassing RRC layer security activation I IL, DG
III111222 UE responds to nas_sm_cmd_replay differently, enabling device fingerprinting U1 F
III111333 UE does not release the radio connection immediately after accepting dereg_req_protected U1 -
III111444 Upon receiving the second rrc_sm_cmd_int, UE replies with rrc_sm_failure U1 -
III111555 UE does not accept dereg_req_protected (with “switch off” bit set to 1) after registration U1 -
III111666 Before AS security activation, UE not accepting RRC messages with non-zero MAC U1 -
III111777 UE does not accept reg_accept_protected inside DL NAS Transport message U1 -
III111888 Out-of-sequence ue_info_req_protected interrupts ongoing registration procedure U1 -
III111999 UE accept nas_sm_cmd_header2_protected U1 -
III222000 UE replies with conf_update_comp when acknowledgment indicator not present U2 II
III222111 UE responds to nas_sm_cmd_NIA0_plain differently, enabling device fingerprinting U3 F
III222222 rrc_sm_cmd_NIA0_plain after rrc_sm_cmd_int makes all subsequent symbols unresponsive D DoS

Table 2: Property violations identified by 5GBaseChecker. IL: information leak, LL: location leak, IS: identity spoofing,
PS: phishing SMS, DoS: denial-of-service, DG: downgrade, F: fingerprinting device, II: interoperability issue.

: not found in previous works on 5G. : found in previous works on 5G.

found some UEs accept plaintext Registration Accept with se-
curity header 4 before NAS security activation, which enables
an attacker to bypass the whole NAS layer Authentication
and Key Agreement (AKA) procedure. The attacker can ex-
ploit this vulnerability to provide a victim UE to access the
Internet through a fake base station without data ciphering
and integrity. She can also send fake SMS to the victim from
the fake base stations. We elaborate on these in §10.1. On the
other hand, in III999, we found that one UE accepts plaintext Reg-
istration Accept and Configuration Update Command with
security header type 0. This can lead to AKA bypass in the
NAS layer and DoS for the victim.

9.2.3 Mishandling Information Elements (IEs) (I10− I11)

According to TS 24.501 [10], NAS Security Mode Command
messages in 5G are not ciphered but are integrity-protected,
ensured by a message authentication code (MAC) [10]. In
III111000, an attacker can craft a NAS Security Mode Command
with NIA0 and NEA0. Acceptance of this message enables
the attacker to establish NAS layer security context with null
cipher and null integrity and to bypass NAS layer security.
In III111111, we found that some UEs, despite being prohibited by
the specification [11], accept AS Security Mode Command
messages with NIA0 IE, leading to AS security bypass. This
allows the attacker to inject any RRC layer messages without
integrity protection. Exploiting this, the attacker may send an
RRC Reconfiguration or RRC Release message to get sensitive
UE information or downgrade the victim UE to 4G/2G.

9.2.4 Underspecified Specifications (I12− I21)

• Incomplete information for mandatory features (III111222-
III111999.) For III111222, clause 4.4.3.2 in TS 24.501 [10] states that no
specific mechanism is required for implementations to ensure
replay protection. However, TS 24.501 [10] also mentions
that when a Security Mode Command message cannot be ac-
cepted, the UE has to respond with a Security Mode Reject
message. Based on the specification, it is not clear whether
the UE should drop the replayed NAS Security Mode Com-
mand message or reply with NAS Security Mode Reject. Due
to such ambiguous and incomplete instructions, some devices
become vulnerable to fingerprinting attacks. In addition, de-
vices responding with NAS Security Mode Reject are vulnera-
ble to uplink NAS counter desynchronization attacks leading
to denial of services [34]. For some other issues (III111333-III111999),
the implementations deviate from each other, but the security
impacts are not evident. For example, in III111333, after receiving
the Deregistration Request message, the device’s RRC layer
connection is not dropped instantly, and it can still respond to
some RRC layer messages, e.g., AS Security Mode Command.
In III111444, some UEs respond with Security Mode Failure upon
receiving a second AS Security Mode Command, while others
do not. As for III111555, we also discovered that some UEs do not
accept Deregistration Request message with “switch off” bit
set to 1, while others do not check the value of this IE.
• Incomplete information for optional features (III222000). We
found a UE implementation unexpectedly sends a response to
a Configuration Update Command message even though the

Itera-
tion

Cumulative # queries
w/o hybrid learning

Cumulative # queries
w/ hybrid learning

1 29 29
2 208 116
3 786 612
4 1111 750
5 3016 959
6 3244 1547
7 3837 6630
8 8920 14864
9 17155 15529
10 17820 16280
11 18593 17084
12 19397 27084 (terminate)
13 29397 (terminate) -

Table 3: Queries required w/ and w/o hybrid learning.

“acknowledgment indicator” field is not present (III222000). Since
the core network does not expect any response to this message,
it may behave unexpectedly upon receiving such a response
from the UE and cause interoperability issues.
• Conflicting information in the specifications (III222111). In
III222111, we observed that before authentication, some devices
respond to NAS Security Mode Command with NIA0. De-
vices equipped with Exynos baseband follow TS 24.501 [10],
clause 5.4.2.5, and respond with a Security Mode Reject mes-
sage. The rest of the devices follow TS 24.501 [10], clause
7.5.1, and respond with 5GMM Status. This deviating behav-
ior enables an attacker to fingerprint the Exynos devices.

9.2.5 Flawed Specifications (I22)

According to TS 38.331 [11], clauses 5.3.7.1 and 5.3.7.2,
after AS security activation, integrity check failure on RRC
messages leads to an RRC connection release. However, this
enables an adversary to force the victim UE to drop the con-
nection upon receiving messages with wrong MAC values
(III222222). The attacker can repeat this attack for prolonged DoS.

