
BLEDiff: Scalable and Property-Agnostic
Noncompliance Checking for BLE Implementations

Imtiaz Karim∗, Abdullah Al Ishtiaq‡, Syed Rafiul Hussain‡, and Elisa Bertino∗
∗Purdue University, ‡Pennsylvania State University

∗{karim7, bertino}@purdue.edu, ‡{abdullah.ishtiaq, hussain1}@psu.edu,

Abstract—In this work, we develop an automated, scalable,
property-agnostic, and black-box protocol noncompliance
checking framework called BLEDiff that can analyze and
uncover noncompliant behavior in the Bluetooth Low Energy
(BLE) protocol implementations. To overcome the enormous
manual effort of extracting BLE protocol reference behavioral
abstraction and security properties from a large and complex
BLE specification, BLEDiff takes advantage of having access to
multiple BLE devices and leverages the concept of differential
testing to automatically identify deviant noncompliant behavior.
In this regard, BLEDiff first automatically extracts the protocol
FSM of a BLE implementation using the active automata learning
approach. To improve the scalability of active automata learning
for the large and complex BLE protocol, BLEDiff explores the
idea of using a divide and conquer approach. BLEDiff essentially
divides the BLE protocol into multiple sub-protocols, identifies
their dependencies and extracts the FSM of each sub-protocol
separately, and finally composes them to create the large protocol
FSM. These FSMs are then pair-wise tested to automatically
identify diverse deviations. We evaluate BLEDiff with 25
different commercial devices and demonstrate it can uncover 13
different deviant behaviors with 10 exploitable attacks.

Index Terms—Bluetooth Low Energy, Noncompliance check-
ing, Implementation Security

I. INTRODUCTION

Bluetooth Low Energy (BLE) has been the most widely
used low-energy communication protocol for the last several
years. With the recent impact of COVID-19, BLE devices have
seen an unprecedented surge, with 7 billion device shipments
expected in 2026 [1]. As these BLE devices are ubiquitous
and support numerous services such as audio streaming,
data transfer, location service, medical equipment, and many
more, it is essential that the BLE devices are compliant
with the protocol specifications to meet the security
and privacy requirements recommended by the standard.
Recent works, however, have shown several noncompliance
instances of BLE devices with critical security and privacy
consequences [2], [3], including bypassing key establishment
procedure (aka., pairing procedure) and accepting messages
encrypted with the default key. Noncompliance checking of
BLE implementations is, nonetheless, challenging due to a
large protocol standard [4] (3000+ pages) written in natural
language with underspecifications, ambiguities, and in some
cases conflicting specifications [3]. Since manual identification
of noncompliance protocol behavior in large and complex
BLE implementations is error-prone and time-consuming, in
the paper, we aim to develop the first automated and plug &
play noncompliance checker for BLE devices.

Prior efforts [2], [3], [5]–[11] on analyzing the security and
noncompliance of the BLE protocol have identified several
implementation flaws. Although they show great promise, they
have at least one of the following limitations. The approaches:
(i) are completely manual and are not scalable for analyzing
a large protocol such as BLE [3], [5], [6]; (ii) only analyze
the specifications either manually [7], [8], [12] or using
formal verification [3], [9] with the manually extracted abstract
protocol model and security properties; (iii) use fuzzing [2],
[13] through a hand crafted bug oracle or reference state ma-
chine; (iv) use reverse-engineering [10], [11], requiring heavy
domain expertise and tedious manual effort, which are not
directly portable to devices of other vendors and models. To
improve the unsatisfactory state of affairs, in this paper, we set
out to design an automated, scalable, property-agnostic, and
black-box protocol noncompliance checking framework called
BLEDiff that can analyze and uncover noncompliant behavior
in the BLE protocol stack implementations. Performing non-
compliance checking in a black-box fashion makes BLEDiff
agnostic to the device’s underlying embedded operating sys-
tems, peripherals, and programming languages, and thus en-
ables it to cover a diverse set of BLE devices with different in-
put/output capabilities, many of which were not studied before.

Identifying noncompliant behavior in a property-agnostic
way, however, warrants capturing and representing the refer-
ence protocol behavior Bref in a formal language and compar-
ing it with a given BLE protocol implementation Bi. Capturing
BLE protocol’s reference behavioral abstraction from large
and complex Bluetooth specifications, riddled with ambiguities
and underspecifications, requires a juggernaut manual effort
which is often error-prone as well as incomplete. BLEDiff
capitalizes on having access to multiple BLE devices and
leverages the concept of differential behavior, in which if two
implementations produce two different output sequences for
the same input sequence, at least one of the implementations
is noncompliant with respect to the specification, even though
it is not clear which one. BLEDiff, therefore, uses differential
behavior, also called deviant behavior analysis, as a proxy for
identifying noncompliant behavior in a property-agnostic way
without requiring any reference protocol behavior abstractions.
Therefore, the underlying noncompliance checking problem
that BLEDiff addresses can be reduced to the problem of
identifying deviant behavior among multiple BLE implemen-
tations and can be further stated as follows: Given black-box
access to multiple BLE implementations (B1,B2, . . . ,Bn), is
the implementation Bi equivalent to Bj (i 6= j), failure of



which approximates that at least one of Bi and Bj deviates
from the specification?

In this paper, for our automated and black-box compliance
checker BLEDiff, we use a Finite State Machine (FSM) as the
input-output protocol abstraction and use the FSM to identify
diverse noncompliant behavior. For automatically extracting
the protocol FSM of BLE implementations, BLEDiff relies on
an active FSM learning approach. In FSM learning, the learner
starts from a known initial state, sends a sequence of over-
the-air protocol messages (queries) to the device-under-test,
and, based on the responses to the queries, infers the FSM of
the underlying protocol implementation. Although prior work
has used automata learning in the context of testing various
protocols [14]–[22], in most cases, automata learning has been
shown to be viable for only a specific layer [22], or for
specific procedures [14], [15] or within a limited scope [23].
This is primarily due to the scalability issues even when
the protocols are less complex and smaller than BLE. As a
consequence, active FSM learning often fail to learn security-
critical interactions and to complete FSM exploration. In
addition, automata learning has been challenging and a never
tried technique for automated FSM extaction of BLE-like
human-in-the-loop protocols where human intervention (e.g.,
entering a passphrase aka., pass keys or checking numeric
values at devices) is essential.

To address the scalability challenge of FSM inference using
automata learning, BLEDiff explores the idea of using a
divide and conquer approach. At its core, BLEDiff divides
the BLE protocol into multiple sub-protocols, identifies their
dependencies and initial states, extracts the FSM of each sub-
protocol separately, and finally composes them. The critical
insights of dividing and merging/composing are the following:
(i) input messages for one sub-protocol (e.g., LenReq message in
BLE link layer) in most of the cases do not induce any changes
to the state machine of other sub-protocols (e.g., pairing and
bonding of SMP); and (ii) completion of one sub-protocol
enables the execution of another one. For instance, the Security
Manager Protocol (SMP), responsible for pairing and bonding
of BLE devices, can be executed only when the underlying
link layer connection establishment procedure is completed.
To side-step human intervention during protocol runs, BLEDiff
uses keystroke simulation to tackle all the possible human-in-
the-loop association methods, such as passkey entry, numeric
comparison, and out-of-band.

Once the FSMs have been extracted, the second part of
BLEDiff is to devise an approach to identify noncompliant
behavior. To resolve this, BLEDiff designs a property- and
reference FSM-agnostic differential analysis in which it iden-
tifies deviant behavior as a proxy for identifying noncompliant
behavior. In the context of BLE, deviant behavior is a sequence
of inputs for which the two FSMs under analysis generate
distinct output sequences when executed from the initial state
of the protocol. BLEDiff, therefore, reduces the problem of de-
viant behavior identification to a model-checking problem with
a safety property. BLEDiff composes two FSMs under analysis
and identifies deviant behavior-inducing input sequences (i.e.,

traces) by following the counterexamples, i.e., violations of the
safety property: Two FSMs will always generate same outputs
for the same inputs. The automatic identification of diverse
deviant inducing traces between two FSMs is, however, chal-
lenging because existing model-checking tools uncover only
the first counterexample/deviation and then stop exploration.
To address this, we design a model-refinement-based deviant
behavior identification scheme in which BLEDiff, among
two FSMs under comparison during a pairwise differential
analysis, refines an FSM based on the output of other FSM
where two outputs initially mismatched and runs the model
checker again. This time the model checker finds a newer
deviation with a higher depth. We run the model checker until
we run out of deviations and both the FSMs are the same.
The closest to our work is the elimination-based equivalence
checker designed for 4G LTE protocol [21]. This approach,
however, eliminates deviation-inducing transitions to further
explore other deviant behavior, causing the FSMs to become
disjoint and thus failing to find higher depth deviations.

The deviant traces are then analyzed based on two root
causes: implementations deviate from specification [4] or the
specification is ambiguous. These deviations are potential
vulnerabilities and are grouped into exploitable attacks or
potential interoperability issues.
Findings. To test the effectiveness of BLEDiff, we evaluate
it with 25 devices from 9 different vendors. BLEDiff found a
total of 13 unique deviations in the devices. Among them, 10
are exploitable attacks, and two are potential interoperability
issues between different devices. After root cause analysis,
eleven of them have been confirmed as deviations from the
standard and two as standard being unclear or ambiguous.
Among the attacks, two cause security bypass, two crash, and
others cause denial-of-service attacks.
Contributions. In summary, the current paper makes the
following contributions:
• We propose BLEDiff– an automated, scalable, property- and

reference FSM-agnostic noncompliance checking frame-
work that analyzes and uncovers vulnerabilities in BLE im-
plementations based on automata learning and identifying
deviant behavior.

• To the best of our knowledge, we are the first to utilize the
idea of dividing and conquering the state space to address
the scalability of automata learning in FSM extraction.

• We design a BLE checking module that automatically
identifies deviations at higher depths of an FSM compared
to the state-of-the-art.

• We implement and evaluate BLEDiff with 25 different
devices and demonstrate it can uncover 13 different deviant
behaviors with 10 exploitable attacks including 2 security
bypass, 2 crash, and 7 denial-of-service attacks.

Responsible disclosure. We have responsibly disclosed the
findings of our work to all the affected vendors and Bluetooth
SIG, and are actively cooperating with them for mitigation.
The bugs have been acknowledged by Google, Nordic Semi-
conductors, Huawei, Microchip, Samsung, and STM electron-
ics and 9 CVEs have been assigned so far. Other vendors are



still reviewing the vulnerabilities. The responsible disclosure’s
status can be tracked here: https://blediff.github.io/.
Open-source. To help vendors and foster future research,
BLEDiff is open-sourced at: https://github.com/BLEDiff.

