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ABSTRACT
The paper focuses on developing an automated black-box testing
approach calledDIKEUE that checks 4G Long Term Evolution (LTE)
control-plane protocol implementations in commercial-of-the-shelf
(COTS) cellular devices (also, User Equipments or UEs) for noncom-
pliance with the standard. Unlike prior noncompliance checking
approaches which rely on property-guided testing, DIKEUE adopts
a property-agnostic, differential testing approach, which leverages
the existence of many different control-plane protocol implementa-
tions in COTS UEs. DIKEUE uses deviant behavior observed during
differential analysis of pairwise COTS UEs as a proxy for identify-
ing noncompliance instances. For deviant behavior identification,
DIKEUE first uses black-box automata learning, specialized for 4G
LTE control-plane protocols, to extract input-output finite state
machine (FSM) for a given UE. It then reduces the identification
of deviant behavior in two extracted FSMs as a model checking
problem. We applied DIKEUE in checking noncompliance in 14
COTS UEs from 5 vendors and identified 15 new deviant behavior
as well as 2 previous implementation issues. Among them 11 are
exploitable whereas 3 can cause potential interoperability issues.

CCS CONCEPTS
• Networks→ Network protocols; Protocol testing and verifi-
cation; • Security and privacy→ Mobile and wireless security.
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1 INTRODUCTION
4G Long-Term Evolution (LTE), developed by the 3rd Generation
Partnership Project (3GPP), is a global standard for cellular net-
works. 4G LTE protocols provide ubiquitous connectivity, interoper-
ability, andmassive scale support to numerous network services and
billions of heterogeneous devices. As the security of cellular devices
(also known as, User Equipment or UE) is of utmost importance in
this ecosystem, it is imperative that devices correctly implement
the cellular protocols as mandated by the standard. Faithful imple-
mentation of the cellular protocol is, however, challenging due to
the ambiguities, under-specification, and intricate protocol details
present in the natural languages specification [2, 8, 9]. As a conse-
quence, misinterpretations of the standard are commonplace, which
result in implementations demonstrating noncompliant behavior
with the cellular standard. As an example, if a device responds to
a particular message in a state whereas the standard prescribes
ignoring the message, it gives rise to a noncompliant behavior. The
ramifications of noncompliance with the standard may result in (1)
critical security and privacy flaws (e.g., authentication bypass [39],
location exposure of a target user [51]), and (2) interoperability
issues in the UEs. Since manual identification of noncompliant pro-
tocol behavior in large and complex implementations is error-prone
and time-consuming, in this paper, we aim to develop an automated
approach for identifying noncompliance behavior in 4G LTE UEs.
Prior research. Although prior works [16, 23, 38, 40, 41, 47, 48, 51]
analyzing security and noncompliance of cellular proptocols have
identified several implementation flaws, they suffer from at least
one of the following limitations: (A) The approaches [16, 38–40,
47, 48, 51] are completely manual and cannot uncover a myriad of
implementation-specific behavior; (B) The analyses [39] perform
semi-automated stateless testing; (C) The approaches based on for-
mal verification [12, 30, 32] only test the protocol specification for
noncompliance and also heavily rely on the coverage and quality
of the properties being tested—for which there is no official ex-
haustive list; and (D) The analyses based on re-hosting and reverse-
engineering the baseband software [23, 41] not only require a huge
manual effort and expertise but also are not general enough to be
applicable to implementations from different vendors.
Problem and scope. Since implementations of commercial base
stations and core networks are not publicly accessible, we focus
only on analyzing the commercial 4G LTE device implementations.
Among many different procedures, we further focus on the connec-
tion management and themobility management components of a UE.

https://doi.org/10.1145/3460120.3485388
https://doi.org/10.1145/3460120.3485388


These components manage the most critical control-plane proce-
dures, including connection setup, termination, mobility, hand-off,
service notification, and setup procedures. Without the correct and
reliable operations of these stateful procedures, most of the other
control-plane (e.g., call setup) and data plane (e.g., browsing Inter-
net) operations are susceptible to critical security attacks, such as
MitM relay [30, 49], eavesdropping [48] and DNS redirection [49].
In summary, in this paper we address the following research ques-
tion: Is it possible to design an automated , black-box, and stateful
protocol analysis framework that can uncover noncompliant behavior
in the control-plane protocol implementations in 4G LTE UEs?
Challenges. The first critical challange for developing a black-
box noncompliance checker for UEs is to automatically extract a
behavioral abstraction of the protocol implementation. Once we
have extracted the behavioral abstraction from an implementation,
the second challenge is to devise an approach for identifying diverse
noncompliant behavior in a property-agnostic way.
Our approach. In this paper, for our automated and black-box
efficient compliance checker DIKEUE (in Greek mythology, Dike
refers to the goddess of justice), we use the input-output proto-
col finite state machine (FSM) as the behavioral abstraction. One
can consider automatically extracting the protocol FSM from the
implementation in one of the following two ways: (1) passive trace-
based learning approach; (2) active-learning based approach. The
effectiveness of learning the protocol FSM with the trace-based
approach, however, critically hinges on the diversity and coverage
of the input traces. Although it is possible to obtain a large number
of crowd-sourced traces to be used as input to the passive learning
algorithm, these traces often only exercise expected behavior and
miss out on capturing corner-cases where noncompliance occurs.

DIKEUE thus relies on an active FSM learning approach for
which we use an existing automated black-box FSM learning tech-
nique [45, 54, 55]. Our FSM Learner starts from the UE’s initial state,
and using a controlled LTE network, sends queries (i.e., sequences
of over-the-air protocol messages) to the device-under-test; dubbed
System Under Learning (SUL). Based on the observed responses to
the queries (i.e., sequence of protocol messages from the SUL), it
infers the FSM of the underlying implementation. Although au-
tomata learning has been used in the context of testing various
protocols [20, 21, 25–27, 46, 53], applying it in 4G LTE domain re-
quires taking into account some protocol-specific challenges. First,
4G LTE is a complexmulti-layer protocol. Second, protocols in each
layer entail multiple timers and re-transmission counters, whose
values are unobservable from the output interface, making the de-
vice’s protocol FSM seem to behave in a nondeterministic way,
violating one of the pre-requisites of applying active, black-box
automata learning approaches (i.e., deterministic behavior). Third,
after each sequence of messages, the SUL needs to reset transpar-
ently– deleting all internal states and context information without
any modification on the device. Fourth, in addition to the general
behavior, i.e., regular protocol flow of the SUL, the learner needs to
infer the implementation-specific atypical behavior, e.g., response to
a replay packet, to further aid the noncompliance checking. Finally,
a substantial amount of engineering effort is needed to develop an
adapter, which facilitates the communication between the learning

algorithm and the SUL by converting abstract symbols to over-the-
air messages. We rely on some existing efforts and also develop
some new insights to address the above aspects.