9.3 Efficiency of StateSynth

To answer RQ2, we measure the number of queries, i.e., input
message sequences, generated by StateSynth, and the total
time required to extract each FSM. We summarize the results
for each device in Table 4, along with the number of states
and transitions. We also evaluate the effectiveness of different
design decisions in StateSynth in this section.
Evaluating hybrid learning. To evaluate hybrid learning, we
compute the cumulative number of queries in each iteration
(hypothesis construction and validation) of Active Learner
for one of the implementations– Motorola Edge+. We show
the results in Table 3, where it is evident that hybrid learning
reduces the number of queries by ∼2,300. As the passive
FSM construction takes only ∼2 minutes, this improvement
essentially translates to a ∼1,450 minutes decrease in total
time for FSM extraction. Thus, this approach significantly
improves StateSynth’s efficiency.

Device #
MQ # EQ Time

(min)
#

(States)
#

(Trans)
Motorola Edge+ 1860 25239 17615 14 81
Redmagic 8 Pro 1856 1030 1968 14 85
Oneplus10 pro 1856 1030 1924 14 85
iPhone 14 1860 1030 2023 14 81
BlackShark 1856 1030 1924 14 86
Quectel 1856 1030 1535 14 86
RedMi K40S 1856 1030 1924 14 86
Samsuang S20+ 1856 1030 1924 14 86
Nothing Phone (1) 1856 1030 1828 14 86
OnePlus Nord 5G 1856 1030 1972 14 86
Huawei P40 Pro 1351 2030 2202 11 54
Hisense F50+ 1662 3269 3205 13 75
Oppo Reno 7 Pro 5G 2117 2497 3230 15 88
Rog Phone 6D 2117 1030 2203 15 88
OAIUE 687 3602 2145 6 16
Pixel 7 1207 2024 2262 9 65
Pixel 6 1207 1024 1562 9 65
Samsuang S21 1193 1404 1818 9 48
srsUE 710 3732 2221 6 20

Table 4: Queries, time, states, and transitions. MQ: member-
ship queries, EQ: equivalence queries.

Evaluating collaborative learning. To evaluate collabora-
tive learning, we extract the FSMs sequentially, as shown in
Table 4, and present the required number of queries and time.
For the first device, when potential counterexamples from
other devices are not available, StateSynth requires∼27,100
queries to extract the FSM. For subsequent devices, this num-
ber is reduced by 1.6−12.3 times compared to approaches
without collaborative learning [35], cutting the time require-
ments accordingly. This technique thus significantly boosts
StateSynth’s efficiency.

Comparison with existing FSM constructors. We compare
StateSynth with an existing framework for FSM extraction
from UE implementations, namely, DIKEUE [35]. Although
this framework is for 4G implementations, we use its FSM in-
ference module with our 5G OTA message infrastructure and
the input alphabet of StateSynth. We refer to this modified
version as DIKEUE∗. Moreover, DIKEUE has a different ter-
mination condition for its FSM extraction. Thus, for a proper
comparison, we use the same termination condition from
DIKEUE in both StateSynth and DIKEUE∗ to extract the
same level of information from the implementations.

Figure 5 shows the cumulative number of queries required
for FSM extraction. For the first device, StateSynth clearly
performs better than DIKEUE∗ (14,864 vs. 17,155 queries),
which shows the impact of hybrid learning. For the subse-
quent devices, the improvement in efficiency is even more
significant, as seen in the growth in the number of queries in
the figure. Overall, DIKEUE∗ requires 73,657 queries to ex-
tract all the FSMs, whereas StateSynth requires only 26,715.
This demonstrates that StateSynth brings significant improve-
ment in FSM extraction of UE implementations.

Mo
to

ro
la

Re
dm

ag
ic

On
ep

lu
s 1

0
pr

o
ip

ho
ne

 1
4

Bl
ac

kS
ha

rk
Qu

ec
te

l
Re

dM
i K

40
S

Sa
m

su
ng

 S
20

+
No

th
in

g
Ph

on
e

On
ep

lu
s N

or
d

Hu
aw

ei
Hi

se
ns

e
Op

po Ro
g

Pix
el7

Pix
el

6
Sa

m
su

ng
 S

21
sr

sU
E

OA
I U

E

Devices

0

1

2

3

4

5

6

7

8

Cu
m

ul
at

iv
e

#Q
ue

rie
s (

X1
00

00
) DIKEUE*

5GBaseChecker

Figure 5: Comparison of FSM extraction.

9.4 Efficacy of DevScan
To address RQ3, we compare DevScan with the FSM equiv-
alence checker components of BLEDiff [39], and DIKEUE
[35]. We compute the number of deviations identified and
the required time by StateSynth, BLEDiff, and DIKEUE and
present them in Table 5. The results show that DevScan identi-
fies∼700 more deviations than the other approaches. For each
pairwise FSM comparison, compared to DIKEUE, DevScan,
however, requires ∼ 15 seconds more to find deviations. This
is reasonable as we find more unique deviations by compre-
hensively traversing the FSMs.

Approach # Deviations Avg. time (sec.)

DIKEUE [35] 1325 83
BLEDiff [39] 724 118
5GBaseChecker 2044 98

Table 5: Number of deviations and time requirement.

9.5 Effectiveness and Efficiency of DevLyzer
To answer RQ4, we summarize how DevLyzer reduces the
manual effort by the domain expert to analyze deviations and
helps extract properties.
Reduction in manual effort. A new property in DevLyzer
can resolve multiple deviations. As such, DevLyzer resolves
multiple deviations within one iteration and thus requires
smaller than |D| iterations. In our experiments, we ran
DevLyzer on 2044 deviations found by DevScan and resolved
them in 36 iterations by manually analyzing 36 deviations
(one deviation ψi ∈D per iteration) and identifying 45 proper-
ties in total, as the analysis of 9 deviations rendered more than
one property. It took, on average, ∼2 minutes to analyze each
deviation and extract the required properties. If we needed to
analyze all of them manually, it would take ∼67 man-hours.
Thus, we saved ∼65 man-hours of work using DevLyzer.