II. BACKGROUND

In this section, we provide an overview of the BLE protocol,
define finite state machines, and discuss high-level details of
active automata learning.

A. Bluetooth Low Energy (BLE)

Bluetooth is a well-established standard for short-range
communication over public radio frequency channels across
a diverse range of devices, including mobile phones, IoT
devices, computers, headphones, smart watches, etc. Unlike
Bluetooth Classic, Bluetooth Low Energy (BLE) is more
focused on the energy constraints of low-cost IoT devices.
BLE Protocol Stack. The BLE protocol stack is divided into
two parts. At the lowest level, the BLE controller consists of
the Physical Layer (PHY), which deals with transmission and
reception of over-the-air packets, modulation, antenna switch-
ing, etc., and Link Layer (LL), which maintains connections
at a logical level and encryption. Above that, the host includes
Logical Link Control and Adaptation Protocol (L2CAP), At-
tribute Protocol (ATT), Generic Attribute Protocol (GATT),
and Security Manager Protocol (SMP).The SMP defines all
security-related procedures, such as pairing, bonding, and
authentication.
BLE Procedures. BLE communication works in a central-
peripheral system, where the peripheral device broadcasts
advertisement indications to announce its presence, and the
central initiates the connection. After connection, a few link
layer optional packets are exchanged between the two devices
to negotiate several connection parameters. After that, the
pairing procedure takes place by exchanging PairReq/PairResp.
These packets include different I/O capabilities (keyboard,
display, no input, no output, out-of-band data availability).

Based on these capabilities BLE has four types of associa-
tion methods: just works, numeric comparison, passkey entry,
and Out-Of-Band (OOB). Just works association is appropriate
when at least one of the devices does not have any display
(output) or keyboard (input) and assumes the Temporary Key
(TK) as 0 while pairing. In numeric comparison, each end
is shown a six-digit number for comparison, and users are
prompted to enter “yes” or “no.” OOB association is possible
when an out-of-band mechanism (e.g., NFC) can be used
to discover or exchange cryptographic numbers for pairing.
Finally, in the passkey entry association model, the user is
shown a six-digit number on one device and is required to
input the same number on the other.

Furthermore, two types of pairing may be supported–legacy
pairing and Secure Connections (SC). In secure connections,
instead of a Short Term Key (STK) as the legacy pairing,
a Long Term Key (LTK) is generated. From version 4.2,
all the devices support both legacy and secure connections
pairing. After the pairing procedure, the link layer encryption
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Fig. 1: BLE procedures

procedure is performed with a three-way handshake. At this
point, the connection is encrypted, and the key distribution pro-
cedure takes place, which establishes encryption information,
identification, address, and signing information. Other than
these procedures, a BLE device terminates a connection using
TerminateInd or when a device goes out of range. It can also
reconnect with a paired and bonded device by sending ConReq

and enable encryption by repeating the link layer encryption
procedure. The details of these procedures are shown in Figure
1, where packet sequences and directions are available as well.

B. Finite State Machine (FSM)

For BLEDiff, we define a finite state machine (M) as a
6-tuple (S,S0,Ψ,Σ,Λ,Ω), where S is a finite set of states,
S0 ∈ S is the initial state of the FSM. Σ and Λ are the sets
of input and output alphabets, respectively, which represent
the set of possible input and output messages. The transition
relation (Ψ : S × Σ → S) maps the pair of the current state
and an input symbol to the corresponding next state, and the
output relationship (Ω : S×Σ→ Λ) maps the pair of a current
state and an input symbol to the corresponding output symbol.

C. Active Automata Learning

Automata learning is the process of learning the behavior
of a system from a set of execution traces. Automata learning
techniques can be classified into two major classes–passive

https://blediff.github.io/
https://github.com/BLEDiff


automata learning and active automata learning. In passive
learning, the system is inferred from a set of given execution
traces. On the other hand, active automata learning is an
interactive technique where the learner generates queries and
infers the behavior of the system from the outputs of those
queries.

Active automata learning techniques are mostly built upon
the L* algorithm [24]. These techniques [24], [25] learn the
Deterministic Finite Automaton (DFA) for a given black-box
system. Given the input alphabet, Σ (e.g., a, b) where a,b are
input symbols), the algorithms generate sequences (e.g., a, aa,
aba, abaa, ...), and probe the black-box system by resetting
it between sequences. With a series of input sequences, a
hypothesis FSM consistent with input-output pairs seen so far
is built. This stage is called the hypothesis construction phase,
and the queries generated in this phase are called membership
queries. The learner iteratively refines the hypothesis FSM
until it is complete (i.e., the set of probing sequences cover
the state space of the hypothesis). After the hypothesis FSM
is consistent and complete, the learner moves on to the model
validation phase, where it queries an equivalence oracle,
which checks whether the inferred FSM is identical to the
black-box system and provides a counterexample if they are
not. If the oracle reports that the hypothesis is identical to
the black-box system, the algorithm terminates. Otherwise,
the learner uses the counterexample to further refine the
hypothesis. This process repeats until the oracle reports no
counterexamples. In real scenarios, the existence of an oracle is
often not feasible. However, the lack of a deterministic oracle
can be approximated with a series of membership queries
cleverly produced for this purpose [26].

III. OVERVIEW

In this section, we discuss the threat model, challenges, and
a high-level description of BLEDiff.

A. Scope of Analysis

Our analysis covers the security-critical layers of the host
and controller of the BLE protocol. Particularly, we study
interactions in the Link Layer (LL), Security Manager Pro-
tocol (SMP), Logical Link Control, and Adaptation Protocol
(L2CAP). These layers manage the most critical security
procedures, such as pairing, bonding, encryption, encryption
pause and authentication. Our approach BLEDiff also enables
the analysis of all four association methods (just works,
numeric comparison, passkey entry, out-of-band) and different
pairing procedures (legacy and secure connections) associated
with different I/O capabilities. Last but not the least, since
security-related protocol behavior is identical in both BLE cen-
trals and peripherals and BLE peripherals are more pervasive
than BLE centrals [1], this work focuses on noncompliance
checking for BLE peripheral implementations only.

B. Threat Model

We consider the communication channels between the cen-
tral and the peripheral subjected to adversarial influence. Our
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Fig. 2: Modules of BLEDiff

attacker model follows the one defined by previous works [2],
[3], [7], [8] and comprises either a passive or an active attacker
that differs in capabilities and restrictions. The passive attacker
can observe arbitrary communication between the central and
the peripheral. The active attacker acts as a central and can
additionally intercept, replay, modify, drop, or delay messages,
without knowing the key material of devices not owned by
the attacker. Also, the adversary cannot replace the firmware
of the peripheral. Since BLE is a short-range communication
protocol, we assume that the distance between the adversary
and the peripheral is within the BLE range.

C. Problem and Solution Outline

For a black-box BLE protocol implementation B of a BLE-
enabled smartphone, development board, IoT device, BLEDiff
aims to find input sequences ∆i = σ1σ2σ3 . . . σj . . . σm where
σj ∈ Σ for which the corresponding output sequences does not
follow the one provided by the standards. The first challenge
for solving this problem for BLE devices is to automatically
extract the behavioral abstraction (e.g., FSM) of a protocol
implementation. Since the reference FSM of BLE protocol
is not present yet and is hard to manually construct, the
second challenge is to devise an approach for identifying
diverse noncompliant behavior in the extracted implementation
B without having access to the reference FSM.

To address the first challenge, BLEDiff extracts an approx-
imate FSM (Mj) for each BLE implementation Bj using
active automata learning approach. To resolve the second
challenge, BLEDiff leverages the access to multiple BLE
implementations, and for each pair of extracted FSMMj and
Mk, find input sequences of the form ∆i such that for ∆i,
both Mj and Mk generate different output sequences. The
output of BLEDiff is ∆i which induces the deviant behavior.

D. Challenges of Designing BLEDiff

BLEDiff, as shown in Figure 2, works with two main mod-
ules: the BLE Learning module and the BLE checking module.
The challenges of BLEDiff, therefore, can be grouped into two
broad categories: (i) learning the FSM of a diverse set of BLE
protocol implementations; (ii) identifying noncompliance from
the learned FSMs.

1) Learning the BLE FSM of an implementation
For learning the FSM of a BLE implementation, we use

an active automata learning approach. However, effectively
applying active automata learning for BLE protocol imple-
mentations requires solving some non-trivial challenges. In
the following, we discuss these challenges and the insights
on addressing the challenges.



(C1) Scalability. Automata learning typically runs into severe
scalability issues, particularly when the input/output alphabet
size is large. Although this is not new, automata learning
with Over-The-Air (OTA) queries and responses makes the
scalability issue worse due to the highly unreliable nature of
the wireless communication medium. This actually warrants
running the same query multiple times to meet sufficient
confidence in learning, and thus takes several days or months
to extract an FSM. In case of BLE, this problem is critical due
to the following reasons. First, the BLE protocol has different
security procedures (secure connections, legacy pairing) based
on the device’s capabilities. It is essential to explore all the
security procedures as it has already been shown that secure
or legacy pairings can affect each other and cause severe
security issues [2], [12]. Second, the BLE security procedures
are distributed over multiple layers. For instance, pairing and
bonding are part of the Security Manager Protocol (SMP),
whereas encryption and encryption pause procedures are
part of the Link Layer (LL) protocol. Exploring all critical
security procedures necessitates the scope of BLEDiff to be
tremendously large compared to previously tested protocols.
Although previous works [14], [27] have adopted techniques
such as caching and adding constraints, however, these are not
enough to handle the scalability of BLE automata learning.
Insights on addressing C1: For addressing this important
problem related to scalability, instead of extracting one FSM,
BLEDiff utilizes the idea of a divide-and-conquer approach. In
the case of BLE, applying a divide-and-conquer approach for
FSM learning ensues the challenge of dividing the protocol
in such a way that, later on, they can be merged together
systematically. We divide the implementation space into three
distinct sub-protocols: LL, SMP, and reconnection procedures.
BLEDiff learns the FSM for each of them separately. The
critical insight behind this divide is that one sub-protocol does
not induce any change to the state machine of the other sub-
protocols i.e., the FSMs do not react instantaneously. Now
the next critical task is to merge the inferred FSMs together.
To solve this challenge, an idea can be to perform a cross-
product-based cascade composition [28]. However, that will
result in a large FSM, which is not necessarily optimized. As
the completion of a sub-protocol enables the execution of the
next sub-protocol, we can detect the states where the different
layer procedures are completed (e.g., LL procedures complete
and SMP procedures start when the device responds with a
PairResp). Coupled with this insight, we can do a sequential
merging for the FSMs, which entails a minimal but complete
FSM of the large protocol implementation.
(C2) Intertwined BLE protocol is not suitable for designing
a mapper. Another major challenge for applying active
automata learning in the context of BLE protocol state
machines involves developing BLE specific mapper. The
mapper facilitates communication between the learner and the
BLE device. It needs to convert the abstract input symbols
in the membership queries to concrete OTA packets and send
them to the BLE device. In the same vein, it also needs to
decode the response from the BLE device and convert it back