Once we have extracted the FSMs of the devices’ LTE control-
plane protocol implementations,DIKEUE takes advantage of having
access to multiple COTS UEs. Particularly, it relies on the concept
of deviant behavior as a proxy for identifying noncompliant behav-
ior in a property-agnostic way during the differential analysis of
two FSMs belonging to two different UEs. In our context, a deviant
behavior is a sequence of inputs for which the two FSMs that are
being compared, when executed from the initial state, generate
distinct output sequences. When comparing two FSMs, if a deviant
behavior is observed, then it is clear that at least one of the imple-
mentations is noncompliant even though it is not clear which one.
These deviant traces are then triaged through consultation with
cellular protocol standards to classify them into one of the follow-
ing two root causes: (1) the implementation deviates from a clear
specification; (2) the specification suffers from under-specification
or ambiguity. Automatic identification of diverse deviant traces
between any two FSMs, however, is challenging, especially in the
presence of loops in the FSMs. DIKEUE addresses this challenge
by reducing the problem of identifying deviant behavior in two
different FSMs to a model checking problem. The model checking
problem checks the safety properties of a model which parallelly
composes the two FSMs under analysis.
Findings. To test the effectiveness of our system, we evaluate
DIKEUEwith 14 popular UEs from 5 vendors, including Qualcomm,
MediaTek, Exynos, HiSilicon, and Intel. DIKEUE has uncovered 15
new distinct deviations and two previously reported issues. Some
of these issues are only evident when the implementation reaches
a specific state and can only be uncovered through stateful testing.
We classify these deviant behavior based on root causes and impacts.
Among the reported issues 11 are exploitable, and 3 are susceptible
to interoperability issues between UEs and network operators. The
implications of these deviations include implementations accept-
ing replayed messages and plaintext messages, exposing private
information, and causing denial-of-service attacks.
Responsible disclosure.We have responsibly disclosed our find-
ings to all the affected stakeholders (i.e., GSMA, Qualcomm, Me-
diaTek, Exynos, HiSilicon, Intel, Apple, Samsung, Huawei, HTC,
Android). GSMA has acknowledged with CVD-2021-0050 for all
the 15 newly discovered deviating behavior. The affected vendors
are in the process of patching the issues in future versions.
Contributions. To summarize, this paper makes the following
technical contributions:
• We propose DIKEUE— which, to the best of our knowledge, is
the first tool that designs a black-box FSM inference module to
automatically infer the FSM from a UE’s implementation with-
out any manual interventions or modifications to the devices.
DIKEUE will be publicly available at [1] after all the affected
UEs are patched and the responsible disclosure is completed.

• We design an FSM equivalence checking algorithm that auto-
matically detects and reports diverse deviant behavior of two
FSMs by reducing it to a symbolic model checking problem.

• We evaluate DIKEUE with 14 different devices from 5 vendors,
and demonstrate that it can uncover 17 deviant behaviors, in-
cluding 11 exploitable weaknesses and 3 interoperability issues.



2 BACKGROUND
DIKEUE infers the model of a protocol implementation in the form
of a Mealy machine, also known as a finite state machine (FSM). In
the following, we define a Mealy machine, provide an overview of
model learning, and discuss relevant technologies in 4G LTE.
Finite State Machine (FSM). We define an FSM (M) as a 6-tuple
(S,S0,Ψ, Σ,Λ,Ω), where S is a finite set of states, S0 ∈ S is the
initial state. Σ andΛ are the sets of input and output alphabets repre-
senting the set of possible input and output messages, respectively.
The transition relation Ψ : S × Σ → S maps the pair of a current
state and an input symbol to the corresponding next state, and the
output relationship Ω : S × Σ → Λ maps the pair of a current state
and an input symbol to the corresponding output symbol.

2.1 Active Automata Learning
Active automata learning approaches such as L∗ aim to learn the
deterministic finite automata (DFA) representation of an unknown
regular language L for a given input alphabet from a minimal
adequate teacher (MAT). The learner asks the MAT the following
two types of queries, namely, membership queries and equivalence
queries. A membership query is of the form 𝑥 ∈? L (i.e., the learner
wants to check whether a concrete string 𝑥 is a member of the
unknown language L). The MAT responds with a yes iff 𝑥 ∈ L;
otherwise, it responds with a no. An equivalence query, on the
other hand, checks whether a hypothesis DFAH is equivalent to
the DFA of the language L denoted by 𝐷L , i.e., both H and 𝐷L
accept the same set of strings. IfH is not equivalent to 𝐷L , then
the MAT should provide a concrete string 𝑦 that is accepted by one
but rejected by another as a counterexample.

A majority of the automata learning approaches work iteratively
in the following two stages [10, 34]. Hypothesis construction
stage: In this stage, the learner asks a series of membership queries
to build a closed and consistent hypothesis DFAH for L.Model
validation stage: In this stage, the learner poses an equivalence
query to the MAT to check whetherH is equivalent to 𝐷L . IfH is
equivalent to 𝐷L , the learning concludes, andH is provided as the
learned DFA. Otherwise, the approach goes back to the first stage
to create a new hypothesis based on the provided counterexample
and additional membership queries. This learning approach can be
extended in the standard way [50] to learn Mealy machines instead
of a DFA.

In practice, directly applying active automata learning as dis-
cussed above is not feasible. This is because obtaining a MAT with
the capability of answering an equivalence query (needed for the
model validation stage) is absent in the majority of the cases. One
can, however, approximate an equivalence query with a series of
carefully constructed membership queries [17]. We refer to this re-
laxed MAT (without equivalence query stage) as the System-Under-
Learning (SUL). Due to the approximate equivalence checking, the
learned model in such a case is not guaranteed to be correct but
instead assured to be observationally equivalent (i.e., the learned and
original model behave equivalently for strings whose membership
results the learner has observed during learning).

2.2 4G LTE Preliminaries
In the following, we introduce the most important network compo-
nents relevant to our analysis in this paper.

User Equipment (UE). The UE, also called cellular device, is the
user’s access terminal, in most cases, a smartphone. The User Ser-
vices Identity Module (USIM) stores the user identifier, the master
secret key, and shared session keys. With these credentials, the user
and the network performs mutual authentication.
eNodeB. The base stations, i.e., eNodeBs span the wireless cells that
users connect to. An eNodeB performs all connection management
through the Radio Resource Control (RRC) protocol with a UE.
Core network and MME. The operator-run core network is a
server landscape that performs all management aspects of mobile
networks. The Mobility Management Entity (MME) is the central
component managing users access, mutual authentication, and
keeping track of a user’s location. Most of these functions involve
many other network nodes; however, the MME orchestrates them.
UE and MME communicate through Non-Access Stratum (NAS)
protocol with the eNodeB as a relay. The MME is connected to
eNodeBs through the S1AP protocol (shown in Figure 7).
ProtocolOverview.When aUE is turned on, it first connects with a
base station with three-way RRC layer handshaking messages. This
connection allows a UE to initiate the attach procedurewith the core
network in which the UE and the MME mutually authenticate each
other, negotiate security algorithms for both NAS and RRC layers,
and complete the attach process with IP address and a temporary
identifier assigned to the UE. We discuss in detail the relevant NAS
and RRC layer procedures in Appendix A.1.

3 DESIGN OF DIKEUE
We now present the threat model, formally define our problem,
discuss the workflow of DIKEUE, and outline the challenges of
designing DIKEUE as well as insights on addressing them.

3.1 Threat Model
We consider the communication channels between the UE and
base station, and between the UE and core network subjected to
adversarial influence. Our attacker model follows the one defined
by previous works [30, 39, 47, 51] and comprises of either a passive
or an active attacker that differs in capabilities and restrictions. The
passive attacker can observe arbitrary communication between the
UE and the LTE network over the radio layer. The active attacker
can additionally intercept, replay, modify, drop or delay message,
without knowing the key material of devices not owned by the
attacker. Moreover, the attacker can deploy a fake LTE base station
impersonating a real LTE network. Note that, the cryptographic
constructs are considered to be perfectly secure. We also consider
the core network components, target user’s UE, and the USIM to be
part of the trusted computing base and free of adversarial influence.

3.2 Problem Statement and Approach Skeleton
Problem.DIKEUE aims to solve the following noncompliance prob-
lem. Given black-box access to a LTE control-plane protocol im-
plementation 𝐼 of a UE, the noncompliance asks is there an input
sequence 𝜋𝑖 = 𝜎1𝜎2𝜎3 . . . 𝜎𝑚 where 𝜎 𝑗 ∈ Σ such that the output se-
quence generated by 𝐼 after feeding 𝜋𝑖 as input, 𝛾𝑖 = 𝜆1𝜆2𝜆3 . . . 𝜆𝑚
in which 𝜆 𝑗 ∈ Λ, is not the one prescribed by the standard.
Approach skeleton. For addressing the above noncompliance
problem, DIKEUE takes advantage of its black-box access to mul-
tiple UE implementations ⟨I1,I2, . . . ,I𝑛⟩. It also requires that the
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input and output interfaces of these implementations are the same;
that is, the set of input and output symbols are Σ and Λ across
all implementations. Suppose the implementations simulate the
following protocol state machines ⟨M1,M2, . . . ,M𝑛⟩, respectively.
DIKEUE’s approach has the following two steps: ❶ For each imple-
mentation I𝑗 , using active automata learning, extract an approxi-
mationM∗

𝑗
of the underlying FSMM 𝑗 ; ❷ For each pair of extracted

FSM M∗
𝑗
and M∗

𝑘
, find input sequences of the form 𝜋𝑖 such that

when it is fed as input to bothM∗
𝑗
andM∗

𝑘
, the output sequences

they generate are 𝛾 𝑗 and 𝛾𝑘 , respectively, and 𝛾 𝑗 ≠ 𝛾𝑘 . In such a
case, 𝜋𝑖 is called a deviant-behavior-inducing input sequence,
and it also serves as an example of a noncompliant behavior.