Approach Dynamic
Guided

property
extraction

Partial
positive

tests

Interopera-
bility

detection

Stateful
testing

BASECOMP [42] ✗ ✗ ✗ ✗ ✓
DoLTEst [50] ✗ ✓ ✗ ✗ ✓
DIKEUE [35] ✓ ✗ ✓ ✓ ✓
UE security reloaded [15] ✗ ✗ ✗ ✗ ✗
SecChecker [58] ✗ ✗ ✓ ✗ ✗
5GBaseChecker ✓ ✓ ✓ ✓ ✓

Table 6: Comparison with existing testing approaches.

Extracted properties. With DevLyzer, we extracted a total
of 45 properties, as listed in [2]. However, as we release these
properties as one of our contributions, subsequent analysis
of 5G devices using 5GBaseChecker can start with our ex-
tracted property set P. In that case, most of the deviations
would be automatically resolved even before any manual anal-
ysis, further lessening the manual effort required.

9.6 Comparison with Current Testing Methods

We address RQ5 by comparing 5GBaseChecker with ex-
isting works in several directions. Table 6 shows the sum-
mary of these comparisons. Among the approaches com-
pared with, several only statically generate, i.e., pre-compute
test cases or perform static analysis on the baseband soft-
ware [15, 42, 50, 58], whereas 5GBaseChecker analyzes im-
plementations dynamically during testing. Some existing ap-
proaches, such as DoLTEst [50], use keywords, e.g., ‘shall
not’, ‘security activation’, and ‘integrity protected’ to search
security policies from specifications. This may, however, yield
a large amount of policies to test that are either not security
critical or duplicate. In contrast, 5GBaseChecker dynami-
cally extracts policies based on deviating traces. Moreover,
5GBaseChecker performs some regular/positive tests (in-
dicated by partial positive testing in Table 6) during FSM
construction along with the negative ones. In contrast, a few
approaches test the implementations with only negative test
cases [15, 42, 50], avoiding positive testing altogether. No-
tably, some of these works also do not perform stateful analy-
sis [15, 58], although 5G implementations are highly stateful.
Further, 5GBaseChecker can discover interoperability issues
as DIKEUE [35], whereas others cannot.
Effectiveness. Other than the above-mentioned comparisons,
we also compare if these works are capable of identify-
ing the exploitable and interoperability issues identified by
5GBaseChecker. We show the results in Table 7. Among
these works, BASECOMP [42] performs tests only on in-
tegrity protection. Several works have a fixed set of properties
or test cases [15, 50, 58], which do not include many of the
issues found by 5GBaseChecker. Finally, DIKEUE [35] also
misses several of these issues because of a limited alphabet.
Coverage on open-source UE implementation. Although
5GBaseChecker primarily focuses on finding security pol-

Approach III111 III222 III333 III444 III555 III666 III777 III888 III999 III111000 III111111 III111222 III222000 III222111 III222222

BASECOMP [42] ✓ ✓ ✓ ✓
DoLTEst [50] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DIKEUE [35] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
UE security reloaded [15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SecChecker [58] ✓ ✓ ✓ ✓ ✓
5GBaseChecker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 7: Comparison of the effectiveness of 5GBaseChecker
on finding security, privacy, and interoperability issues with
existing UE implementation testing approaches.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

RRC Line RRC Func NAS Line NAS Func

C
ov

er
ag

e
Pe

rc
en

ta
ge

5GBaseChecker UE Security Reloaded

Figure 6: NAS and RRC implementation coverage.

icy violations in black-box UE implementations, we also
compute the coverage information [4] for an open-source
UE implementation, srsUE [8], using LCOV. We compare
5GBaseChecker with an existing open-source 5G UE testing
framework, namely, UE security reloaded [15], for this evalua-
tion. Figure 6 shows that 5GBaseChecker improves coverage
in the NAS layer by ∼12% and in the RRC layer by ∼1%.
This demonstrates that, in both layers, 5GBaseChecker im-
proves the coverage, which essentially translates to a more
comprehensive testing approach.

10 Attack Case Study

10.1 5G AKA Bypass (I8)
Exynos basebands accept plaintext Registration Accept with
header 4 (integrity protected and ciphered with new 5G NAS
security context) from a fake base station after sending a
Registration Request without establishing NAS or RRC layer
security. The adversary can exploit this behavior to grant
unprotected data sessions and send phishing SMS’s to victims.
Attack. Upon receiving the plaintext Registration Accept with
security header 4, the UE replies with a plaintext Registra-
tion Complete, and a PDU Session Establishment Request
message. The attacker then crafts a plaintext Downlink NAS
Transport message (with security header 4) containing a plain-
text PDU Session Establishment Accept and encapsulates that
in an RRC Reconfiguration message to send it to the victim
UE. This allows the attacker to bypass the 5G NAS AKA
procedure completely. After that, the victim UE gains unpro-

(a)

Victim
UE

Malicious
gNodeB

Radio Connection Establishment
Registration Request

Registration Accept (header 4)
Registration Complete

Internet Access

PDU Session Establishment Request
RRC Reconfiguration

PDU Session Establishment Accept
RRC Reconfiguration Complete

DL NAS Transport (header 4)

(b)

Victim
UE

Malicious
gNodeB

Radio Connection
Establishment

Registration Request
RRC Security Mode

Command (NIA0 & NEA0)
RRC Security

Mode Complete

Measurement Report

RRC Reconfiguration
w/ measConfig

RRC Reconfiguration
Complete

RRC Release

Figure 7: (a) 5G AKA bypass, (b) AS security bypass.

tected access to the Internet through the fake base station. The
attack steps are shown in Figure 7 (a), which we also confirm
end-to-end. Further, Figure 8 shows the trace, where we find
that the victim UE sends DNS queries and starts accessing
the Internet over the unprotected 5G connection.

