

BaseDiff: Differential Security Analysis of Cellular Basebands

Syed Rafiul Hussain

Assistant Professor

Department of Computer Science and Engineering Pennsylvania State University

*Joint work with Imtiaz Karim, Abdullah Al Ishtiaq, Omar Chowdhury and Elisa Bertino

Qualcomm Product Security Summit 2022

Analyzing Security and Privacy of Cellular Basebands is of utmost importance

Challenges of Noncompliance Checking of Basebands

No formal specification

No formal Implementation

Black-box system

Stateful protocol

Limitations of Existing Approaches

Re-hosting and Reverse Engineering Basebands (FirmWire - NDSS'22, BaseSpec – NDSS'21BaseSafe – WiSec'20)

require a huge manual effort and expertise
not general enough to implementations from different vendors

Stateless and Semiautomated Testing

(LTEFuzz-Oakland'19)

Stateless testing is ineffective for stateful basebands
Unable to find many flaws

Our Baseband Noncompliance Checker

Challenges of Developing DIKEUE

DFA

Active Automata Learning in 4G LTE and Instantiation of DIKEUE for 4G LTE

Challenges for 4G LTE Automata Learning

Pre-requisite of Automata Learning

Input Output Alphabet Set Selection

Nondeterminism

Transparent Reset

Balancing Termination and Coverage

Optimized Alphabet Set

Context Checker

Caching Queries

LTE Specific Adapter **Concrete Packet** generation **Triggering Complex Behaviors**

Transparent Reset for LTE Devices

Challenges for 4G LTE Automata Learning

Pre-requisite of Automata Learning

Input Output Alphabet Set Selection

Nondeterminism

Transparent Reset

Balancing Termination and Coverage

Optimized Alphabet Set

Context Checker

Caching Queries

LTE Specific Adapter **Concrete Packet** generation **Triggering Complex Behaviors**

Generalization: Check context before sending message

Learner

usenixsecurity15/technical-sessions/presentation/de-ruiter

Context Checker: Additional Invariants

Our goal: discovering many diverse deviation inducing traces!

Each of the queries aims to find at least one element, if present, for each diversity classes to provide diverse deviations!

List of Devices Tested

14 Devices from 5 Vendors

Summary of Findings

2 Previous Implementation Issues

Deviations to Attack Strategy Generation

Identify deviant behavior and traces automatically using DIKEUE

Root cause analysis from the specification

Exploitable attack generation

Validation in testbed

Replayed GUTI Reallocation

		Core Network
-	Security Context Established	
	GUTI Reallocation Command	
	GUTI Reallocation Complete	
	Stateful vulnerability	
	undetected in spite of heavy testing	
	Security Mode Command Keplayed	
	Security Mode Complete	>
	CUTI Reallocation Command Replayed	
	GUTI Reallocation Complete	>

Root cause analysis

Implementation

Specification

"Replay protection must assure that one and the same NAS message is not accepted twice by the receiver. Specifically for a given security context."

-3GPP 24.301 NAS

Responsible Disclosure Update

Qualcomm, Samsung, and MediaTek are patching...

Challenges and Possible Opportunities to Extend DIKEUE for 5G Basebands

Key Takeaways

Blackbox security analysis techniques backed by sophisticated formal methods (automata learning and model checking) can be effective for basebands

Easy to deploy the technique to any cellular basebands from any vendors with almost no manual effort

The technique can also be applied to other wireless protocols

Summary

Designed an automatic, black-box, and stateful noncompliance checker for basebands

Implemented approach in a new tool, **DIKEUE**

DIKEUE identified 11 new attack on different device implementations