3.3 Workflow of DIKEUE
DIKEUE (shown in Figure 1) works mainly with two components,
namely, the FSM inferencemodule and the FSM equivalence checker
module. The FSM inference module requires black-box access to
one or more UE implementations to be checked for noncompliance.
For each of these implementations, it uses active automata learning
to extract a protocol state machine of the input UE implementation.
Once the protocol state machines of all the implementations have
been extracted, each pair of the state machines are fed into the FSM
equivalence checker module. The FSM equivalence checker module
then tries to identify a diverse set of deviant-behavior-inducing
input sequences. Each of these sequences denotes a sequence of
input protocol messages for which the two input state machines
disagree. For each such input sequence, the outputs of the two state
machines are manually compared to the standard to identify which
of these implementations deviate from the standard; identifying
the noncompliant behavior which is displayed as output.

3.4 Challenges and Insights
For realizing the skeleton approach for noncompliance detection
presented just above, DIKEUE has to address the following two sets
of challenges. In addition, we also discuss how we address these
challenges using existing approaches as well as novel insights.
3.4.1 Learning the 4G LTE Protocol State Machine of a UE. As we
have hinted before, we use an existing active automata learning
algorithm for extracting the 4G LTE protocol state machine of a UE.
Effectively applying active automata learning for 4G LTE protocol
machine has the following three classes of challenges.
Challenge C1: Satisfying Pre-requisites of Automata Learn-
ing Algorithms. The first challenge involves ensuring that the
(implicit) prerequisites for active automata learning are satisfied so
that one can apply L* like algorithms for learning the protocol state
machine. There are three prerequisites for applying L* like algo-
rithms, namely, (𝑃1) identifying the input and output alphabet, (𝑃2)
ensuring that the SUL is deterministic, and (𝑃3) the membership
queries are run from the known initial state of the protocol.

First, the number of input symbols relies on the kinds of con-
sidered protocol messages, procedures, and also predicates over
messages. Once the input symbols are selected, then the output
symbols can be obtained from the protocol specification. Note
that, the considered input symbols are exponential to the num-
ber of considered predicates over messages and linear to the kinds
of messages. Let us consider an example protocol that has three
kinds of messages 𝑘1, 𝑘2, and 𝑘3, but the protocol transition con-
ditions also rely on two predicates over messages 𝑝1 (·) and 𝑝2 (·).
In this case, we can have a total of 12 (= 3 × 2 × 2) input sym-
bols based on which message kind (synonymously, message type)
it is and whether 𝑝1 (·) and 𝑝2 (·) are true. As an example, two
different input symbols are needed to capture the following two
conditions, namely,𝑚𝑒𝑠𝑠𝑎𝑔𝑒_𝑘𝑖𝑛𝑑 (𝑚) = 𝑘1 ∧ 𝑝1 (𝑚) ∧ 𝑝2 (𝑚) and
𝑚𝑒𝑠𝑠𝑎𝑔𝑒_𝑘𝑖𝑛𝑑 (𝑚) = 𝑘1 ∧ ¬𝑝1 (𝑚) ∧ 𝑝2 (𝑚) (𝑚 is a variable of type
message). There are 12 such possible conditions requiring 12 input
symbols. Note that, the size of the input alphabet impacts both ter-
mination of the learning and coverage of learned protocol behavior.
The larger the alphabet size the more of the protocol behavior will
be covered, but it will negatively impact the termination.

Second, despite the deterministic nature of the 4G LTE protocol
state machine of a UE, due to the unreliable over-the-air (OTA)
transmission, link-failures, re-transmissions, and timers, the out-
puts observed from the UE may not be deterministic, violating 𝑃2.
Such observational-nondeterminism causes the learned protocol
state machine to never converge as it spawns new states/transitions
with a new observation of nondeterministic behavior.

Finally, in case of 4G LTE, satisfying 𝑃3 requires deleting all the
keys, resynchronizing the USIM sequence number, and taking the
cellular device to the initial registration phase, which require time
and manual intervention to turn on/off the device and deleting
information from non-volatile memory.

LTE-specific Insight for 𝑃1. For input symbols, we consider a to-
tal of 16 protocol message kinds and the following four unary pred-
icates over messages: is_replay(·), is_plain_text(·), is_plain_h−
eader(·), and is_null_security(·). This gives us a potential input
alphabet size of 256 (= 16 × 2 × 2 × 2 × 2). We also need to consider
an additional 5 input symbols that trigger different procedures. As
an example, one such input symbol is to induce the UE to send an
attach_request message and initiate the protocol session. The different
predicates we consider have the following semantics. is_replay(𝑚)
is true iff 𝑚 is replay of a previously sent message. is_plain_text(𝑚)
is true iff the content of𝑚 is in clear. is_plain_header(𝑚) is true iff
the content of𝑚 should be encrypted and integrity protected with
value of the message authentication code (MAC) to be set to 0 but
the value of security header refers to a plaintext message message.
Finally, is_null_security(𝑚) is true iff null security is chosen as the
chosen ciphersuite in the sm_command message. The output symbols
are chosen accordingly from these possible input symbols.



Existing insight on satisfying 𝑃2. For addressing the observa-
tional nondeterministic behavior of a UE, we conservatively pose
each membership query twice. In case the outputs for both these
membership queries agree, we update the observational table. In
case of a conflict, however, we use the existing approach of using a
majority voting scheme to resolve conflicting output sequences [44].

Novel LTE-specific insight on satisfying 𝑃3. For satisfying 𝑃3,
we discovered a protocol-specific behavior to transparently reset
the device and take it to an initial state. Having a software solution
allows us to avoid the expensive approach of manually rebooting
the device; positively impacting the termination of learning.
Challenge C2: Balancing Termination and Coverage of Learn-
ing. Another major challenging aspect of effectively applying au-
tomata learning for extracting the 4G LTE protocol state machine of
a UE is achieving the right balance between termination and cover-
age. On one hand, aiming to achieve a high coverage of the behavior
negatively impacts the termination. Premature termination, on the
other hand, negatively impacts coverage. The termination of the
learning algorithm is impacted by the following factors: (1) number
of posed membership queries (reliant on the input alphabet size); (2)
the time to run each membership query and obtaining a response;
(3) the time it takes to resolve observational nondeterminism.

Novel LTE-specific insight of input alphabet selection. Al-
though we can potentially have a total of 261 (= 256 + 5) input
symbols, some of the input symbols are irrelevant. As an exam-
ple, consider a condition where𝑚𝑒𝑠𝑠𝑎𝑔𝑒_𝑘𝑖𝑛𝑑 (𝑚) ≠ sm_command in
which case the value of the predicate is_null_security(𝑚) is not
relevant as it only applies to the sm_command message. In addition, to
reduce the model learning time, we heuristically prune away other
input symbols that may not trigger interesting security-sensitive
behavior. After pruning, we end up with a list of 35 input symbols
which is much smaller than the original set of 261.

Novel LTE-specific insight of context checker.We develop a
context-checker with a set of invariants to automatically deduce
outputs for certain input message sequences posed as membership
queries without having to run them in the UE. These invariants are
conservative rules (i.e., ruling out certain infeasible orderings of
protocol messages) that one can reasonably expect a UE to satisfy
(e.g., not receiving certain protocol packets without an established
connection). Input sequences violating these invariants can be con-
sidered to have the output sequence null_action𝑛 where𝑛 is the length
of the input message sequence. Note that, null_action is a special out-
put symbol that refers to the UE not generating any outputs.