to an abstract output symbol comprehensible to the learner.
Developing such a BLE-specific mapper is challenging
because protocol layers are intertwined and have strong
temporal correlations among their operations. In our case,
following a divide-and-conquer approach, we need to develop
three separate mappers that can operate independently from
the logic of the other protocol layers.
Insights on Addressing C2: We have developed three BLE-
specific mappers that can set the protocol to the required state,
and transparently send and receive messages based on the
direction of the learner. The mapper can handle complex multi-
level, stateful interactions of the BLE protocol.
(C3) Standard-compliant non-determinism in link layer pro-
cedures. Unlike BLE’s other layers’ procedures that are only
triggered by a central, the procedures for central-peripheral
connection setup at the link layer, such as feature, and version
requests, can be triggered by both central and peripheral
without following any strict ordering as specified by the
standard. As a result, the order of the origination of such
procedures at the link layer is implementation dependent. If
usual model learning is applied here, due to this protocol de-
sign, this will create spurious deviations while comparing two
implementations even though none of them actually deviate
from the specification.
Insights on addressing C3: We design our LL mapper
differently from all the previous works [14], [15], [21].
The high-level idea is to abstract the peripheral-triggered
request messages from the learner (shown in Figure 4). Con-
cretely, whenever for an input request, the mapper receives a
peripheral-generated link layer request as output, the mapper
takes the following steps: (i) it sends a response to the
peripheral internally without notifying the learner about the
output; (ii) waits for the response of previously send request;
(iii) whenever it receives the response for the previous input
request, the response is passed to the learner. Thus the mapper
completely abstracts the peripheral-triggered LL requests and
let the learner learn a consistent FSM of the peripheral.
(C4) BLE random addressing and human interaction affect
automation. For automata learning, the learner needs to run a
significant number of OTA messages to the SUL. Each time
a query is run, the device needs to be reset. But resetting a
device also changes the MAC address of a device, if a random
address is used by a device to protect its privacy. On the other
hand, depending on the association model used (e.g., passkey
entry or numeric value comparison), human interaction may be
required in the pairing procedure. These become a challenge
for building a fully automated FSM learning system.
Insights on addressing C4: We design a fully automated
procedure to identify the changing random MAC address of
the device. To learn the address, we design a probing and
set-subtraction method where the learner first probes for a
time period T1 to get a set of available BLE devices A. The
learner then turns on the device under test and probes for
another time period T2 (T1 and T2 are non-overlapping) to
get a set of available BLE devices B. The learner obtains the
address of the target device by computing a set subtraction



B − A. For addressing human interactions required during
pairing procedures, the learner simulates taps or keyboard
inputs when prompted.

2) Identifying noncompliance from FSMs
Once we have extracted the protocol state machines of

the BLE implementations under test, we need to find non-
compliance instances. This would have been simpler if a
reference FSM of the protocol was available. However, in the
case of BLE, this poses a challenge as there is no reference
FSM available from the specifications [4]. To resolve this,
we use the idea of pairwise differential testing of protocol
state machines extracted from different implementations to
identify deviant behavior inducing input sequences. We use
these input sequences as a proxy for identifying noncompliant
behavior. Another major challenge for FSM comparison is how
to automatically identify not only one but many diverse de-
viant behavior inducing input sequences. Existing equivalence
checking approaches [29] are insufficient for our purpose as
they neither have the notion of diversity nor the capability to
provide multiple deviant behavior inducing input sequences.
Insight on addressing the challenge. To resolve this chal-
lenge, we reduce the problem of equivalence checking to a
model-checking problem of a safety property. We pose a series
of model-checking queries, one for each pair of distinct output
symbols. However, checking the safety property in a model
usually returns the same deviant trace, which in most cases
is the shortest one. To find diverse deviations, we need to
define a way to modify the FSM so that we can get different
deviations. For this, a recent work DIKEUE [21] proposes the
idea of elimination-based model modification, where the tran-
sition that causes the deviation is eliminated from the model.
This has a critical limitation as eliminating the transitions
makes the FSMs disconnected and hinders the exploration of
deviant behavior inducing input sequences deep into the FSMs,
which is highly desirable in finding noncompliance in protocol
implementations. To alleviate this, we adopt a refinement based
model modification, where instead of removing the transition,
we refine the transition in one of the FSMs under consideration
by changing that transition’s output to that of the other FSM so
that two FSMs become equivalent up to that transition. Thus
the same deviation will not be generated by the model checker
if run again. This refinement is carried out until there are no
more deviations left and both the FSMs are equivalent based
on the posed safety property.

IV. DETAILED DESIGN OF BLEDiff

A. Divide and Conquer Based FSM Learning

Due to the BLE protocol consisting of multiple layers and
numerous procedures, it is extremely challenging to infer the
whole FSM of the BLE implementation. Essentially, if all in-
put/output symbols of both layers are used at once, it runs into
state space explosion and takes an unreasonable time to infer
the FSM. To resolve this, BLEDiff takes a divide-and-conquer
approach to infer FSMs separately. In the divide phase, the
protocol is split into three parts, and FSM for each part is in-
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ferred. In the conquering phase, the FSMs are merged together
to create the large FSM of the protocol implementation.

1) Divide Phase
In this phase, following our insight of creating non-

instantaneously reacting FSMs, we divide the protocol into
three separate parts (i) Link Layer Control Protocol; (ii)
Security Manager Protocol (SMP); (iii) BLE reconnection, and
learn FSMs for them separately.
Alphabet set selection. The first decision for model learning
is to select the initial alphabet set, i.e., the set of input
and output symbols. The number of input symbols relies on
the kinds of considered protocol messages. Once the input
symbols are selected, then the output symbols are obtained
from the protocol specification. In order to reason about
security-critical behavior, we include several predicates of
an input symbol. More elaborately, we employ (i) field-level
predicates of an input/output message by applying different
operations, including changing the value of a field either
to zero or to the max, and (ii) packet-level predicates, e.g.,
changing an encrypted packet to plaintext. We apply packet-
level predicates to all possible encrypted packets and field-
level predicates to only security-sensitive fields, e.g., public
keys, confirmation, interval, and timeout values. Note that each
predicate applied to a symbol introduces a new symbol. Such
a packet- and field-level predicate mechanism allows us to
minimize the total number of input/output symbols. The list
of all input/output symbols for all three parts of the protocol
is shown in Table VII in the Appendix.
Termination. Termination is a critical issue for model learn-
ing. The termination strategy should provide a balance be-
tween termination and coverage. As we are employing a
divide-and-conquer approach, we have to make sure each FSM
reaches the connected state before moving on to the next
FSM. For example, the FSM of the SMP procedure starts
after the LL’s FSM completes the link layer connection. We
can detect the states where the link layer control procedure is
completed based on the output symbols. The link layer proce-
dure is completed when a PairReq message is responded with a
PairResp. Similarly, the SMP procedures are completed with a
DHKeyCheckSend responded with DHKeyCheckRecv, and finally, the
reconnection is completed when the encryption starts, i.e., the
StartEncResp from central is responded with a StartEncResp from
the peripheral.We employ this domain knowledge, and as soon
as the respective FSM gets these output symbols and completes
the layers connection, we terminate the learning for that FSM.
We utilize this termination strategy for merging the FSMs in
the conquering phase of FSM learning (discussed in IV-A2).
Separate mappers for each part. One of the crucial com-
ponents of BLE Learning module is the design of the mapper.
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The mapper acts as a glue between the SUL and the learner
(shown in Figure 3) and builds a reliable interface from the
learner to each protocol layer. For each input symbol from the
learner, the mapper waits a pre-defined time for an output sym-
bol to be received from the SUL. In case of a timeout, a pre-
defined Null symbol is returned to the learner by the mapper. In
our case, we design three mappers for each part of the protocol.
This is necessary as each mapper has separate initial states and
some unique challenges, which we discuss in detail below.
¬ Link Layer (LL) Mapper. For LL inference, the initial
state is set to the beginning of the link layer procedures. The
LL protocol messages are selected as input symbols, and
the corresponding responses as output symbols. However, as
discussed earlier, there can be inconsistencies in the inferred
LL FSM due to the protocol design. This is due to the
fact that the same procedure can be triggered by both the
peripheral and the central. This can create spurious deviations,
i.e., false positives. To resolve this, the mapper abstracts out
SUL-originated LL messages and only pass on the response
messages to the learner. For instance, as shown in Figure 4,
in case the mapper receives an SUL-generated message
LenReq (red colored), it automatically responds with a LenResp.
However, this LenReq is not passed on to the learner. The
mapper needs to respond to this LenReq internally because,
in some implementations, if the response is not received, the
device does not respond to future messages. Through this
design, the mapper facilitates the learner to learn a consistent
FSM for all the devices and removes the possibility of false
positives, i.e., a deviation that is neither an implementation
issue, nor an issue with the protocol standards.
 SMP Layer Mapper. As the name suggests, the security
manager protocol is the most important layer for BLE imple-
mentation with respect to security. For the SMP layer infer-
ence, the initial state of the learner is set to the beginning of the
SMP. Three critical security operations, pairing, bonding, and
authentication, are covered here. To cover all possible associa-
tion, pairing and authentication modes, we include all possible
I/O capabilities (no input no output, display yes/no, keyboard).
To automate the learning process, we fix the input to all zeroes
in cases where an input is required from the central. Similarly,
on the peripheral side, we automate the process to input the
required values to complete all the SMP procedures. More on
this is discussed in the following subsection on handling reset,
human interaction, and BLE random addressing.
® Reconnection Mapper. For this scenario, we move the initial
state to the reconnection state, i.e., both devices have already
paired and bonded and they try to reconnect with each other.
To simulate the reconnection scenario, the mapper first pairs
and bonds with the peripheral and then intentionally drops the
connection to create the scenario of reconnection. Reconnec-