Exploiting the same vulnerability, we have also experimen-
tally confirmed that the attacker can send a plaintext DL NAS
Transport message with a phishing SMS to the victim [42].
Impact. As the adversary provides unprotected 5G data ses-
sions, the attack leads to severe information leaks. For exam-
ple, by intercepting the DNS queries, she can lead the victim
to phishing websites to acquire sensitive credentials. Further,
with fake SMSs, the adversary can cause panic and lure the
victim into sharing sensitive information or sending money.

10.2 AS Security Bypass (I11)
Several basebands (shown in Table 8) accept RRC Security
Mode Command with the null integrity protection algorithm
(NIA0) and the null encryption algorithm (NEA0). The ad-
versary can exploit this vulnerability to bypass the RRC layer
security and inject any plaintext RRC messages without a
valid MAC.
Attack. When the victim UE initiates the connection to the
malicious gNodeB, the adversary crafts a RRC Security Mode
Command message with null integrity protection and the null
encryption algorithms (NIA0 & NEA0) and sends it to the
victim UE (shown in Figure 7(b)). After that, the victim UE
uses null integrity protection and null encryption in subse-
quent communication. The attacker can send plaintext RRC
Reconfiguration with measConfig IE to retrieve measurement
information from the victim UE. In addition, the attacker can
also send plaintext RRC Release message with redirected-
CarrierInfo IE to downgrade the victim UE to LTE or even
2G network, as shown in a prior work [58]. Furthermore, AS
security bypass can lead to eavesdropping [50], as shown by
previous work on LTE.
Impact. Bypassing the AS security and retrieving the mea-
surement report from the victim UE, the adversary can infer

the location of the victim based on the signal strength infor-
mation in the measurement report [54]. Moreover, the victim
can be downgraded to prior-generation networks [58], and the
communication can be eavesdropped by the adversary [50].

11 Related Work

Finite state machine (FSM) extraction. Several works per-
form automata learning to extract FSMs from protocol im-
plementations of various protocols such as 4G LTE [35],
TLS [23], DTLS [27], IoT [56], SSH [29], BLE [39], etc. In
the area of cellular networks, Chlosta et al. [19] perform au-
tomata learning to model open-source core network projects
but fail to extend to real-world implementations. ProCheker
[40] extracts formal models through program analysis on
open-source implementations and performs security analysis.
DIKEUE [35], on the other hand, performs active automata
learning on black box devices and leverages deviations among
testing devices to find attacks through manual analysis.
Security analysis of cellular protocols. Many works [14,
22, 32, 34, 46, 52] manually create formal models from cel-
lular specifications and perform model checking against
manually crafted security properties. On the other hand,
5GBaseChecker automatically extracts the models from
black-box implementations. Kim et al. [44] identify three
basic properties from 4G specifications and generate test
cases based on them. DoLTEst [50] provides a stateful and
comprehensive set of test cases to detect vulnerabilities for
black-box 4G UE devices focusing on negative test cases.
However, it does not provide positive test cases. UE Secu-
rity Reloaded [15] and SecChecker [58] create 5G SA secu-
rity testing frameworks with static lists of test cases. Con-
tester [17] and Atomic [18], on the other hand, create test
cases from the specifications using natural language process-
ing techniques. However, these works do not create test cases
dynamically depending on the implementations. BASEC-
OMP [42] analyzes the integrity protection of baseband soft-
ware through probabilistic inference and comparative analysis
and checks for inconsistencies by consulting the specifica-
tions after locating them. Some approaches [31, 43, 45] re-
quire significant manual effort to analyze baseband firmware.
Other approaches for baseband firmware include the usage
of SDRs [3, 9], sending crafted messages to analyze vulnera-
bility, and generating unusual messages [26]. However, these
works do not work with black-box UE implementations.

12 Discussion and Limitations

Manual effort. 5GBaseChecker requires domain expertise
to define alphabet selection criteria and manual inspection of
message formats to create an alphabet for testing. Addition-
ally, the expert also needs to implement a 5G-specific adapter
for converting symbols to concrete packets and vice versa.
In addition, despite adopting the majority voting scheme of

Figure 8: Internet access through AKA bypass

prior works [35, 47], observational inconsistencies may still
occur in the over-the-air queries/responses. Once an inconsis-
tency is automatically detected, the user needs to manually
analyze the inconsistent responses and rectify them before
resuming the FSM construction. An expert also needs to man-
ually identify security properties for unresolved deviations
and represent corresponding properties in LTL for automated
model checking with DevLyzer. However, compared to previ-
ous approaches [35, 39], DevLyzer significantly reduces such
efforts by providing a semi-automated framework to resolve
many deviations with one iteration of manual analysis.
Possible missing deviations. 5GBaseChecker relies on devi-
ations in UEs’ behavior to find security and privacy properties
and corresponding flaws. If all UEs have the same insecure/in-
correct behavior, 5GBaseChecker will not identify the corre-
sponding properties and flaws. However, practically, this is
highly unlikely for a diverse set of implementations.
Incompleteness of properties. As 5GBaseChecker’s prop-
erty extraction is guided by implementation deviations, the
tested properties are not exhaustive.
Termination vs. FSM completeness. 5GBaseChecker em-
pirically chooses termination parameters N0, N1, and N2 in
FMS construction to balance between early termination and
completeness of FSM learning. Although larger values of the
parameters may increase the coverage of FSM construction
and thus aid in finding more deviations, they will also increase
the number of OTA queries and time required.