Existing insight on caching results. Running a query in the
device is expensive. We thus follow an existing approach [11, 52]
of maintaining a cache of membership queries, i.e., input sequences
and their corresponding outputs encountered during the hypothesis
construction stage. Equivalence queries posed during model valida-
tion stage are first consulted with the cache. If the cache is hit, then
the response stored in the cache is used. Note that, the cache is not
used during the hypothesis construction stage.
Challenge C3: Designing a Protocol-specific Adapter. The final
challenge for applying active automata learning in the context of 4G
LTE protocol state machines involve developing a 4G LTE-specific
adapter. The adapter facilitates communication between the learner
and the UE device. It needs to convert the abstract input symbols

in the membership queries to concrete OTA packets and send them
to the UE. In the same vein, it also needs to decode the response
from the UE and convert it back to abstract output symbols compre-
hensible to the learner. Developing such a 4G LTE-specific adapter
is challenging because protocol layers are intertwined and have
strong temporal correlations among their operations. As an exam-
ple, some NAS layer messages can only be sent after particular RRC
layer messages, and vice versa. Also, messages of both layers con-
tain timers and re-transmissions but, internal protocol states, e.g.,
transmission failures and timeouts, are not observable from the in-
put/output messages. In addition, for analyzing communication and
mobility management protocols, the adapter needs to trigger certain
behavior and corner cases in the UE that pose physical constraints
on the UE. For instance, testing handover scenarios requires the UE
to be physically moved between multiple base stations, which is
not practical and non-trivial to test in any controlled environment.

LTE-specific adapter.Wehave developed a LTE-specific adapter
by enhancing an open-source protocol stack that can transparently
send and receive messages based on the directions of the learner.
The adapter can handle the complex multi-level, stateful interac-
tions in 4G LTE, including different error conditions.

Novel LTE-specific insight on triggering complex operations.
We developed an adapter that can trigger complex 4G LTE behavior
in the software that would otherwise require physically moving
the UE, e.g., similar to ones for analyzing the handover procedure.
3.4.2 Identifying Noncompliance from Protocol State Machines. Re-
call that, once we have extracted the protocol state machines of
the UE implementations under test, we use differential testing of
pairwise protocol state machines from different implementations
to identify deviant-behavior-inducing input sequences [24, 42]. We
use these input sequences as a proxy for noncompliant behavior.
The main challenge for achieving this goal is how to automatically
identify a diverse set of deviant-behavior-inducing input sequences.
Existing equivalence checking approaches are insufficient for our
purpose as they neither have the notion of diversity nor the capabil-
ity to provide multiple deviant-behavior-inducing input sequences.

Novel insight on differential testing. We propose a notion of
diversity classes for deviant-behavior-inducing input sequences (see
Section 5). We use this notion of diversity classes to develop a novel
approach that reduces identifying deviant-behavior-inducing input
sequences to a model checking problem. This approach enables us
to not only automatically identify deviant-behavior-inducing input
sequences from different diversity classes but also identify different
instances from the same class.

4 FSM INFERENCE MODULE
We now explain in details the components that leverage LTE-
specific insights to enable a practical FSM inference module.

4.1 Learner
Following the model learning algorithm [34], the learner systemat-
ically generates queries as sequences of input alphabets, and based
on the outputs, infers the underlying FSM.
4.1.1 Taming the time and state explosion with alphabet set opti-
mization: The time and the number of queries required to learn
the model are directly proportional to the number of input alpha-
bets. We, therefore, first leverage LTE-specific insights to reduce
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Figure 2: Flow of query in DIKEUE’s FSM inference module

the potential input alphabet set of 261 input symbols (Section 3.4).
We discard the symbols that are irrelevant in the context of LTE.
For example, is_null_security(𝑚) does not apply to messages other
than RRC and NAS layers’ sm_command messages. Also, some poten-
tial symbols generated by combining multiple predicates together
eventually refer to the same symbol. To illustrate, the following
two conditions yield the same input symbol: (1)𝑚𝑒𝑠𝑠𝑎𝑔𝑒_𝑘𝑖𝑛𝑑 (𝑚)=
identity_request∧¬is_replay(m) ∧is_plain_text(m)∧¬is_plain_header
(m) ∧¬is_null_security(m); (2) 𝑚𝑒𝑠𝑠𝑎𝑔𝑒_𝑘𝑖𝑛𝑑 (𝑚) = identity_request

∧is_replay(m) ∧ is_plain _text(m) ∧ ¬is_plain_header(m) ∧¬is
_null_security(m). Since plaintext messages do not have any re-
play protection, replaying a previously sent plaintext identity_request
message is equivalent to sending a new plaintext identity_request mes-
sage. As such, we prune these irrelevant and redundant messages to
reduce the alphabet set to 59 symbols (listed in column 2 in Table 9).
Since the predicates are common to most of the messages in both
NAS and RRC layers (except sm_command and RRC_sm_command), to fur-
ther minimize the input alphabet set, instead of considering these
variants for each input symbol, we consider testing one variant
symbol per layer. For instance, one replayed symbol in one RRC
layer message is enough to test RRC layer replay protection. Since
NAS and RRC layers’ sm_command are special message kinds in LTE as
they are used to navigate the protocol from an unprotected state to
security protected state and create dependencies among layers [7],
we consider these two messages separately and also include their
variants into the alphabet set. Hence, in total, our input alphabet
set includes 35, as shown in the third column of Table 9.
4.1.2 Balancing termination and coverage: When the SUL com-
pletes exploring the control-plane procedures of our interest, we
terminate the learning and take the last inferred model for equiva-
lence checking. From empirical evaluation, we observed the learner
needs running queries for up to length 12 to explore the procedures.

4.2 Adapter
The adapter acts as a glue between all the components of FSM
inference module (shown in Figure 2), and builds a reliable interface
from the learner to each control-plane layers we want to analyze.
4.2.1 Addressing multi-layer protocol: The adapter flattens the
multi-layer protocol interactions by combining all layers under
a central component and controls the interactions of two interfaces
between (i) base station and UE, and (ii) core network and UE. Based
on messages in queries issued by the learner, it directs the message
to appropriate interface and waits until the response or timeout
occurs. It thus enables learning multi-layer protocol.
4.2.2 Improving time of learning with context-checker: To enhance
the performance of the FSM inference, the adapter tries to minimize
the time-consuming OTA transmissions. For this, the adapter is
provisioned with a set of invariants extracted from cellular spec-
ifications [2, 8, 9], which are used to decide if an input symbol’s
communication context set by previous symbols in the query is

valid for OTA transmission. Whenever an input symbol violates
the context, it is dropped, and the default– null_action is returned im-
mediately. In case an input symbol passes all these context checks,
it is transmitted OTA. The invariants defined in the adapter are:
1 input symbols corresponding to common control-plane pro-
cedures cannot appear before connection establishment symbols.
For instance, for Q1 in Table 1, the input symbol attach_accept is
not propagated forward as the control-plane connection has not
been established yet with the connection initiation symbols (e.g.,
enable_RRC_con or enable_attach). 2 Lower layer connection (RRC) has
to be established before upper layer (NAS) connection establish-
ment. To illustrate, for Q2, the first enable_attach does not have any
semantic meaning and will be responded with the default null_action
symbol; all symbols prior to the first enable_RRC_con in a query will
thus result in null_action as responses. 3 Security protected messages
require proper security keys to be established. Turning to Table 1,
for Q3, the security protected GUTI_reallocation message requires key
for integrity and encryption. However, before the authentication
and security mode command procedures, session keys have not
been established. Therefore, this GUTI_reallocation violates the con-
text check and the context-checker will return the default output
symbol. 4 After a connection closing symbol, a new connection
has to be established before transmitting the subsequent symbols.
For example, in the query shown in Q4, after the RRC connection
is released, all other symbols do not have any semantic meaning
and will not be propagated further until a new connection has been
established with enable_RRC_con input symbol. 5 A replay symbol
has to come after its original counterpart. For instance, for Q5, the
first auth_request_replay does not correspond to anything and will be
discarded until an auth_request has been received.