tion is critical to test device authentication, encryption and
encryption pause procedures. To achieve this, we design our
mapper to complete both link layer and SMP procedures and
go through pairing and bonding. After bonding, the connection
is forcefully disconnected and connected again to test the
reconnection procedures.
Applying existing optimizations. Apart from this, we also
include the previous approach to improve scalability. One
of the known and most popular approaches to improving
the scalability of model learning is query caching. In the
model validation stage, the learner can generate the same
query, which has already been resolved in the hypothesis
construction phase. To avoid expensive OTA testing of these
duplicate queries in the SUL, the queries from the hypothesis
construction phase are cached in the database [23], [27]. In the
model validation stage, if the same query is found in the cache,
the query is not run OTA again, cutting down the overhead and
time for repeated queries. Another approach is to minimize
the time-consuming OTA transmissions by adding multiple
constraints as invariants [14], [21]. For this, the mapper is
provisioned with a set of invariants. In case the invariants
are violated, the query is not sent OTA, and a pre-designated
symbol is returned. For BLEDiff we use invariants such as:
¶ A connection has to be established before sending any
other symbol; · After disconnection and before establishing
a connection, all the symbols will be ignored; ¸ No secu-
rity protected messages will be sent without establishing the
necessary keys. A prerequisite of model learning is for the
SUL to be deterministic, which is not always possible due
to OTA communication. To maintain such consistency, we
leverage existing insight from prior works [23], [30] and run
the same query twice. In case the output for both the queries
are different, the query is run once more, and a majority voting
scheme is applied to the results to store the correct response.
Modified BLE stack. We modify the open-sourced BLE
stack provided by SwyenTooth [2] to develop the compo-
nents of a central BLE device. We remove the original FSM
implementation used for the SwyenTooth fuzzer and create
direct interfaces to convert packets to and from the learner.
We introduce the LL Encryption Pause procedure, which was
missing from the open-source implementation. Furthermore,
SwyenTooth’s implementation is not able to communicate
with devices that have Asynchronous Connection-Less (ACL)
fragmentation. This is a critical limitation for SwyenTooth to
work with smartphones having mandatory ACL fragmentation.
To resolve this, we implement ACL fragmentation to be able
to analyze all the possible devices.
Handling reset, human interaction, and BLE random
addressing. For model learning, the device should be trans-
parently reset to the known initial state. In our case, it means
setting to the corresponding initial states for the corresponding
mapper. Furthermore, as we are handling all the possible I/O
capabilities, we are required to automate some of the user
inputs. For instance, when both the devices’ I/O capability
is keyboard display, then in the case of LE legacy pairing,
the devices use the passkey entry association method. Here,



the central sends a passkey, and the peripheral needs to
input this passkey. In our case, we automate this process
by setting the passkey to all zero (0x000000) throughout the
learning process. These automation schemes require significant
engineering efforts. To achieve this, for development boards,
we reset the board using software reset and set the associate
passkey through UI automation, for Android smartphones, we
use ADB and key press simulation, and for iPhones, we use
IOS13-SimulateTouch [31] to simulate touch events. After the
reset is complete, we bring the corresponding mapper to the
respective initial state for learning. For instance, for the SMP
learning, we complete all the link layer connections. For re-
connection, we complete the pairing and bonding procedures.
One of the critical challenges for most BLE devices is that
after a certain threshold time, and in case of smartphones,
after each time BLE is turned on/off, the BLE address is
changed. This is challenging as we need to create a fully
automatic system. To resolve this, before running each query,
we identify the new BLE address by following our probing and
set subtraction scheme discussed in Section III. Furthermore,
in case of smartphones, different prompts pop up during
the pairing procedure for different I/O capabilities, and we
automatically handle them using key press simulation.

2) Conquer Phase
The task of conquer phase is to merge the three separate

FSMs of the implementation to create the large protocol
FSM which allows the equivalence checker to find an end-
to-end trace of deviant behavior, i.e., from entry-point of
BLE protocol to where deviation occurs. Such a trace can
be readily converted to a concrete test case for further testing.
A straightforward way to merge FSMs would be performing
a cross-product-based cascade composition. But this would
create an unnecessarily large FSM. As the task here is to create
a merged FSM that maintains the scalability of the divided
FSMs, we design a sequential merging for the FSMs, which
entails a minimal FSM of the large BLE implementation.
Sequential FSM merging. As the inferred FSMs do not
react instantaneously and coupled with our choice of termina-
tion (discussed in IV-A1), we can detect the corresponding
terminating states in the FSMs and therefore, merge the FSMs
sequentially. The terminating states can be detected based on
the output symbols. For example, the link layer procedure is
completed when PairReq responds with a PairResp. The SMP
procedures are completed when DHKeyCheckSend responds with
DHKeyCheckRecv. Upon detecting the terminating states, we
connect the terminating state of the first FSM to the initial
state of the second FSM (which we automatically get in the
FSM). Here we formally define the conquered FSM with the
separate component FSMs.

Definition 1 (Merging of BLE FSMs):
Let us assume the states where LL procedures are completed

as SLLComp
, and SMP procedures are completed as SLLSMP

.
Let us also assume M = (S,S0,Ψ,Σ,Λ,Ω) as the merged
FSM andMLL = (SLL,S0LL

,ΨLL,ΣLL,ΛLL,ΩLL),MSMP

= (SSMP ,S0SMP
,ΨSMP ,ΣSMP ,ΛSMP ,ΩSMP ), MRe =

(SRe,S0Re
,ΨRe,ΣRe,ΛRe,ΩRe), are the LL layer, SMP and
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Fig. 5: BLE checking module

reconnection FSMs, respectively. Following our discussion of
state merging, we defineM as: S = SLL∪SSMP ∪SRe, S0 =
S0LL

, Σ = ΣLL ∪ ΣSMP ∪ ΣRe, Λ = ΛLL ∪ ΛSMP ∪ ΛRe,
Ψ = ΨLL ∪ ΨSMP ∪ ΨRe ∪ (SLLComp

× ε → S0SMP
) ∪

(SSMPComp
× ε → S0Re

) , Ω = ΩLL ∪ ΩSMP ∪ ΨRe ∪
(SLLComp

× ε→ S0SMP
) ∪ (SSMPComp

× ε→ S0Re
)

B. BLE Checking Module

For BLE checking module, we reduce the problem to a
model checking problem with a safety property.

1) Reduction to Model Checking
Suppose the two FSMs under differential test are denoted

by M1 and M2. The input messages to these two FSMs are
denoted by I1 and I2 and output messages as O1 and O2,
respectively. Using M1 and M2 we then construct a model
M , where M1 and M2 are sub-components. M will take a
single symbolic input I , which will be fed to both I1 and I2,
in other words, the same input is fed to both M1 and M2. M
will have two outputs O1 and O2, essentially the outputs of
M1 and M2, respectively. The model M can be viewed as a
parallel composition of both M1 and M2. Then for each pair
of different output symbols, we pose a query that Are there
any same input sequence which generates this different output?
The model checker returns the sequence if there are any such
input sequences. This will be the deviating input for which the
same input sequence generates different output sequences. As
we are aiming to find as many deviating traces as possible, we
run the model checker again. However, in most of the cases,
the model checker will return the same input trace. To resolve
this, we need to modify our model.
Problem with elimination-based model modification. In
previous work [21], the authors use the idea of a elimination-
based model modification by removing the deviation transition
from the models. Though promising at first glance, this idea
raises some issues. To illustrate, let us look into the two FSMs
of Figure 5. With the model checking of a safety property, the
two different outputs of the same input symbol PauseEncReqPlain-

Text will be identified as (PauseEncResp, Null). To answer what is
the input deviating sequence is, there is a high probability the
model checker will return S0 → S1 → S2 and the deviating
transition is T12 and T22. Now, if we follow elimination-based
model modification, then both the transitions will be removed,
and model checking query will be run again. Due to the tran-
sition removal, part of the FSM becomes unreachable, and the
model checker returns no more deviating traces, which is not
true, as evident in Figure 5. The other and more interesting de-
viation is S0 → S1 → S2 → S3 → S4 → S5, which would
be left undetected by the previous elimination-based approach.
Refinement based model modification. BLEDiff takes a
different approach, by instead of eliminating the transition, it



refines the transition in one of the FSMs under consideration
by changing that transition’s output to that of the other FSM so
that two FSMs become equivalent up to that transition. Thus
the same deviation will not be generated by the model checker
if run again. Continuing with our example of Figure 5, we
modify the output of T22 as Null and run the model checker
safety property again. As the FSMs are identical up to this
point, it generates a more in-depth deviation between T15 and
T25. One thing to be noted here, our transition refinement
does not affect the soundness of BLEDiff. Our goal is to find
the same input traces that produces different outputs, and a
deviating trace can deviate in multiple positions.

V. IMPLEMENTATION

The BLE Learning module is implemented on top of Learn-
Lib [32]. For the learning algorithm, we use TTT [25] as it
requires fewer queries compared to other algorithms [33], and
for conformance testing, we use Wp-method [26]. We specify
TTT as the learning algorithm and Wp-method as the valida-
tion approach in Learnlib. Learnlib is an abstract state learning
implementation that requires a custom interface to the SUL.
LearnLib sends abstract message sequences as queries. These
are translated to BLE messages by the mapper. Similarly, the
responses from the SUL are translated back to an abstract form
by the mapper and forwarded to LearnLib. We implement our
mappers in Java. We modify the implementation developed by
SwyenTooth [2] as part of their fuzzer to implement our modi-
fied central implementation. We replace the LL, SMP, and ATT
implementations of the SwyenTooth stack with our modified
stack and create interfaces between the stack and the mapper
to forward LL, SMP, and ATT packets in both directions.
We also introduce additional code to handle reconnections
and ACL fragmentation of BLE devices. We use nRF52840
Dongle [34] to send/receive raw link layer packets to and
from the peripheral OTA. The FSM merger is implemented in
Python, which identifies final states from dot representations of
the inferred FSMs and merges them accordingly to create the
large FSM of the implementation. The BLE checking module
is developed using the NuXmv model checker [35] and a
python 2.7 script as the wrapper. LearnLib outputs the FSMs
as dot files. We transpile dot FSMs to the SMV specification
language. Table III summarizes our efforts in modifying the
tools and creating new components for BLEDiff.

VI. EVALUATION

To evaluate the performance of BLEDiff, we aim to an-
swer the following research questions: RQ1. How effective
is BLEDiff in finding deviant behaviors in different BLE
implementations? RQ2. How does BLEDiff perform compared
to existing baseline testing approaches, i.e., BLE conformance
testing suites [36] and previous works on BLE testing? RQ3.
What is the effectiveness and performance of BLEDiff com-
ponents: BLE Learning module and BLE checking module?