13 Conclusion and Future Work

We develop a scalable and efficient security analysis frame-
work 5GBaseChecker for testing 5G basebands. Our pro-
posed hybrid and collaborative FSM learning technique sig-
nificantly outperforms existing black-box automata learning-
based approaches. Unlike prior works, 5GBaseChecker’s
graph traversal-based model refinement for pairwise FSM
comparison enables it to identify many unique deviations in
5G basebands. Finally, 5GBaseChecker utilizes deviations to
find relevant security properties and design a semi-automated
deviation analyzer that reduces manual effort in triaging and
characterizing deviating traces. In the future, we will extend
5GBaseChecker to analyze 5G session management proce-
dures.

Acknowledgements

We thank the anonymous reviewers and the shepherd for their
feedback and suggestions. We also thank the baseband ven-
dors for cooperating with us during the responsible disclo-
sure. This work has been supported by the NSF under grants
2145631, 2215017, and 2226447, the Defense Advanced Re-
search Projects Agency (DARPA) under contract number
D22AP00148, and the NSF and Office of the Under Secre-
tary of Defense– Research and Engineering, ITE 2326898, as
part of the NSF Convergence Accelerator Track G: Securely
Operating Through 5G Infrastructure Program.

References
[1] 3GPP Standard. www.3gpp.org.

[2] 5GBaseChecker. https://github.com/SyNSec-den/
5GBaseChecker.

[3] bladeRF. https://www.nuand.com/bladerf-2-0micro/.

[4] LTP GCOV extension (LCOV). https://github.com/
linux-test-project/lcov.

[5] Network Signal Guru. https://www.qtrun.com/en/?page_id=34.

[6] Open5GS. https://open5gs.org/.

[7] OpenAirInterface. https://gitlab.eurecom.fr/oai/
openairinterface5g.

[8] srsRAN. https://github.com/srsran/srsRAN_4G.

[9] USRP B210. https://www.ettus.com/all-products/
ub210-kit/.

[10] 3GPP. Non-access-stratum (nas) protocol for 5g system (5gs); stage
3. Technical Specification (TS) 24.501, 3rd Generation Partnership
Project (3GPP), 2023. Version 17.8.0.

[11] 3GPP. Nr; radio resource control (rrc); protocol specification. Technical
Specification (TS) 38.331, 3rd Generation Partnership Project (3GPP),
2023. Version 17.6.0.

[12] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and computation, 75(2):87–106, 1987.

[13] George Argyros, Ioannis Stais, Suman Jana, Angelos D. Keromytis, and
Aggelos Kiayias. SFADiff: Automated evasion attacks and fingerprint-
ing using black-box differential automata learning. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16. Association for Computing Machinery, 2016.

[14] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf
Sasse, and Vincent Stettler. A formal analysis of 5G authentication. In
Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, pages 1383–1396, 2018.

[15] Evangelos Bitsikas, Syed Khandker, Ahmad Salous, Aanjhan Ran-
ganathan, Roger Piqueras Jover, and Christina Pöpper. Ue security
reloaded: Developing a 5g standalone user-side security testing frame-
work. In Proceedings of the 16th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, pages 121–132, 2023.

[16] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Grig-
gio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri,
and Stefano Tonetta. The nuXmv symbolic model checker. In Com-
puter Aided Verification: 26th International Conference, CAV 2014.

[17] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang, Xi-
aozhong Liu, Haixu Tang, and Baoxu Liu. Sherlock on specs: Building
LTE conformance tests through automated reasoning. In 32nd USENIX
Security Symposium (USENIX Security 23), August.

[18] Yi Chen, Yepeng Yao, XiaoFeng Wang, Dandan Xu, Chang Yue, Xi-
aozhong Liu, Kai Chen, Haixu Tang, and Baoxu Liu. Bookworm game:
Automatic discovery of LTE vulnerabilities through documentation
analysis. In 2021 IEEE Symposium on Security and Privacy (SP),
2021.

[19] Merlin Chlosta, David Rupprecht, and Thorsten Holz. On the chal-
lenges of automata reconstruction in LTE networks. In Proceedings
of the 14th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, pages 164–174, 2021.

[20] Merlin Chlosta, David Rupprecht, Christina Pöpper, and Thorsten Holz.
5G SUCI-Catchers: Still catching them all? In Proceedings of the
14th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, pages 359–364, 2021.

[21] Tsun S. Chow. Testing software design modeled by finite-state ma-
chines. IEEE transactions on software engineering, (3):178–187, 1978.

[22] Cas Cremers and Martin Dehnel-Wild. Component-based formal anal-
ysis of 5G-AKA: Channel assumptions and session confusion. In
Network and Distributed System Security Symposium (NDSS), 2019.

[23] Joeri De Ruiter and Erik Poll. Protocol state fuzzing of tls implementa-
tions. In 24th USENIX Security Symposium, 2015.

[24] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[25] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Ben-
jamin Chelf. Bugs as deviant behavior: A general approach to inferring
errors in systems code. ACM SIGOPS Operating Systems Review,
35(5):57–72, 2001.

[26] Kaiming Fang and Guanhua Yan. Emulation-instrumented fuzz testing
of 4G/LTE android mobile devices guided by reinforcement learning.
In 23rd European Symposium on Research in Computer Security.

[27] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri De Ruiter,
Konstantinos Sagonas, and Juraj Somorovsky. Analysis of dtls im-
plementations using protocol state fuzzing. In 29th USENIX Security
Symposium, Online, August 12–14, 2020, pages 2523–2540, 2020.

[28] Paul Fiterau-Brostean, Bengt Jonsson, Konstantinos Sagonas, and
Fredrik Tåquist. Automata-based automated detection of state ma-
chine bugs in protocol implementations. In NDSS, 2023.