4.2.3 Encoding and decoding custom NAS and RRC layer packets
containing predicates: For an input symbol forwarded by the con-
text checker, the packet converter builds the corresponding NAS
and RRC layer payload and header based on the current context. For
instance, it saves the previously sent packets so that it can replay
those packets later. For plain header, plaintext, and null security
packets, the packet converter creates the fields as per the input
symbol requirements. For example, if a plain header input symbol
is received, instead of the usual integrity protected and ciphered
header, the message is sent with plain header. For plaintext mes-
sages, the packet is crafted by removing the MAC and without
encryption. For null security packets, the integrity and encryp-
tion algorithms are set to null-integrity (EIA0) and null-encryption
(EEA0), respectively.

4.2.4 Triggering complex protocol interactions: The packet con-
verted in the adapter also has to automatically trigger certain com-
plex interactions, which are often hard to test as they require phys-
ical movements of the SUL or manual interventions. For instance,
testing handover requires the user to move from one cell/tracking



ID Query ID Output
Q1 attach_accept enable_RRC_con.enable_attach R1 null_action RRC_con_request.attach_request
Q2 enable_attach enable_RRC_con enable_attach.auth_request R2 null_action RRC_con_request attach_request.auth_response
Q3 enable_RRC_con enable_attach, GUTI_reallocation.auth_request R3 RRC_con_request attach_request null_action.auth_response
Q4 enable_RRC_con enable_attach RRC_release auth_request.enable_RRC_con R4 RRC_connection_setup attach_request null_action null_action.RRC_con_request
Q5 enable_RRC_con enable_attach auth_request_replay.auth_request R5 RRC_con_request attach_request null_action.auth_response
Q6 enable_RRC_con enable_attach GUTI_reallocation.auth_request R6 RRC_con_request attach_request null_action.auth_response
Q7 attach_accept enable_RRC_con enable_attach.auth_request R7 null_action RRC_con_request null_action. (query terminated)

R8 null_action RRC_con_request attach_request.auth_response
Table 1: Example queries and responses. "." divides the prefix and suffix of the queries and responses.

area to another, whereas triggering a service request (e.g., making a
phone call and text) warrants a user to tap on the call button of the
phone, dial numbers or enter texts. For side-stepping such physical
constraints and manual interventions, the converter crafts special-
ized packets without requiring any mobility or special hardware.
To illustrate, if the learner issues enable_tracking_area_update to begin
a handoff, the packet converter sends the special RRC connection
release message with cause "load re-balancing TAU required". For
triggering the service procedure without any manual interaction,
the controller crafts paging packets and send them to the SUL to
trigger a service request. Also, the responses received from the SUL
are converted back to the output symbols by the packet converter.
4.2.5 Optimizing queries during model validation with cache: In the
model validation stage, the learner can generate the same query
which has already been resolved in the hypothesis construction
phase. To avoid expensive OTA testing of these duplicate queries
in the SUL, the queries from the hypothesis construction phase are
cached in the database [11, 52]. In the model validation stage, if the
same query is found in the cache, the query is not run OTA again,
cutting down the overhead and time for the repeated queries. For
instance, let us assume Q6 is a query generated during the model
validation phase, and the previous queries are generated during the
hypothesis construction phase. Q6 is checked against queries Q1
- Q5, and as the same query is cached in Q3, Q6 will not be sent,
and the saved response R3 will be returned.

4.2.6 Resolving observational non-determinism with inconsistency
resolver: As discussed in Section 3.4, a prerequisite for deterministic
model learning is to observe consistent behavior of the SUL for the
same sequence of input messages. To maintain such consistency,
we leverage existing insight from the prior work [44] and develop
an inconsistency resolver that primarily performs two operations: (i)
It lets the adapter run each new query (i.e., not present in the cache)
twice. If both the responses are the same, it saves the query in the
database. Otherwise, it triggers the adapter to run the query again.
The inconsistency resolver applies a majority voting scheme [44]
on the results and stores the majority output as a response to the
query. (ii) It checks if the prefix of every response (a query and
response is divided into prefix and suffix as shown in Table 1) is
consistent with the previously learned results. To check this, the
inconsistency resolver compares the response prefix of each query
with the previously reported results saved in the cache. If there is a
mismatch, the adapter restarts this query from scratch. For instance,
for Q7 in Table 1, the response prefix of the query is not consistent
with the previously saved response of R1. In such occurrences, the
query Q7 is terminated and started again from scratch. When the
prefix of the new response R8 is consistent with the previous result
R1, the response is considered valid and saved in the cache.

4.2.7 Transparent reset without manual intervention or rebooting
the device: The device resetter resets the SUL to the initial state

and clears the security context from the non-volatile memory of
the device by only sending an OTA attach_reject message with EMM
cause#11 “PLMN not allowed". To further ensure that both UE
and adapter are synchronized with the same sequence number,
the resetter sends auth_request to the UE. Nevertheless, as the initial
connection has to be initiated by the UE under test, the resetter
has to trigger the UE to generate an initial connection request
(e.g., attach_request for NAS or RRC_connection_setup for RRC) without
any manual intervention. To achieve this without any modification
on the device, for Android devices key press events are simulated
through the ADB connection. For iPhones, libimobiledevice– a
library to communicate with iPhone to restart the device [4] is
used, and for USB devices, the device is toggled through the USB
connection. Finally, for development boards and LTE dongles, AT
commands [36] are injected through serial connections.
4.2.8 OTA packet encoding/decoding with modified cellular stack:
We modify an existing open-source cellular stack to set up the com-
ponents of a base station and a core network that DIKEUE controls.
We remove the original FSM implementations of both the NAS and
RRC layers from the open-source LTE stack and create direct inter-
faces with the packet converter to use it only for encoding/decoding
lower-layer payloads (e.g., PDCP, RLC, MAC, and PHY) of a packet.
The cellular stack receives the concrete values for some specific
fields of packets from the packet converter, and communicates with
UE through OTA-transmission.

5 FSM EQUIVALENCE CHECKER
The FSM equivalence checker module ofDIKEUE takes as input two
protocol FSMs, in the form of Mealy Machines and automatically
identifies a diverse set of deviation-inducing input sequences, if
present. In what follows, we assume that the input FSMs have the
same input and output alphabet, denoted by Σ and Λ, respectively.

5.1 Reduction to Model Checking
We reduce this equivalence checking problem to a model checking
problem of a safety property in the following way (see Figure 3).
For this reduction, a symbolic model checker (e.g., nuXmV [14])
that is able to reason about safety-properties would suffice.
Reduction. Suppose the two FSMs under differential test are de-
noted by 𝑀1 and 𝑀2. The inputs to these two FSMS (downlink
messages they can receive) are denoted by 𝐼1 (for 𝑀1) and 𝐼2 (for
𝑀2), respectively. Similarly, let us denote their outputs (messages
they can send) as𝑂1 (for𝑀1) and𝑂2 (for𝑀2), respectively. We then
construct a model𝑀 which contains𝑀1 and𝑀2 as sub-components.
𝑀 will take a single symbolic input 𝐼 which will be fed to both 𝐼1
and 𝐼2 (i.e., the same input for both𝑀1 and𝑀2).𝑀 will have two
outputs 𝑂1 and 𝑂2, essentially outputs of𝑀1 and𝑀2, respectively.
The model𝑀 can be viewed as composing𝑀1 and𝑀2 with a paral-
lel composition. We then assert the following property of the model
𝑀 : It is always the case that 𝑂1 and 𝑂2 should be equal in each step
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of the execution (precisely, in linear temporal logic □(𝑂1 = 𝑂2)).
We want to emphasize that the input 𝐼 (which is essentially 𝐼1 and
𝐼2) is an environmental variable, i.e., we do not need to provide any
concrete inputs for 𝐼 . The model checker aims to find a sequence
of 𝐼 values for which the property is violated (i.e.,𝑂1 ≠ 𝑂2 in some
steps). A counterexample idenfied by the model checker suggests
essentially a deviation-inducing input.