The experimental setup and devices their vendors and
BLE versions are described in section A and Table XI in the
Appendix respectively.
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A. RQ1. Deviations, Attacks, Impacts

BLEDiff identifies deviations between different BLE im-
plementations. However, we observe that multiple deviations
have the same root cause. We define unique deviant behaviors
as the ones having unique root causes. For example, for two
deviations D1 and D2 with two root causes R1 and R2, if
R1 6= R2, we consider D1 and D2 as unique deviations.
Otherwise, the deviations are not considered unique. We man-
ually identify root cause of the deviations by consulting with
the 3GPP specifications. Based on the root causes, we identify
unique deviant behaviors from all the deviant behaviors. The
root cause can be boiled down to one of the two reasons:
either the implementation deviating from the standards or
the standard has ambiguities due to underspecification. It
took around 2 days of human effort to identify all unique
deviations from all the deviant behaviors found in 25 devices.
In total, BLEDiff has identified 13 unique deviations in the 25
BLE implementations tested. Among them, 10 are exploitable
attacks, 2 are potential interoperability issues, and for 1 the
impact is still not evident. We define interoperability issues
as deviations that can hinder the communication between two
devices and cause re-pairing. Upon root cause analysis, 11
deviations were found due to the implementations deviating
from the standards, and 2 were due to underspecification in
the standards. The identified issues, their impacts, and the
root causes are shown in Table I. We characterize the impacts
into three types: security bypass, crash, and Denial-of-Service
(DoS). We categorize crash as a separate class because the
issues that cause the device to crash and become unresponsive
require manual intervention to recover and can be seen as an
enhanced form of DoS. The attacks to device mapping are
shown in Table IX in the Appendix.

1) Attacks
(E1) Passkey Entry Bypass. Among the four association
methods, passkey entry is considered secure against Man-
in-the-Middle (MitM) attacks. In this method, the initiating



device displays a randomly generated value, which the re-
sponding device has to enter. Particularly, after the central
sends a PairConfirmSend message, a prompt is shown on the
peripheral device for passkey entry. In LE legacy pairing,
the peripheral device shall send a PairRandomSend only if the
confirm value (Ccmp) computed on the device matches the
confirm value (Crcv) received from the central device , i.e.,
when Ccmp = Crcv. If Ccmp 6= Crcv, then the responding device
would terminate the pairing. BLEDiff, however, has uncovered
13 implementations where the device completes pairing and
bonding without requiring to enter the passkey in the device
and thereby effectively nullifying all the security protections
against MitM attacks. In this deviation as illustrated in Fig-
ure 6, if the central sends a PairRandomSend, setting the value of
the user input passkey to zero, the deviating BLE peripheral
implementation responds with a PairRandomSend, without send-
ing a PairConfirmSend message and even before taking the input
from the user (deviating from the standards). The connection
persists even after the user inputs the passkey after an attack
with the deviation is performed. Furthermore, the peripheral
implementation completes the pairing and bonding process
and enables encryption, all assuming the user input to be
zero. Surprisingly, one of the devices (Pixel 4a) does not even
show the prompt for passkey entry, thus effectively bypassing
the MitM protection put into place through the passkey entry
association method.
Root cause. The root cause of this issue can be attributed to
implementation deviating from the specification. The BLE
specification clearly states that if the confirm values do not
match, the peripheral should not proceed with pairing [4,
p. 1628]. Impact. Due to this passkey entry bypass, it is
possible for the attacker to perform a MitM attack on the
vulnerable BLE devices. As the key value TK is always
set to zero for the vulnerable peripheral, the attacker can
impersonate both legitimate central and peripheral devices. In
a hindsight, this is actually worse than just works association
method as the user thinks they are using a high level of
protection, but actually, they are not.
(E2) Out-Of-Band Authentication Bypass. During pairing,
an out-of-band (OOB) channel, e.g., NFC may be used to
communicate information between central and peripheral,
which is further used later in the pairing process. The OOB
data flag shall be set if a device has the peer device’s
out-of-band authentication data. A device uses the peer
device’s out-of-band authentication data to authenticate the
peer device. More specifically, after public key exchange
when a device receives the OOB confirm value, if the confirm
value does not match, or the peripheral does not have the
central’s OOB data, then the device should immediately abort
the pairing process by sending PairFailed message. However,
BLEDiff found 6 implementations where without receiving
any OOB confirm data, the peripheral devices proceed to the
next step, i.e., random value exchange, completely bypassing
the authentication as shown in Figure 7. To make matters
worse, the implementations even pass DHKeyCheckSend with rb
set to zero and complete pairing and bonding altogether.
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Root cause. The root cause of this issue is that the implemen-
tation is deviating from standards. In the specification, it is
mandated that if the confirm value received from OOB does
not match the calculated value, the peripheral will abort the
pairing process [4, p. 1632].
Impact. An attacker in the radio range can abuse this vulnera-
bility to completely bypass OOB authentication in the affected
BLE devices, which rely on secure connections with out-of-
band data to protect user privacy. As the OOB authentication
is bypassed, an attacker can send the usual BLE packets,
impersonate both the legitimate central and peripheral, and
perform MitM attacks on BLE connections.
(E3) Legacy Pairing Bypass. In this deviation, it is possible
to bypass the legacy pairing procedure and start encryption on
a device. During legacy pairing, an implementation exchanges
random values and confirms the values to generate Short Term
Keys (STK). Without these procedures, an implementation
cannot move to the encryption procedure. However, for
the affected devices, the implementations skip part of the
pairing procedures and directly proceed to encryption (shown
in Figure 8). In the specification, the flow of pairing is
clearly attributed, and hence starting the encryption procedure
without even completing the pairing is a deviation from
the standards. For exploiting this deviation in an attack, an
attacker in the radio range can skip the pairing procedure and
directly start encryption and try to bypass BLE security.
Impact. There are two impacts of this deviation. The first
impact is that it can cause security bypass due to low-entropy
key size. The STK is generated using s1 = (k, r1, r2). Each
of these parameters are 128-bit long. In the key generation
phase, 64 bits of r1 and 64 bits of r2 are discarded to create
a 128-bit input, which together with k generates the STK. In
case the pairing procedures are bypassed, and with no input
and no output capability (k = 0), the implementation generates
a key with only the 64-bits of r2, thus generating a key with
much smaller entropy. This can potentially lead to a security
bypass. For other I/O capabilities, the entropy will be higher
with different k value, but lower than the envisioned entropy
when random values are exchanged. The second impact is
DoS. As part of pairing can be bypassed (including authenti-
cation), an attacker can start encryption without completing the
authentication. In case the attacker is unable to figure out the
low-entropy key, there is a key-mismatch and the connection
is dropped. Since an attacker can drop a connection without
authentication, this can cause a DoS.



Issue Impact I/S
(E1) Bypassing passkey entry in legacy pairing Security bypass I
(E2) Bypassing Out-Of-Band Authentication Security bypass I
(E3) Bypassing legacy pairing DoS I
(E4) Accepts DHKeyCheckSend with all
fields zero

DoS I

(E5) Unresponsiveness with PauseEncRespPlain-

Text
Crash I

(E6) Unresponsiveness with ConReqTimeoutZero

and ConReqIntervalZero
Crash I

(E7) Accepts PauseEncReqPlainText before
pairing is complete DoS I

(E8) Issue with incomplete PairReq DoS I
(E9) Accepts PairRandomSend before ex-
changing public keys DoS S

(E10) Accepts PairConfirmSend with wrong
values DoS I

(I1) Issue with reject messages Interoperability S
(I2) Issue with OOB pairing failed Interoperability I
(O1) Accepting key size greater than max - I

TABLE I: Deviations identified by BLEDiff. E- exploitable, I- interoperability issue, O-
other deviating behavior, I- Implementation issue, S- Specification issue.

(E4) Invalid DHKey Check. In this deviation, during BLE
secure pairing, the BLE implementations respond to DHKey-

CheckSend message with MacKey,Na, and Nb set to zero
(shown in Figure 9). This behavior deviates from the standards
as the implementations fail to properly check the confirmation
value. As specified in the standard, if the confirmation value
check fails, it indicates that the initiating device has not
confirmed the pairing, and the protocol must be aborted.
Impact. Due to this noncompliance, it is possible
for an attacker to inject the DHKeyCheckSend packet
with MacKey,Na, and Nb set to zero during the
pairing procedure, forcing the vulnerable device to stop
communicating with a specific central device and causing
DoS. Furthermore, this deviation can be a stepping stone
for a much more severe issue as illustrated below. After
DHKeyCheckSend, the encryption procedure is started which uses
the generated LTK to encrypt subsequent packets. The task
of the DHKeyCheckSend is to ensure the right key is generated. In
case DHKeyCheckSend fails, the subsequent LTK is discarded
due to security reasons. Since it is possible to bypass
DHKeyCheckSend by setting MacKey,Na, and Nb to zero, the
attacker may exploit it to bypass the security partially as well.
(E5) Device Unresponsiveness with PauseEncRespPlainText. The
deviation happens when a BLE device receives a plaintext
PauseEncResp. Even before pairing, if the BLE implementation
receives PauseEncRespPlainText, then it crashes and becomes
unresponsive. This is a clear deviation from the standards. In
case a device handles an invalid packet, there are three ways
to handle it (i) ignoring the packet, (ii) sending rejection, (iii)
terminating the connection. However, in this case, the packet
causes a fault in the implementation.
Impact. It is possible to cause DoS by sending this packet to
the implementation. The packet is plaintext and does not have
integrity protection; therefore, it can be sent by an attacker
anytime to an existing BLE connection. Moreover, the packet
does not show any prompt on the smartphone and turns off
the Bluetooth for some time. It seems the packet causes restart
of the Bluetooth daemon of the device. Therefore, sending
such packets in a loop can create permanent DoS without any

notification to the user.
(E6) Device unresponsiveness with ConReqTimeoutZero When
a device receives a ConReq with the timeout field set to zero,
the device becomes completely unresponsive. A user has to
manually turn on the Bluetooth service to make the device
responsive. A similar attack with invalid connection requests
was shown in [2] on two development boards. We have found
this issue in 5 different smartphones and 3 different devel-
opment boards. Furthermore, in their attack for the invalid
connection request, both the interval and timeout fields have
to be set to zero. In our case, the interval field does not matter;
as long as the timeout field is set to zero, the device becomes
unresponsive and automatically turns off Bluetooth.
Impact. An attacker in the radio range can exploit the issue
to cause a surreptitious denial of service of the Bluetooth.
Though this attack is on BLE, the smartphone turns off both
BLE and BR/EDR without notifying the user. To resolve this,
the user has to manually restart BLE and, in some cases, the
smartphone altogether.
(E7) DoS with PauseEncReqPlainText. In this deviation, the de-
vice responds with a PauseEncResp in case a plaintext PauseEncReq