[29] Paul Fiterău-Broştean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits
Vaandrager, and Patrick Verleg. Model learning and model checking
of ssh implementations. In Proceedings of the 24th ACM SIGSOFT
International SPIN Symposium on Model Checking of Software, 2017.

[30] Richard Hamlet. Random testing. Encyclopedia of software Engineer-
ing, 2:971–978, 1994.

[31] Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn,
Shinjo Park, Tobias Scharnowski, Tyler Tucker, Patrick Traynor, and
Kevin Butler. Firmwire: Transparent dynamic analysis for cellular
baseband firmware. In Network and Distributed Systems Security
Symposium (NDSS) 2022, 2022.

[32] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino.
LTEInspector: A systematic approach for adversarial testing of 4G LTE.
In Network and Distributed Systems Security (NDSS) Symposium 2018.

[33] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowdhury, Ninghui
Li, and Elisa Bertino. Privacy attacks to the 4G and 5G cellular paging
protocols using side channel information. Network and distributed
systems security (NDSS) symposium2019, 2019.

[34] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowd-
hury, and Elisa Bertino. 5GReasoner: A Property-Directed Security
and Privacy Analysis Framework for 5G Cellular Network Protocol. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19.

[35] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq, Omar Chowd-
hury, and Elisa Bertino. Noncompliance as deviant behavior: An auto-
mated black-box noncompliance checker for 4G LTE cellular devices.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 1082–1099, 2021.

www.3gpp.org
https://github.com/SyNSec-den/5GBaseChecker
https://github.com/SyNSec-den/5GBaseChecker
https://www.nuand.com/bladerf-2-0micro/
https://github.com/linux-test-project/lcov
https://github.com/linux-test-project/lcov
https://www.qtrun.com/en/?page_id=34
https://open5gs.org/
https://gitlab.eurecom.fr/oai/openairinterface5g
https://gitlab.eurecom.fr/oai/openairinterface5g
https://github.com/srsran/srsRAN_4G
https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/ub210-kit/

[36] Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source
learnlib: a framework for active automata learning. In Computer Aided
Verification: 27th International Conference, CAV 2015.

[37] Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm:
a redundancy-free approach to active automata learning. In Runtime
Verification: 5th International Conference, RV 2014.

[38] Natasha Yogananda Jeppu, Thomas Melham, Daniel Kroening, and
John O’Leary. Learning concise models from long execution traces. In
57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020.

[39] Imtiaz Karim, Abdullah Al Ishtiaq, Syed Rafiul Hussain, and Elisa
Bertino. BLEDiff: Scalable and property-agnostic noncompliance
checking for BLE implementations. In 2023 IEEE Symposium on
Security and Privacy (SP), pages 3209–3227. IEEE, 2023.

[40] Imtiaz Karim, Syed Rafiul Hussain, and Elisa Bertino. ProChecker:
An automated security and privacy analysis framework for 4G LTE
protocol implementations. In 2021 IEEE 41st International Conference
on Distributed Computing Systems (ICDCS), pages 773–785. IEEE,
2021.

[41] Fujiwara Bochmann Khendek, S Fujiwara, GV Bochmann, F Khendek,
M Amalou, and A Ghedamsi. Test selection based on finite state models.
IEEE Transactions on software engineering, (591-603):10–1109, 1991.

[42] Eunsoo Kim, Min Woo Baek, CheolJun Park, Dongkwan Kim, Yongdae
Kim, and Insu Yun. BASECOMP: A comparative analysis for integrity
protection in cellular baseband software. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 3547–3563, 2023.

[43] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun, and Yongdae
Kim. Basespec: Comparative analysis of baseband software and cellular
specifications for l3 protocols. In NDSS, 2021.

[44] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. Touching the
untouchables: Dynamic security analysis of the LTE control plane. In
2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019.

[45] Dominik Maier, Lukas Seidel, and Shinjo Park. Basesafe: Baseband
sanitized fuzzing through emulation. In Proceedings of the 13th ACM
conference on security and privacy in wireless and mobile networks.

[46] Rhys Miller, Ioana Boureanu, Stephan Wesemeyer, and Christopher JP
Newton. The 5G key-establishment stack: In-depth formal verifica-
tion and experimentation. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, 2022.

[47] Soo-Jin Moon, Jeffrey Helt, Yifei Yuan, Yves Bieri, Sujata Banerjee,
Vyas Sekar, Wenfei Wu, Mihalis Yannakakis, and Ying Zhang. Alem-
bic: Automated model inference for stateful network functions. In 16th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 19), pages 699–718. USENIX Association, 2019.

[48] José Oncina and Pedro Garcia. Identifying regular languages in polyno-
mial time. In Advances in structural and syntactic pattern recognition,
pages 99–108. World Scientific, 1992.

[49] José Oncina and Pedro Garcia. Inferring regular languages in polyno-
mial updated time. In Pattern recognition and image analysis: selected
papers from the IVth Spanish Symposium. World Scientific, 1992.

[50] CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee, Eunkyu Lee,
Insu Yun, and Yongdae Kim. DoLTEst: In-depth downlink negative test-
ing framework for LTE devices. In 31st USENIX Security Symposium
(USENIX Security 22), pages 1325–1342, 2022.

[51] Shinjo Park, Altaf Shaik, Ravishankar Borgaonkar, and Jean-Pierre
Seifert. White rabbit in mobile: Effect of unsecured clock source in
smartphones. In Proceedings of the 6th Workshop on Security and
Privacy in Smartphones and Mobile Devices, pages 13–21, 2016.

[52] Aleksi Peltonen, Ralf Sasse, and David Basin. A comprehensive formal
analysis of 5G handover. In Proceedings of the 14th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, 2021.