5.2 Challenge of Obtaining Diverse Deviations
Note that, we are interested in discovering many diverse deviation-
inducing inputs. If we want the model checker to give us diverse
counterexamples, we have to somehow inform it of the concept of
diverse counterexamples. If we were to invoke the model checking
multiple times, it is highly likely that it will give the same coun-
terexample, the shortest in many cases. We indeed need the notion
of diversity, but it is unclear how to precisely define it. After getting
a counterexample 𝑐1, one may consider updating the original prop-
erty □(𝑂1 = 𝑂2) by blocking 𝑐1. This will make the model checker
find a different counterexample if present. However, the obtained
counterexample may not match our intuitive notion of diversity.
To explain this situation, let us consider the following example.
Example. Suppose we have the two partial FSMs𝑀1 (i.e., the top
one) and 𝑀2 (i.e., the bottom one), as shown in Figure 4. For this
example, let us only focus on the states 𝑎,𝑏, and 𝑐 of𝑀1 and𝑀2. The

transitions are denoted as 𝑠𝑖
𝑥𝑘/𝑦𝑜→ 𝑠 𝑗 , which refers to a transition

that moves the current state from 𝑠𝑖 to 𝑠 𝑗 after receiving input 𝑥𝑘 ,
and in the process generating output𝑦𝑜 . In the example,𝑀1 and𝑀2
behave in the same way for all transitions except for 𝑏 → 𝑐 (shown
in red color). 𝑀1 and 𝑀2 generate two different output messages
(i.e.,𝑦6 and𝑦7, respectively) when taking the transition𝑏 → 𝑐 under
input 𝑥6. Using the above approach, if we were to ask the model
checker to find a counterexample, it would likely give us the input
sequence in which both FSMs traverse the following states: 𝑎𝑏𝑐 ; as it
is the shortest one. Nowwhen we block 𝑎𝑏𝑐 , the model checker may
give a counterexample where𝑀1 and𝑀2 traverse states 𝑎𝑏𝑏𝑐 ; being
the next counterexample closest to the previous one. This loop can
go on where it spits out a variant of the (𝑎+𝑏+)+𝑐 counterexample
(‘+’ signifies one or more occurrences). These counterexamples
show the same problem of the transition 𝑏 → 𝑐 .

One may consider removing the transition 𝑏 → 𝑐 altogether
from both𝑀1 and𝑀2. This may, however, result in a disconnected
model in which the rest of the states become unreachable making
it infeasible to find other noncompliance instances infeasible.

5.3 Identifying Diverse Deviations
To identify diverse deviation-inducing input sequences, we propose
the notion of diversity classes. We use this notion to identify different
noncompliance instances in a given pair of FSMs.

Definition 5.1 (Diversity Class of Deviation-inducing Input Se-
quences). Given a fixed set of output symbols Λ where |Λ| = 𝑛,
there are a total of 𝑛×(𝑛−1) possible diversity classes for deviation-
inducing input sequences; one for each pair of distinct output
symbols (i.e., ⟨𝜆𝑟 , 𝜆𝑠 ⟩ where 𝜆𝑟 , 𝜆𝑠 ∈ Λ and 𝜆𝑟 ≠ 𝜆𝑠 ). For any
pair of FSMs 𝑀1 and 𝑀2, a deviation-inducing input sequence
𝜋𝑖 = 𝜎1𝜎2𝜎3 . . . 𝜎𝑚 is an element of the ⟨𝜆𝑟 , 𝜆𝑠 ⟩-diversity class
iff when 𝜋𝑖 is executed on𝑀1 and𝑀2 to obtain output sequences
𝛾1
𝑖
= 𝜆11𝜆

1
2𝜆

1
3 . . . 𝜆

1
𝑚 and 𝛾2

𝑖
= 𝜆21𝜆

2
2𝜆
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2
𝑚 , respectively, then there

exists a 1 ≤ 𝑘 ≤ 𝑚 such that 𝜆1
𝑘
= 𝜆𝑟 and 𝜆2𝑘 = 𝜆𝑠 .

As an example, suppose we are given two FSMs𝑀1 and𝑀2 for
which Σ = {𝑎, 𝑏, 𝑐} and Λ = {1, 2, 3, 4}. Let us consider a deviation-
inducing input sequence 𝜋 = 𝑎𝑏𝑐𝑐 for𝑀1 and𝑀2 for which we ob-
tain the output sequences 𝛾1 = 1234 and 𝛾2 = 1243 after executing
𝜋 on𝑀1 and𝑀2, respectively. 𝜋 is an element of the ⟨3, 4⟩-diversity
class as there exists a 𝑘 = 3 for which 𝛾13 = 3 and 𝛾23 = 4. Note that,
𝜋 is also an element of ⟨4, 3⟩-diversity class as there exists 𝑘 = 4 for
which 𝛾14 = 4 and 𝛾24 = 3.

We use the above notion of diversity classes to identify a di-
verse set of deviation-inducing input sequences. Without loss of
generality, we use an example to explain our approach. Suppose
we are given two FSMs 𝑀1 and 𝑀2 with Λ = {1, 2, 3}. Instead of
asserting the safety property □(𝑂1 = 𝑂2) in the composed model
𝑀 (as shown in Figure 3), we would pose a series of model check-
ing queries; one for each of the following safety properties: (1)
□¬(𝑂1 = 1 ∧ 𝑂2 = 2) (read, it is not the case that at any step of
the execution the output of𝑀1 is 1 whereas the output of𝑀2 is 2);
(2) □¬(𝑂1 = 1 ∧ 𝑂2 = 3); (3) □¬(𝑂1 = 2 ∧ 𝑂2 = 1); (4) □¬(𝑂1 =

2 ∧ 𝑂2 = 3); (5) □¬(𝑂1 = 3 ∧ 𝑂2 = 1); (6) □¬(𝑂1 = 3 ∧ 𝑂2 = 2).
Each of the queries aims to find at least an element, if present,
for each of the diversity classes. As an example, any violation of
property (1) above will result in an input sequence that is part of
the ⟨1, 2⟩-diversity class.

We go a step further by trying to identify multiple elements of
each diversity class. Finding other elements of a diversity class is
important as the same deviation can happen in different parts of
the FSMs. Once we have obtained an element of a given diversity
class, for identifying other elements of that diversity class, we use
the idea of removing the transition responsible for the deviation
from both FSMs (see Section 5.2), and posing the appropriate model
checking query again. Although removing the transition may re-
sult in disconnected FSMs, it is not as disruptive as the approach
discussed in Section 5.2 because this phenomenon is localized to
only a single equivalence class.

6 IMPLEMENTATION
The FSM inference module is implemented on top of LearnLib [35]
and srsLTE [6]–an open-source 4G LTE stack. For the learning
algorithm, we use TTT [34] as it requires fewer queries compared
to other algorithms [33], and for conformance testing, we use Wp-
method [17]. We implement our adapter in Java. We use srsLTE
v19.10 as the cellular stack to implement our modified core network



Device M E Time
(min) # of states # of transi-

tions
Motorola Nexus 6 3129 21300 37620 21 556
HTC One E9+ 8060 42432 77757 35 1172
Samsung Galaxy S6 3097 10612 21111 20 529
HTC Desire 10 Lifestyle 3129 21300 37676 21 560
Huawei Nexus 6P 3129 21300 37450 21 568
Samsung Galaxy S8+ 2908 20961 36762 21 554
Google Pixel 3 XL 3110 20501 36345 21 548
Huawei Y5 Prime 8100 44432 80899 35 114
Honor 8X 4623 16813 33011 28 725
Huawei P8lite 6228 7863 21700 34 1054
Xiaomi Mi A1 3105 21045 37191 21 570
Apple iPhone XS 2340 22450 75361 17 448
4G LTE USB Modem 2905 18332 39953 21 562
Fibocom L860-GL 2322 20470 35099 16 430

Table 2: M = Membership and E = Equivalence queries.
and base station. We replace the NAS and RRC FSM implementa-
tions of the canonical srsLTE stack with our modified stack and
create interfaces between the stack and adapter to forward NAS
and RRC packets in both directions. The other layers of srsLTE
are kept intact. We use USRP B210 as the software-defined radio
peripheral for OTA transmission. The FSM equivalence checker is
developed using the NuXmv model checker [14] and a python 2.7
script as the wrapper. Table 7 summarizes our efforts of modifying
the tools and creating new components for DIKEUE.