is sent. As a result, the affected device moves to an incorrect
state of the implementation where it is not able to complete
pairing and not able to communicate with a specific central
device. As stated in the previous section, responding to an
invalid message is a noncompliance. We found this issue in 5
different BLE implementations.
Impact. The implementation goes to an incorrect state and
discards subsequent messages from the central. The deviation
thus enables an attacker to induce DoS attacks on the affected
devices. An correctly implemented device ignores plaintext
PauseEncReq messages and does not change state.
(E8) DoS with PairReq. In this deviation, the implementations
do not respond to subsequent PairReq’s if the first PairReq

is not properly completed. In such a case, the peripherals
stop advertising altogether and are not able to communicate
with any central device within their radio range. This is a
noncompliance with the standards as one connection should
not affect the other subsequent connections. An attacker in
radio range acting as a central can initiate a pairing but
abruptly close the connection. This will create a service
disruption in the affected devices as those devices will not
respond to any other legitimate device in the radio range.
(E9) Accept PairRandomSend before PublicKeySend. The
affected devices deviate from the standard by responding to a
PairRandomSend message before authentication and PublicKeySend.
Because of accepting PairRandomSend, the implementations
move to an incorrect state from which it cannot complete
the pairing procedure. Exploiting this an attacker can force
the vulnerable device to stop communicating with a specific
central device. Although the standard specifies the regular
protocol flow, it does not explicitly state how to handle
out-of-order protocol messages. Hence, this behavior can be
attributed due to the underspecification of the standards.
(E10) PairConfirmSend Value Mismatch. The affected devices
respond to PairConfirmSend request with wrong confirm values.



The deviation occurs when a PairReq is sent with the secure
connection flags turned on or the OOB flag turned on. Due
to this, the implementations go to an unintended state, and do
not complete pairing and bonding anymore. In the correct im-
plementations, the devices ignore PairConfirmSend and proceed
with pairing as mandated by the standard.

2) Interoperability
(I1) Interoperability with reject messages. In case a device
receives an invalid message, it can respond with a reject
message. However, the specification does not specify the order
of the reject messages in a order sequence. In our experiments,
the implementations respond at different places in case of
invalid messages and this can create a potential interoper-
ability issue among different devices. For instance, in case
a device receives a PublicKeySend with an invalid key, (i) some
implementations send a reject message as soon as the invalid
message is received; (ii) some implementations still continue
with the subsequent procedures and respond to DHKeyCheckSend

with a reject message; (iii) some implementations do not send
any reject messages. We found 16 devices following (iii), 6
devices following (i), and 3 devices following (ii).
(I2) Interoperability with OOB Pairing Failed. As
discussed in VI-A1, in case of pairing with OOB data, if
the confirm value fails, then the pairing should be aborted
right away. However, BLEDiff found implementations where
even after the confirm value fails, the implementations still
proceed with random value exchange. This deviates from
the standards and can cause potential interoperability issues.
One thing to be noted, in these implementations, the pairing
eventually fails during DHKeyCheckSend, and it is not possible
to pair and bond with the device.

3) No impact
We found one deviation where the impact of the deviation

is not clear. In this deviation, an implementation accepts
PairReq with a key size greater than the max value of 16
bytes. The specification mandates using a key size of 7 to
16 bytes; however, in this case, the implementation becomes
noncompliant by accepting a key size greater than the max
value. A similar issue was found by Pferscher et al. in a
different device [13]. Although this is a deviation from the
standard, it is not evident how this can be exploited.

B. Comparison with existing testing approach

We compare the effectiveness of BLEDiff with the BLE
conformance or qualification testing framework defined in the
BLE standards [36] and the previous approaches on BLE
testing [2], [7]–[10], [13], [37], and summarize the results
in Table II. Although line coverage and function coverage
of a device under test are commonly used metrics to fairly
evaluate and compare these frameworks and tools, BLEDiff
being a black-box noncompliance checking method poses a
challenge of extracting coverage data from commercial BLE
devices. To address this challenge, we run an open-source BLE
implementation BTstack [38] on an Ubuntu 18.04 machine
with BLE version 5.0. We run all the testing frameworks for
24 hours and compute line coverage and function coverage

Paper Auto-
matic

Specific-
ation

analysis

Impleme-
ntation
analysis

Under-
specificat-

ion
detection

Non-
compliance-
checking

SwyenTooth [2] 3 7 3 7 7
BIAS [7] 7 3 7 7 7
KNOB [8] 7 3 7 7 7
Model-Driven [9] 7 3 7 7 7
Fingerprinting [37] 3 7 3 7 7
Black-box
Fuzzing [13] 3 7 3 7 7

Frankenstein [10] 3 7 3 7 7
BLEDiff 3 3 3 3 3

TABLE II: Comparison with existing approaches.

using LCOV [39], which is an extension of GCOV [40]. The
results of this endeavor is shown in Figure 10 in the Appendix
and discussed below.

1) Conformance or qualification testing framework
BLE standards [36] define conformance or qualification

testing where different scenarios and expected behavior are
described. For a fair comparison, we consider only the test
cases which are relevant to the procedures in our scope.
Results show that these standard tests cover 59.47% of lines
and 68.92% of functions, whereas BLEDiff achieves 63.29%
line coverage and 71.69% function coverage.

2) Previous approaches on BLE testing
Among the previous works on BLE testing, SwyenTooth

[2], Fingerprinting [37], Black-box Fuzzing [13], and Franken-
stein [10] are automatic approaches analyzing BLE implemen-
tations and do not require manual intervention, in general. On
the other hand, BIAS [7], KNOB [8], Model-Driven [9] are
manual and perform analysis on specifications. However, none
of these works can identify underspecifications or noncompli-
ance. Compared to these previous works, BLEDiff is auto-
matic, can analyze both specifications and implementations,
and can also discover underspecifications in the standards
and noncompliance of implementations. These features are
summarized in Table II.

Among the previous works that do automatic testing,
we do not calculate coverage for Frankenstein [10] as it
is a reverse-engineering based approach which requires a
significant manual effort to run and is not a plug-and-play. We
compute coverage for the other tools and summarize results
in Figure 10. The comparison shows that BLEDiff is the most
effective approach. For SwyenTooth [2], Fingerprinting [37],
and Black-box Fuzzing [13], the line coverage are 59.68%,
43.79%, and 41.37%, respectively, and the function coverage
are 68.92%, 53.85%, and 51.08%, respectively. Compared
to these, BLEDiff has 63.29% line coverage and 71.69%
function coverage. More discussion on some of the manual
intervention needed in some tools is analyzed in Appendix B.

C. BLEDiff performance

1) BLE Learning module performance
Table V shows the summary of membership queries, equiv-

alence queries, time, states, and transitions required for BLE
Learning module to infer the FSM of a BLE implementation.
In the worst case, the BLE Learning module requires 3 days
to learn the FSM, with the average being 1.7 days. The
device-specific details for all the specific devices are shown in
Table VIII in the Appendix.



2) Performance of the divide and conquer approach
To improve the scalability of active automata learning, we

propose the idea of using a divide and conquer approach
by extracting 3 different FSMs and merging them. To eval-
uate the performance improvement of learning, we take a
device (Nexus 6) run divide-and-conquer approach without
any caching or constraints additions. For the baseline, we
run a general model learning approach on the same device
with all the input symbols (32) and the usual techniques to
handle scalability (e.g., caching, constraints addition) in hopes
of inferring a large FSM of the entire BLE implementation.
We pick StartEncResp as the terminating symbol as it marks the
completion of the scope of encryption, pairing, and bonding.
However, with all the input symbols, it took the learner
more than two days just to complete the link layer procedure
connection. For most of the input symbols, the response is
Null. This is because symbols of SMP or reconnection do not
induce any changes to LL FSM, but the learner still has to
run all the symbols over-the-air wasting precious time and
queries. We estimate that with all 32 symbols, it will take
the general learner more than 5 days to learn the full FSM,
which is more than twice the time taken by BLEDiff with
its divide-and-conquer learning approach. The comparison of
both approaches is shown in Table IV.

3) BLE checking module performance
To evaluate the performance of BLE checking module, we

pair-wise compare the number of deviations and the time
required to find the deviations among all the devices with
the closest implementation to our BLE checking module–the
equivalence checker designed in the context of 4G LTE called
DIKEUE [21]. On average BLE checking module finds 62%
more deviant traces compared with the DIKEUE equivalence
checker. This is due to the fact that BLE checking module finds
deviant traces with higher depths, whereas DIKEUE finds the
shortest trace only. On timing BLE checking module takes on
an average of 17.4 sec to find all the deviating traces compared
to 11.49 sec for DIKEUE. This increase can be attributed to
the calls to the model checker for finding counterexamples
of increasing length. Compared to finding deviation-inducing
traces deep inside the FSM, this time increase is reasonable.
The statistics of the number of deviations identified and the
time of both the approaches are shown in Table VI. For an
interested reader, the detailed pair-wise comparison of the
number of deviations and time is shown in Table X and
Table XII, respectively in the Appendix.

To illustrate with a concrete example, the deviation and
the corresponding attack E7 are not detectable through the
elimination-based approach of DIKEUE. This deviation is de-
tected only through BLEDiff’s BLE checking module because
of its ability to detect more in-depth deviation. The FSMs and
the deviations are discussed in a simplified form in the running
example of section IV-B1 and Figure 5.