[53] David Rupprecht, Kai Jansen, and Christina Pöpper. Putting LTE
security functions to the test: A framework to evaluate implementation
correctness. In 10th USENIX Workshop on Offensive, 2016.

[54] Altaf Shaik, Ravishankar Borgaonkar, N Asokan, Valtteri Niemi, and
Jean-Pierre Seifert. Practical attacks against privacy and availability in
4G/LTE mobile communication systems. arXiv:1510.07563.

[55] Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D.
Keromytis, and Suman Jana. Hvlearn: Automated black-box anal-
ysis of hostname verification in ssl/tls implementations. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 521–538, 2017.

[56] Martin Tappler, Bernhard K Aichernig, and Roderick Bloem. Model-
based testing iot communication via active automata learning. In 2017
IEEE International conference on software testing, verification and
validation (ICST), pages 276–287. IEEE, 2017.

[57] Qinying Wang, Shouling Ji, Yuan Tian, Xuhong Zhang, Binbin Zhao,
Yuhong Kan, Zhaowei Lin, Changting Lin, Shuiguang Deng, Alex X
Liu, et al. MPInspector: A systematic and automatic approach for
evaluating the security of IoT messaging protocols. In 30th USENIX
Security Symposium (USENIX Security 21), pages 4205–4222, 2021.

[58] Chuan Yu, Shuhui Chen, Ziling Wei, and Fei Wang. SecChecker:
Inspecting the security implementation of 5g commercial off-the-shelf
(cots) mobile devices. Computers & Security, page 103361, 2023.

A Algorithm of DevLyzer

Algorithm 1 DevLyzer Algorithm
Require: Deviation Set (D)
Output: Violation Instance Set Vi for each device bi ∈ B
1: P← /0

2: Du← D ▷ set of unresolved deviating traces
3: while Du is not empty do
4: ψi

u← PickRandom(Du) ▷ pick a random deviation unresolved
5: Pnew← manualAnalysis(ψi

u) ▷ manually analyze deviation and find
new properties

6: P′ ← P∪Pnew
7: for each ψi in D do
8: for each γ

i, j
out in ψi do

9: Mi, j
dev← createFSM(Sin,γ

i, j
out)

10: for each ρ ∈ P do
11: recordViolation(Mi, j

dev,ρ) ▷ model checking
12: end for
13: end for
14: end for
15: for each ψi in Du do
16: resolved← checkResolve(ψi,ρ) ▷ Equation 1
17: if resolved then
18: Du← Du−ψi

19: end if
20: end for
21: end while

B StateSynth Algorithm

The FSM extraction algorithm for StateSynth is provided
in Algorithm 2. It takes as input a set of UEs and benign
network traces. For each UE (bi), StateSynth first builds an
initial FSM Mp

i with Passive Learner and generates an initial
hypothesis model M0

i with Active Learner (lines 4-5). The
deviations between these two FSMs are saved as potential
CEs (TCE) (lines 6-8). Active Learner then checks if these
TCEs are valid for Mi and the implementation and refines

#
Device
Name

Baseband
Vendor

SoC
Model

Baseband
Model

Baseband
Version

Found
Issues

1 Huawei P40 Pro HiSilicon Kirin 990 5G Balong 5000 21C93B373S000C000 I22
2 Hisense F50+ Unisoc Tiger T7510 UDX710 5G_MODEM_20C_W21.12.3_P5 I2 , I5 , I11, I13, I22
3 Samsung Galaxy S21 Samsung Exynos 2100 Exynos 5123 G991BXXU5CVF3 I2 , I3 , I4 , I5, I7 , I8 , I11, I13 , I16, I21, I22
4 Google Pixel 6 Samsung Google Tensor Exynos 5123 g5123b-116954-230524-B-10194842 I2, I3 , I4 , I5 , I7 , I8 , I14, I16 , I21, I22
5 Google Pixel 7 Samsung Google Tensor G2 Exynos 5300 g5300g-230323-230525-B-10200345 I2, I3 , I4 , I5 , I7 , I8 , I14, I16 , I21, I22
6 OPPO Reno7 Pro 5G MediaTek Dimensity 1200 MediaTek M70 M_V3_P10 I6 , I14, I15, I19 , I22
7 ROG Phone 6D MediaTek Dimensity 9000+ MediaTek M80 M2.6.9.22-MT6983_V30 I1 , I6 , I14 , I15, I19 , I22
8 OnePlus Nord 5G Qualcomm Snapdragon 765G Snapdragon X52 .c9-00023-SAIPAN_GEN_PACK-1.422164.2.446371.2 I5 , I12, I16, I18 , I22
9 Nothing Phone (1) Qualcomm Snapdragon 778G+ Snapdragon X53 MPSS.HI.4.3.3-00781-LC_ALL_PACK-1.567500.4.570503.2 I5 , I12, I16, I18 , I22

10 Samsung Galaxy S20+ Qualcomm Snapdragon 865 Snapdragon X55 G9860ZCU3GVL1 I5 , I12, I16, I18 , I22
11 RedMi K40S Qualcomm Snapdragon 870 Snapdragon X55 MPSS.HI.2.5.1.c1-03.59-0810_2007_fde5216cf0 I5 , I12, I16, I18 , I22
12 Quectel RM500Q-GL Qualcomm N/A Snapdragon X55 RM500QGLABR11A06M4G I5 , I12, I16, I18 , I22
13 Black Shark 4 Pro Qualcomm Snapdragon 888 Snapdragon X60 MPSS.HI.2.0.c7-00222-0306_0118_9cec56919e I5 , I12, I16, I18 , I22
14 OnePlus 10 Pro Qualcomm Snapdragon 8 Gen 1 Snapdragon X65 Q_V1_P14 I5 , I12, I16 , I22
15 Motorola Edge+ (2022) Qualcomm Snapdragon 8 Gen 1 Snapdragon X65 M8450_DE10_13.2183.01.98.18R HIPHI_PVT2_NA_CUST I12, I16 , I22
16 iPhone 14 Qualcomm Apple A15 Snapdragon X65 1.70.02 I12, I16 , I22
17 REDMAGIC 8 Pro Qualcomm Snapdragon 8 Gen 2 Snapdragon X70 NX729J_Z69_UN_ZML1T_v312 I5 , I12, I16 , I22
18 OAI UE N/A N/A N/A 2023.w33 I3 , I4 , I6, I10 , I11, I17 , I19
19 srsUE N/A N/A N/A release_22_10 I3 , I4 , I7 , I9 , I10 , I11, I19, I20

Table 8: List of tested devices.