7 EVALUATION
To evaluate the performance of DIKEUE, we aim to answer the
following research questions in the subsequent sections:
• RQ1. How effective is DIKEUE in finding deviant behaviors?
• RQ2. How does DIKEUE perform compared to the existing
baseline testing approaches?

• RQ3.What are the effectiveness and performance of DIKEUE
components, i.e., FSM inferencemodule and equivalence checker?

Evaluation setup.We use a laptop with Intel i7-3750QCM CPU
and 32 GB DDR3 RAM to run the FSM inference module with USRP.
We use the same configuration laptop for FSM equivalence checker.
Devices.We use 14 different COTS devices from 5 vendors (shown
in Table 8) for evaluation. Our test corpus includes basebands from
5 vendors: Qualcomm, Intel, MediaTek, HiSilicon, and Exynos. The
devices range from Android 6.0 to Android 9.0, Apple iPhone XS,
USB Wi-Fi Modem, and to a cellular development board.

8 DEVIATIONS (RQ1)
DIKEUE has been able to uncover 17 distinct deviations in all the
14 devices tested. Among them 15 are new and 2 are uncovered in
previous works but on different devices. Based on the root cause, we
categorize the issues into two groups: (i) deviations from the stan-
dards; (ii) underspecifications. Note that, we consider conflicting
specifications as a part of underspecifications. Furthermore, based
on the impact we categorize the issues as: exploitable attacks and
interoperability issues. The attacks are constructed manually from
the deviant traces. We summarize DIKEUE’s findings in Table 3.

8.1 Exploitable deviations
Among the deviations identified by DIKEUE, 11 are exploitable. In
the following we discuss some of the issues in detail.
8.1.1 Replayed GUTI_reallocation: We identified the exploitable devia-
tions E1 and E2 (from Table 3) in total 9 devices from 2 different
vendors. In E2, the implementation accepts replayed GUTI_reallocation

anytime after the attach procedure, whereas in E1 the implementa-
tion accepts GUTI_reallocation at a specific state– after every sm_command

message. Note that, all the devices affected by E2 are also affected

by E16 and accept replayed sm_command as well, posing the imple-
mentations in vulnerable situations.
Root cause analysis. In TS 24.301 [9], section 4.4.3.2 it is explicitly
stated- “Replay protection must assure that one and the same NAS
message is not accepted twice by the receiver. Specially, for a given se-
curity context." The deviant behavior, therefore, is a clear mismatch
from the standards.
Adversary assumptions. To successfully carry out an attack ex-
ploiting this vulnerability, the adversary is required to set up a fake
base station [39, 51] or Man-in-the-Middle (MitM) relay [30, 49]
that can replay previously saved messages.

Target UE MME
Attach procedure completed

GUTI Reallocation Command
GUTI Reallocation Complete... ...

GUTI Reallocation
 CommandReplayed GUTI 

Reallocation Command
GUTI Reallocation CompleteOld GUTI

GUTI 
desynchronization

Other UE
Replayed GUTI 

Reallocation Command
GUTI Reallocation 

Complete

Replayed GUTI 
Reallocation Command

no response

Attacker

Fake base station

Figure 5: Steps of the replayed GUTI reallocation attack

Attack Description. This vulnerability can be exploited in two
ways: (1) The adversary, using a sniffer [30, 49] or MitM relay [49],
captures the GUTI_reallocation message for a given security context.
Later on when the MME sends GUTI_reallocation again for refreshing
the GUTI, the attacker drops this packet and replays the saved
GUTI_reallocation to the UE. The replayed packet will be successfully
accepted by the victim UE. Since the GUTI_reallocation_complete message
does not contain the agreed-upon GUTI, the MME also assumes the
completion of the procedure causing a GUTI mismatch between the
UE and the core network; (2) For the second attack, the adversary,
using a fake base station, connects to all the UEs in a particular cell
area and replays captured GUTI_reallocation to all of them. The victim
UE accepts this message and responds with GUTI_reallocation_complete,
whereas all the other UEs in the cell do not respond, violating the
unlinkability property and exposing the victim’s presence in the
cell area. The steps of both the attacks are shown in Figure 5.
Impact. The first attack causes a GUTI mismatch between the
UE and MME and forces a victim user to use a fixed GUTI for an
extended time. During this time, if the core network tries paging
the UE with new GUTI, the UE will not be able to receive any
such notifications or incoming services up to the point the device
initiates an attach procedure (which can be done by restarting the
phone) or a tracking area update procedure (due to handover), or
a service procedure (initiating a service from the phone), or a UE
initiated detach procedure (detaching from the core network). Since
a UE often does not invoke a tracking area update even up to a
week [51], and may not generate service during idle hours, during
the period the GUTI remains desynchronized and the UE will keep
running into this silent consistent denial-of-service attack. Using
the second attack, it is also possible for an adversary to track or
detect the presence of a victim UE in a cell utilizing the different
responses of the same GUTI_reallocation packet.
8.1.2 Plaintext message acceptance after security context: The devi-
ations EI3 and EI4 in Table 3 are identified in two different vendors.
The affected devices respond to plaintext identity_request and auth_request



messages even if the security context has been established. No other
vendors accept plaintext messages after the establishment of the
security context. Note that previous work has shown attacks ex-
ploiting the plaintext identity_request and auth_request messages. But
those messages are sent by the adversary before the security con-
text is established, whereas our findings show some devices accept
those plaintext messages even after the security context is set up.
Root cause analysis. Initially, it may appear to be a straightfor-
ward deviation from the specification; however, a deeper analysis
of the specification paints out a different picture. In TS 24.301 [9]–
the specification for the NAS layer, it is stated that plaintext iden-
tity_request shall be processed by the UE until the secure exchange
of NAS messages for the NAS signaling connection. Once the se-
cure exchange of NAS messages has been established, the receiving
entity shall not process any plaintext NAS message. However, in
the security specification TS 33.401 [8], it is explicitly stated that
all NAS signaling messages except the listed messages in TS 24.301
(the list includes identity_request, auth_request) as exceptions shall be
integrity-protected. This implies that plaintext identity_request and
auth_request can be accepted by the UE even after the security con-
text has been established. These conflicting standards cause the
developers to pick one of the options, and in this case, it seems
the security standard (TS 33.401) has been followed. Therefore,
conflicting specifications are the root cause of this issue.
Adversary assumptions. The attacker needs the capability to set
up a fake base station and craft plaintext messages. We assume the
adversary knows the victim UE’s C-RNTI [49] but does not need to
eavesdrop or capture any messages apriori. The adversary can also
overshadow any downlink message between the network and the
UE to carry out the attack [22].
Attack description. The adversary uses a fake base station to
connect to a victim UE and sends a crafted plaintext auth_request or
identity_request message. Alternatively, the adversary can also over-
shadow any downlinkmessagewith plaintext identity_request or auth_request
even after the security context is established. The UE accepts these
messages and replies with plaintext identity_response containing the
IMSI/IMEI of the victim device, or replies with plaintext auth_response.
Impact. The exposure of IMSI even after security context estab-
lishment is particularly fatal. This is because the illegal exposure of
IMSI provides an edge to the adversary to further track the location
of the user or intercept phone calls and SMS using fake base sta-
tions [30, 31] or MitM relays [49]. Furthermore, it has been shown
that auth_request can be used to leak private information, including
subscriber activity monitoring [13], launching DoS, and tracking a
user [13, 37]. Implementations accepting plaintext auth_request are,
therefore, vulnerable to these attacks.
8.1.3 Inappropriate state reset. In exploitable issues E11-E14 (of
Table 3), out-of-sequence, downgraded, or replayed RRC layer mes-
sages induce unwarranted reset of the affected devices’ state ma-
chines, causing connection drops.
Root cause analysis and impact. The root cause for all four is-
sues boils down to the underspecification of the standard. In the
RRC [2] specification, it is stated that whenever a device receives a
message not compatible with the protocol state, the actions are im-
plementation dependent. Due to this underspecification, different
implementations treat these non-compatible messages in different
ways. Devices that are more restrictive than others reset the FSM