VII. RELATED WORK

We discuss related work in two directions relevant to our
work. At first, we discuss work in Bluetooth security and then

in active automata learning.
BLE implementation security. BlueBorne [5] and
Bleedingbit [6] manually identifies critical attack vectors that
can be used to take control of affected devices even without
pairing. BIAS [7], and KNOB [8] also manually analyze the
BR/EDR specifications and present practical impersonation
attacks. BLESA [3], on the other hand, builds a ProVerif model
according to the BLE specifications and analyzes the model to
find security implications. The authors present impersonation
attacks using BLE spoofing in this work. Furthermore,
Wu et. al. [9] introduces an extensive ProVerif model that
encompasses both key sharing and data transmission phases in
Bluetooth Classic, BLE, and Bluetooth Mesh. However, these
works only consider the specifications, whereas we consider
both implementations and specifications. SweynTooth [2] pro-
vides a testing framework to identify implementation vulner-
abilities, whereas Frankenstein [10] uses firmware emulation
to run fuzzing on firmware dumps. Moreover, InternalBlue
[11] releases a reverse-engineered Bluetooth implementation
for the research community. BLURtooth [12] analyzes the
Cross-Transport Key Derivation (CTKD) feature of Bluetooth.
They also uncover four different vulnerabilities in this feature
and report corresponding attacks. However, none of these
works aim to systematically explore protocol noncompliance.
Active autoamta learning. Active automata learning ap-
proaches are often used to analyze protocol implementations
for a wide range of protocols, including OpenVPN [18],
QUIC [19], TCP [16], [27], TLS [14], [23], DTLS [15], SSH
[20], LTE [21], IoT [41]. Pferscher et al. [37] employ model
learning for fingerprinting BLE devices. However, the scope
of this work is limited to the link layer only, and it does
not cover pairing, bonding, encryption, secure procedures, or
different device capabilities. Therefore, the authors do not face
the challenge of scalability. In the subsequent work, they use
the learned model to fuzz BLE implementations in a stateful
manner and consequently suffer from the same issues due
to limited scope [13]. On the other hand, to mitigate some
well-known drawbacks of active automata learning, several
works attain different techniques. To deal with the unreliability
of over-the-air communication and ensuing non-deterministic
results, the majority voting scheme has proven useful in previ-
ous works [15], [21], [30], [42]. Furthermore, HVLearn [23],
SFADiff [27], and DIKEUE [21] utilize caching mechanism
to circumvent sending duplicate queries over-the-air which, in
turn, reduces the time requirement of automata learning.

VIII. DISCUSSION

Manual process of deviation to attack analysis. As mul-
tiple deviations may have the same root cause, we manually
analyze diverse deviations uncovered through our automated
technique BLEDiff and identify unique deviations. In Table X,
all pairwise deviant behaviors are reported and through con-
sultation with the specification, the unique deviant behaviors
are elaborated. The high number of deviations in Table X as
compared to 13 unique ones is because:



1) If an input ij (e.g., ConReqTimeoutZero) in a query q =
〈i1i2 . . . ij . . . im〉 induces a crash to a device D1, D1’s out-
puts for the remaining inputs 〈ij+1 . . . im〉 in q become Null

as D1 becomes unresponsive after ij . While comparing D1

with another device D2 which did not crash at ij , BLEDiff
yields multiple deviant behavior inducing input sequences,
for instance, 〈i1 . . . ij〉, 〈i1 . . . ij+1〉, . . . , 〈i1 . . . ij+1 . . . im〉
for which the root cause is same;

2) If for an input sequence 〈i1i2i3i2〉, devices D1 and D2 yield
〈o1o2o3o2〉 and 〈o1o

′

2o3o
′

2〉 as outputs, respectively, BLEDiff
identifies both deviations 〈i1i2〉 and 〈i1i2i3i2〉 as it aims to
identify deviations of different depths. Although these are
valid deviations but are not considered unique as they occur
from the same root cause.

Soundness. BLEDiff does not have any false positives. If
BLEDiff finds a deviation in the FSMs of two devices un-
der consideration, for the same input sequence, two corre-
sponding implementations indeed behave differently. False
positives could have occurred if: (1) the extracted in-
put/output FSMs had states/transitions that do not exist in
devices/implementations; or (2) input/output symbols were
different for different devices. BLEDiff addresses the former
with formal soundness guarantees of active automata learn-
ing underpinning BLEDiff’s FSM extraction process [24].
To ensure the same input/output symbols for all devices,
BLEDiff defines input/output symbols (shown in Table VII)
based on high-level protocol messages and their security
features that are consistent across BLE versions (from 4.2
to 5.2). BLEDiff abstracts away non-security-related protocol
features for instance versions and modulation schemes in
input/output symbols through mappers. For instance, when
Link Layer (LL) mapper receives a FeatureResp message from
a device, it abstracts the contents of the packet and responds
with a FeatureResp to the learner. Similarly, when the mapper
receives a VersionResp, whatever the version number is (e.g.,
4.2, 5.0, 5.1), the mapper responds to the learner with a
VersionResp message type as output. Furthermore, assumptions
made in BLEDiff do not affect soundness/correctness. Since
peripheral-originated LL messages, e.g., LenReq are stateless
and originated by a device anytime, LL mapper abstracts those
messages by not modeling them as input/output symbols. To
ensure sound/correct protocol flow, in response to peripheral-
originated messages, the LL mapper sends valid and protocol-
compliant messages to the device under test but does not
send corresponding output symbols to the learner. As this
learning process is consistent across all devices, the learner
learns consistent and sound FSMs, and this assumption does
not affect the soundness of the extracted FSMs.
Completeness. Testing a complex system is inherently an
incomplete process and so is BLEDiff. Our approach cannot
uncover all possible deviations in different implementations
because: (1) the predicates included to reason about security-
critical behavior may not be complete. For instance, there
may be other predicates apart from the field and packet level
predicates we used in BLEDiff, that can cause deviant behav-
ior; (2) the abstractions made to handle peripheral-originated

messages from learner may also miss some deviant behaviors.
As discussed in the previous section, to handle peripheral
originated messages such as LenReq, LL mapper abstracts those
messages by not modeling them as input/output symbols and
in turn causes incompleteness; (3) limitations of differential
testing, especially, not having access to a reference FSM from
the specification. As a result, if two implementations deviate
in the same way, then the differential testing might miss it.
But as we do pairwise differential testing among all 25 device
implementations, at least one pair of comparison will yield the
deviation if there is any. In a nutshell, BLEDiff is incomplete
in the sense that it can not guarantee all deviations, but in
practice, it can identify the majority of them.
FSM Merging. BLEDiff first merges the FSMs of individ-
ual sub-protocols and compare the entire FSM with that of
other BLE implementations. An alternative design could be
other way around, i.e., instead of merging the FSMs of sub-
protocols, comparing them separately. From the perspective of
finding deviations, this will not affect the results. However,
the reason for merging to create a complete protocol is
twofold: (1) it allows the equivalence checker to find an end-
to-end trace of deviant behavior (i.e., from entry-point of
BLE protocol to where deviation occurs) that can be readily
converted to a concrete test case for further testing; (2) the
complete protocol can be further leveraged by developers for
other analysis, e.g., stateful fuzzing.
Cross-sub protocol analysis. BLEDiff does not model cross-
sub protocol interactions. There can be deviations where
one sub-protocol affects others and BLEDiff currently cannot
detect those. We leave it for future work.

IX. CONCLUSION

We present BLEDiff a scalable, property-agnostic, and
black-box protocol noncompliance checking framework for
BLE implementations. We also introduce the idea of divide-
and-conquer-based automata learning, where a protocol is
divided into multiple sub-protocols, for each sub-protocol, a
separate FSM is learned, and then merged together to form
the large protocol FSM.
Future Work. In future, we will port this approach to
BLE central implementations. Furthermore, we will develop
new techniques to further improve the scalability of active
automata learning approaches and model cross-sub-protocol
interactions.
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APPENDIX A
EVALUATION SETUP.

For all the evaluations RQ1 - RQ3, we use 3 laptops with
Intel i7-3750QCM CPU and 32 GB DDR3 RAM. For the
BLE Learning module we use three nRF52840 Dongles to
send/receive raw link layer packets. All the experiments are
done in a laboratory environment with our own BLE devices
without affecting any other BLE devices nearby.

APPENDIX B
MANUAL INTERVENTION FOR COMPARISON WITH

EXISTING TESTING APPROACH
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Fig. 10: Coverage comparison

During the comparison with existing approaches on BLE
testing, though some of the tools and approaches are automatic
required some manual interventions in our experiments. For
instance, in the case of Fingerprinting [37], and Black-box
Fuzzing [13] the testing apparatus’ frequent crashed or froze.
Moreover, both these approaches: Fingerprinting and Black-
box Fuzzing have limited scope compared to our work and
do not incorporate secure pairing or encryption. Accordingly,
these are not effective in discovering vulnerabilities at a
complex level. Also, Black-box Fuzzing requires that the finite
state machine of the device under test is first learned and
then fuzzed. However, in our experiments, the tool could not
complete learning the finite state machine within 24 hours.
Instead, we let the fuzzer use a pregiven complete finite

state machine so that it can explore further and get a fair
opportunity. Despite the efforts, its effectiveness was the worst
among the tools we tested in terms of coverage.

Component Tools Lines of Code
Learner LearnLib [32] 2157 (Java)
Mapper – 2288 (Java)

Modified BLE stack SwyenTooth [2] 4488 (Python 2.7) & 15215 (C)
Device resetter – 965 (Python 2.7)
FSM Merger – 302 (Python 3.10)

FSM Equivalence Checker – 2240 (Python 2.7)

TABLE III: Additions/modifications to the tools used in BLEDiff.

Approach
Member-

ship
Queries

Equival-
ence

Queries
Time
(min) States Transitions

Divide and con-
quer learning 323 1946 2448 7 121

Automata learning
with caching and
constraints

3077 1495 3077* 6 192

TABLE IV: Comparison between divide and conquer learning and general model learning
for Nexus 6
* The learner just completed link layer connection

Statistic
Member-

ship
Queries

Equival-
ence

Queries
Time
(min) States Transitions

Max 1045 4022 4805 9 152
Min 113 277 274 5 77
Average 519.32 2552.6 2546.92 7.44 128.68
Median 339 2042 2400 7 121
Standard
Deviation 327.85 979.99 994.95 0.82 15.73

TABLE V: Summary of time, membership, and equivalence queries.