Mi accordingly (lines 11-16). StateSynth also saves any CE
extracted by the Wp-method as TCEs (line 19), and conse-
quently, previously learned CEs are also utilized in this phase
(lines 12-13). After all TCEs are consumed, StateSynth fur-
ther attempts to refine Mi using the Wp-method (lines 17-24)
until the termination condition is reached. Finally, after the
first pass of learning all implementation FSMs, another round
of model refinement is performed to ensure subsequent TCEs
are utilized for prior implementations as well (lines 26-32).

Algorithm 2 StateSynth Algorithm
Require: Network Traces (NT), Basebands Set (B)
Output: FSM model Mi for each device Bi ∈ B
1: TCE← /0 ▷ TCE is a ordered set of total CEs
2: UCE← /0 ▷ UCE is a dictionary of used CEs
3: for Bi ∈ B do
4: Mp

i ← PassiveLearning(NT [Bi])
5: M0

i ← InitializeHypothesisModel ▷ Start Active Learning
6: T ← FSMComparator(Mp

i ,M
0
i)

7: TCE← TCE ∪T
8: UCE[Bi]← /0

9: Mi←M0
i

10: while learning not terminate do
11: for CE ∈ TCE \UCE[Bi] do
12: if CE is valid then
13: Mi← Re f ineModel(Mi,CE)
14: UCE[Bi]←UCE[Bi]∪{CE}
15: end if
16: end for
17: CE←WPmethod.Search()
18: while CE ̸= Null do
19: Mi← Re f ineModel(Mi,CE)
20: TCE← TCE ∪{CE}
21: UCE[Bi]←UCE[Bi]∪{CE}
22: CE←WPmethod.Search()
23: end while
24: end while
25: end for
26: for Bi ∈ B do
27: for CE ∈ TCE \UCE[Bi] do
28: if CE is valid then
29: Mi← Re f ineModel(Mi,CE)
30: end if
31: end for
32: end for

Message Input Symbols Output Symbols
Special Symbol
Enable Regis-
tration

enable_reg reg_req
reg_req_guti

RRC Symbols
Security
Mode Com-
mand

rrc_sm_cmd_int
rrc_sm_cmd_replay
rrc_sm_cmd_NIA0_int
rrc_sm_cmd_NIA0_plain

rrc_sm_comp
rrc_sm_failure
null_action

RRC Recon-
figuration

rrc_reconf_protected
rrc_reconf_plain
rrc_reconf_replay

rrc_reconf_comp
null_action

UE Capabil-
ity Inquiry

ue_cap_enquiry_protected
ue_cap_enquiry_plain

ue_cap_info
null_action

UE informa-
tion Request

ue_info_req_protected
ue_info_req_plain

ue_info_resp
null_action

Counter
Check

counter_check_protected
counter_check_plain

counter_check_resp
null_action

NAS Symbols
Identity
Request

identity_req_plain identity_resp
null_action

Authentication
Request

auth_req_plain auth_resp
null_action

Security
Mode Com-
mand

nas_sm_cmd_int
nas_sm_cmd_replay
nas_sm_cmd_NIA0_int
nas_sm_cmd_NIA0_plain
nas_sm_cmd_header2_protected

nas_sm_comp
nas_sm_reject
null_action

Registration
Accept

reg_accept_protected
reg_accept_header4_plain
reg_accept_plain

reg_comp
null_action

Configuration
Update Com-
mand

conf_update_cmd_plain
conf_update_cmd_protected
conf_update_cmd_replay

conf_update_comp
null_action

Deregistration
Request

dereg_req_protected
dereg_req_plain

dereg_accept
null_action

Table 9: Tested Symbols

	Introduction
	Preliminaries
	Overview of 5GBaseChecker
	Problem Statement
	Solution Space
	Solution Sketch of 5GBaseChecker
	Threat Model

	Challenges and Solutions
	Challenges of 5GBaseChecker Design
	Our Approach

	StateSynth: FSM Construction
	Hybrid Learning for Bootstrapping
	Collaborative Learning for Validation
	Alphabet Selection
	Termination Strategy
	Efficient and Consistent Learning

	DevScan: Finding Deviations
	Unique Paths For Deviations
	Graph Traversal-Based Model Refinement

	DevLyzer: Triaging Deviations
	Extracting Properties
	Checking Properties For Violation
	Illustration of DevLyzer

	Implementation
	Evaluation
	Evaluation Setup
	Deviations and Flaws
	Mishandling Messages (I1-I7)
	Mishandling Security Headers (I8-I9)
	Mishandling Information Elements (IEs) (I10-I11)
	Underspecified Specifications (I12-I21)
	Flawed Specifications (I22)

	Efficiency of StateSynth
	Efficacy of DevScan
	Effectiveness and Efficiency of DevLyzer
	Comparison with Current Testing Methods

	Attack Case Study
	5G AKA Bypass (I8)
	AS Security Bypass (I11)

	Related Work
	Discussion and Limitations
	Conclusion and Future Work
	Algorithm of DevLyzer
	StateSynth Algorithm