Statistic BLEDiff
Deviations

DIKEUE
Deviations

BLEDiff
Time

DIKEUE
Time

Max 43 42 63.64 46.97
Min 11 8 17.4 11.49
Average 26.96 16.72 41.72 25.71
Median 27 16 42.25 24.65
Standard
Deviation 5.96 4.78 9.70 6.85

TABLE VI: Summary of deviations and time.

https://doi.org/10.1007/978-3-030-90870-628
https://github.com/bluekitchen/btstack
https://github.com/linux-test-project/lcov
https://github.com/linux-test-project/lcov
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
https://developer.apple.com/documentation/corebluetooth
https://developer.apple.com/documentation/corebluetooth


Message Input Symbol Adversarial Symbols Output Symbols (Λ)
Link Layer Control Protocol

Feature Request FeatureReq FeatureResp
Exchange MTU Request MTUReq MTUResp
Length Request LenReq LenResp
Read by Group Type Request ReadTypeReq ReadTypeResp
Connection Request ConReq ConReqIntervalZero, ConReqTimeoutZero
Version Request VersionReq VersionReqMaxLen VersionResp

Security Manager Protocol (SMP)
Pairing Request (SC) (NoIn-
put NoOutput)

PairReq PairReqKeyZero, PairReqKeyMax PairResp

Pairing Request (SC) (Display
Yes/No)

PairReq PairResp

Pairing Request (SC) (Key-
board Display)

PairReq PairResp

Pairing Request (Legacy)
(NoInput NoOutput)

PairReqLegacy PairResp

Pairing Request (Legacy)
(Keyboard Display)

PairReqLegacy PairResp

Pairing Request (Legacy)
(Display Yes/No)

PairReqLegacy PairResp

Pairing Request (OOB) PairReqOOB PairResp
Public Key Exchange PublicKeySend PublicInvalidKeySend PublicKeyRecv
Pair Confirm PairConfirmSend PairConfirmWrongValueSend PairConfirmRecv
Pair Random PairRandomSend PairRandomRecv
Diffie-Hellman Key Check DHKeyCheckSend DHKeyCheckInvalidSend DHKeyCheckRecv

Reconnection
Encryption Request EncReq EncResp, StartEncReq
Start Encryption Response StartEncResp StartEncRespPlainText StartEncResp
Encryption Pause Request PauseEncReq PauseEncReqPlainText PauseEncResp
Encryption Pause Response PauseEncResp PauseEncRespPlainText

TABLE VII: List of input, adversarial and output symbols. In case there is a timeout the default output symbol is Null

Device Membership Equivalence #States #Transition Time Total
Time

Merged
States

Merged
TransLL SMP Recon LL SMP Recon LL SMP Recon LL SMP Recon LL SMP Recon

Nexus 6 30 276 17 15 1904 27 3 4 2 30 88 13 38 2180 76 2294 7 121
DA14531 50 377 17 27 3644 27 3 5 2 30 110 13 25 1340 50 1415 9 152
NRF5340-DK 30 287 21 27 1989 17 3 4 2 30 88 13 19 1517 51 1587 8 130
CC2640R2 30 66 17 27 223 27 3 5 2 30 110 13 27 192 55 274 5 77
CYBLE-416045-
EVAL

30 998 17 27 3869 27 3 5 2 30 110 13 19 2858 52 2929 8 143

Pixel 4a 30 282 17 27 1936 27 2 4 2 20 88 13 57 2957 88 3102 7 121
STEVAL-
IDB008V2

30 990 17 27 3666 27 3 5 2 30 110 13 76 4656 73 4805 8 143

OnePlus 8 30 994 17 27 3442 27 3 5 2 30 110 13 38 4436 58 4532 8 143
CY8CPROTO-
063-BLE

30 990 17 27 3254 27 3 5 2 30 110 13 19 2829 59 2907 8 143

NRF52-DK 30 325 21 27 2098 17 3 4 2 30 88 13 23 1615 63 1701 8 130
Galaxy S6 30 286 17 15 1902 27 3 4 2 30 88 13 42 2188 73 2243 7 121
Desire 10
Lifestyle

30 295 17 15 1876 27 3 4 2 30 88 13 30 2171 77 2278 7 121

Pixel 3XL 30 292 17 27 1996 27 2 4 2 20 88 13 38 2288 74 2400 7 121
Galaxy S8+ 30 290 17 27 1886 27 2 4 2 20 88 13 57 2901 73 3031 7 121
Y5 Prime 30 290 17 15 2103 27 3 4 2 30 88 13 30 3190 88 3308 7 121
8X 50 342 17 27 3788 27 3 5 2 30 110 13 51 4130 74 4255 9 152
Mi A1 30 268 17 27 1842 27 2 4 2 20 88 13 32 1813 74 1919 7 121
iPhone XS 30 244 17 27 1920 27 2 4 2 20 92 13 57 2164 69 2263 7 123
Pixel 3XL 30 188 17 27 1845 27 2 4 2 20 88 13 57 2710 66 2833 7 121
G Power 30 298 17 27 1934 27 2 4 2 20 88 13 45 1876 66 1987 7 121
7T 30 276 17 27 1988 27 2 4 2 20 88 13 66 2641 62 2769 7 121
Ubuntu 18.04 30 954 17 27 3562 27 3 5 2 30 110 13 21 2258 43 2322 8 143
Ubuntu 20.04 30 986 17 27 3958 27 3 5 2 30 110 13 23 2342 45 2410 8 143
ESP32-C3 30 940 17 27 3968 27 3 5 2 30 110 13 19 2543 38 2600 8 143
DT100112 30 226 17 15 1952 27 3 4 2 30 88 13 38 1452 19 1509 7 121

TABLE VIII: Time, membership, and equivalence queries.
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E1 3 3 3 3 3 3 3 3 3 3 3 3 3
E2 3 3 3 3 3 3
E3 3
E4 3
E5 3 3
E6 3 3 3 3 3 3
E7 3 3 3 3 3
E8 3
E9 3
E10 3 3
I1 3 3 3 3 3 3 3 3 3
I2 3 3 3 3 3 3 3
O1 3

TABLE IX: Attacks to device mapping
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Nexus6 – 14 19 25 24 14 14 15 11 18 8 9 15 15 14 8 14 13 14 8 16 14 18 19 16
DA14531 31 – 22 23 23 18 18 18 15 18 14 16 16 17 17 14 19 17 17 14 17 17 18 18 18
CC2640R2 34 43 – 25 25 18 18 18 18 18 19 19 19 21 19 19 19 19 19 19 19 19 18 18 18
NRF5340-DK 33 24 32 – 9 23 23 23 26 23 24 25 25 23 25 24 24 25 25 24 25 25 23 23 23
NRF52-DK 33 24 32 13 – 23 23 23 13 23 21 21 21 23 23 21 24 23 23 21 25 25 20 23 23
CYBLE-
416045

29 37 25 30 30 – 13 12 14 10 14 15 15 19 17 14 14 17 17 14 23 23 10 12 13

CY8CPROTO-
063-BLE

24 37 29 30 30 21 – 12 16 12 14 14 15 19 17 14 14 14 16 14 17 17 10 14 15

STEVAL-
IDB008V2

27 37 26 30 30 16 15 – 13 15 16 19 15 16 15 14 15 20 15 14 14 12 17 16

DT100112 24 16 32 33 32 31 22 26 – 16 9 10 14 15 9 13 16 9 14 19 16 16 19 18 14
ESP32-C3 25 37 26 30 30 31 29 32 24 – 16 19 18 23 14 15 18 25 42 16 23 15 16 10 13
Galaxy S6 14 30 33 33 24 25 22 25 16 33 – 12 16 16 14 9 10 12 15 23 25 16 15 24 23
Desire 10
Lifestyle

12 30 30 35 24 25 23 27 11 28 22 – 15 15 16 18 19 22 16 23 16 19 14 20 21

Galaxy S8+ 19 37 23 35 32 33 24 26 22 31 27 29 – 9 12 16 15 16 18 17 18 17 24 19 25
Pixel 3XL 24 39 23 35 32 33 28 23 26 27 27 29 26 – 8 13 9 15 13 15 10 12 16 19 22
Pixel 4a 25 37 26 30 29 29 28 23 26 27 25 27 24 15 – 14 8 14 13 8 14 13 15 14 10
Y5 Prime 16 30 33 33 24 25 22 25 18 25 28 29 28 26 32 – 16 14 23 25 28 14 16 19 16
8X 31 21 43 24 24 37 37 37 33 25 30 30 39 39 37 30 – 19 15 18 14 16 13 14 19
Mi A1 21 37 26 30 27 29 15 16 23 29 25 27 37 15 29 25 37 – 10 14 13 14 12 10 14
iPhone XS 21 37 26 30 29 30 15 21 25 29 25 27 33 33 29 25 37 29 – 8 14 13 14 22 9
Galaxy A21 14 30 33 33 24 25 22 25 16 14 31 25 14 31 25 25 14 25 25 – 14 13 14 10 13
G Power 23 35 26 30 23 29 15 16 26 26 24 27 26 33 31 27 30 26 29 25 – 9 12 9 14
7T 27 33 26 30 28 28 15 16 29 26 24 27 29 33 29 26 29 26 29 27 29 – 9 8 10
OnePlus 8 24 35 29 24 27 15 16 15 23 27 26 25 34 31 29 29 29 26 28 25 29 16 – 8 12
Laptop (18.04) 25 36 26 30 30 20 21 18 22 31 24 25 32 33 29 25 34 29 34 26 28 15 20 – 14
Laptop (20.04) 22 34 23 33 31 22 24 18 26 31 25 25 31 32 29 25 37 28 28 25 29 15 16 16 –

TABLE X: Number of deviant issues comparison. Bold values are for BLEDiff and non-bold values are for DIKEUE



Development Boards
Board Vendor Sample Code BLE Ver.
DA14531 Dialog ble app security 5.1
NRF52-DK Nordic ble app multirole lesc 5
NRF5340-DK Nordic ble app multirole lesc 5.2
CYBLE-416045-
EVAL Cypress BLE 4.2 DataLength Security

Privacy01 4.2

CY8CPROTO-063-
BLE Cypress BLE Pulse Oximeter Sensor 5.0

CC2640R2 Texas In. simple peripheral app 5.0
STEVAL-
IDB008V2 STM security peripheral 5.0

ESP32-C3 Espressif ble ancs 5.0
DT100112 Microchip PIC LightBlue Explorer Demo 4.2

Devices
Device Vendor OS/Stack BLE Ver.
Nexus 6 Motorola Android 7.1.1 4.2
Galaxy S6 Samsung Android 8.0 4.2
Desire 10 Lifestyle HTC Android 6.0 4.2
Galaxy S8+ Samsung Android 9.0 5.0
Pixel 3 XL Google Android 11 5.0
Pixel 4a Google Android 11 5.0
Y5 Prime Huawei Android 8.1 4.2
8X Honor Android 8.1 4.2
Mi A1 Xiaomi Android 9.0 4.2
iPhone XS Apple iOS 12 5.0
Galaxy A21 Samsung Android 10 5.0
G Power Motorola Android 10 5.0
7T OnePlus Android 10 5.0
8 OnePlus Android 12 5.1
Laptop Lenovo Ubuntu 18.04 Bluez 5.48
Laptop Lenovo Ubuntu 20.04 Bluez 5.53

TABLE XI: List of tested devices. Fluoride [43] and iOS-BLE-Stack [44] are the BLE
stacks for Android and iPhone respectively
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TABLE XII: Timing comparison. Bold = BLEDiff, non-bold = DIKEUE
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