state, restart the connection, go through authentication and key
agreement again whenever such a non-compatible message is re-
ceived. This creates the pathway to unintentional DoS in which
an attacker can send such unwarranted (plaintext/replayed/out-of-
sequence) messages from a fake base station intermittently.
Adversary assumptions and attack description. Similar to pre-
vious attacks, this attack assumes the adversary knows the victim’s
C-RNTI and can craft plaintext messages or replay previously cap-
tured messages. The attacker connects to the victim device and
based on the implementation, either sends a replayed or an out-of-
sequence or a downgraded or a plaintext RRC message. Each time
the attacker sends a new adversarial RRC message, the victim just
becomes unresponsive for 4-5 seconds and then reconnects to the
actual base station. To maintain a semi-persistent DoS, the attacker
will have to keep replaying plaintext/replayed/out-of-sequencemes-
sages at every 4-5 seconds interval, causing disruption of regular
operations and fast battery depletion of the victim UE.

8.2 Interoperability issues
DIKEUE uncovered 3 potential interoperability issues EI3, EI4, I15
(shown in Table 3). Due to space constraints, we discuss only I15
related to the handling of RRC_reconf message. RRC Reconfigura-
tion is the key step in establishing/modifying radio connections
between the UE and network. In most of the devices, RRC_reconf
message is accepted both before and after the attach procedure
to create/modify a radio connection. However, DIKEUE identified
two UEs where either RRC_reconf message is exclusively accepted
either before (MediaTek) or after the attach procedure (HiSilicon)
is completed. This may create interoperability issues if the core
network sends RRC_reconf in the other way around. In such a case,
devices from one of the vendors (i.e., MediaTek or HiSilicon) may
fall into certain connectivity issues. From our experiments, a major
network operator sends the RRC_reconf exclusively before the attach
procedure is completed. The root cause of these issues is under-
specification as TS 36.311 [2] states that the only condition for RRC
connection reconfiguration is the UE has to be in the connected
state with the base station. But a UE can be in the connected state
both before and after the attach procedure is completed.

8.3 Other deviant behaviors
DIKEUE also uncovered deviant behaviors O6 - O10 in Table 3,
whose implications are not yet certain. For instance, in O9, some
devices respond to replayed auth_request messages even after an in-
valid sm_command is received, whereas other devices do not. In the
former case, the device accepts such replayed auth_request message
until a valid sm_command message is received. The acceptance of these
replayed messages in that short time interval do not apparently in-
duce state changes or undesired behavior. Nonetheless, these issues
resulting from underspecification of the standards should be further
analyzed for verifying the impact of these deviant behaviors.

8.4 Previous issues
We have also found 2 previously discovered issues (E16 and E17),
that have not been resolved yet. For instance, in E17, Huawei P8lite
accepts downgraded RRC_sm_command with the choice of integrity
algorithm EIA0. This makes the implementation vulnerable to Man-
in-the-Middle attacks. The attack was first identified and described
by Rupprecht et al. [47] for a Huawei USB dongle.
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NAS
(E1) Replayed GUTI_reallocation at
specific sequence

Accepts replayed GUTI_reallocation when sent
immediately after a sm_command

✓ " " " " " " " "

(E2) ReplayedGUTI_reallocation any-
time

Accepts replayed GUTI_reallocation when sent
immediately after a sm_command

✓ "

(EI3) Plaintext auth_request Accepts plaintext auth_request after security con-
text has been established ✓ " " "

(EI4) Plaintext identity_request
Accepts plaintext identity_request (identification
parameter IMSI) after security context has
been established

✓ " " "

(E5) Selective replay of sm_command

UE accepts replayed sm_command up to the com-
pletion of of the attach procedure. After attach
procedure, the replayed sm_command is not
accepted anymore

✓ "

(O6) DL_NAS_transport without
RRC security

UE performs Downlink NAS Transport procedure even
before RRC layer security has been established ✓ " " "

(O7) Attach procedure without RRC security UE completes the attach procedure before RRC layer secu-
rity ✓ " " " " "

(O8) GUTI_reallocation before at-
tach procedure completion

UE performsGUTI_reallocation even before the
attach procedure has been completed or RRC
security has been established

✓ " " " " " " " "

(O9) auth_response after sm_reject UE replies to replayed auth_request even after se-
curity mode command procedure ✓ " " " " " " " " "

(O10) auth_seq_failure reply
After secure context has been established, some imple-
mentations reply with auth_MAC_failure while
others do not reply

✓ " "

RRC
(E11) Out-of-sequence RRC_reconf
causes unresponsiveness

RRC_reconf before RRC_sm_command
makes all other symbols unresponsive ✓ " " " " " " " " " " " "

(E12) Replayed RRC_reconf causes un-
responsiveness

Replayed RRC_reconf causes the UE to be unre-
sponsive until new attach procedure is started ✓ " " " " " " " " " " " "

(E13) Out-of-sequence
RRC_sm_command causes un-
responsiveness

RRC_sm_command before NAS sm_command
makes the device unresponsive ✓ "

(E14) Downgraded RRC_sm_command
causes unresponsiveness

After a downgraded RRC_sm_command, the de-
vice has to start attach procedure again ✓ " " " " " " " "

(I15) Overly restrictive RRC_reconf
For some UE, RRC_reconf works exclusively be-
fore or only after the attach procedure is com-
pleted

✓ " " " "

Previous issues

(E16) Replayed sm_command [32] Accepts replayed sm_command after security
context has been established ✓ " " " " " " "

(E17) Downgraded RRC_sm_command
acceptance [47]

UE accepts downgraded RRC_sm_command and
bypasses the whole RRC layer security ✓ "

Table 3: Deviations identified by DIKEUE. E- exploitable, I- interoperability issue, EI- both exploitable and an interoperability
issue, O- other deviating behavior, D- deviation from standards, U- underspecification

9 COMPARISONWITH BASELINE (RQ2)
We compare the effectiveness ofDIKEUEwith the conformance test-
ing framework defined in the 3GPP specification [5] and property-
guided testing by previous approaches [12, 19, 30, 32, 37].

9.1 Comparison with conformance test cases
We first compare the performance of DIKEUE with the 3GPP con-
formance test cases [5] based on two criteria: (i) test coverage; (ii)
identified deviant behavior issues. Since it is not possible to cal-
culate coverage from a black-box UE implementation, such as an
iPhone, we apply DIKEUE to srsUE [6] v20.10.1– the open-source
implementation by srsLTE [6]. We use the percentage of lines and
functions executed, which are obtained by Gcov [3], as the indi-
cator for code coverage. Since we are considering only the NAS
and RRC layers of the UE implementation, we do not compute the
percentage of lines covered with respect to the total number of
lines and functions in srsUE. Instead, we calculate the percentage
of lines covered within each function and only take into account
the functions that are related to our analysis. Therefore, let 𝐿𝑒 (𝑓 )
be the number of lines executed of function 𝑓 in the srsUE imple-
mentation and 𝐿(𝑓 ) be the total number of lines of 𝑓 , we define

the line coverage as:
∑𝑚
𝑖=1 𝐿𝑒 (𝑓𝑖 )/

∑𝑚
𝑖=1 𝐿(𝑓𝑖 ) and function coverage

as: 𝑛/𝑚 where 𝑓1, 𝑓2, . . . , 𝑓𝑚 are the functions relevant to NAS and
RRC layer and 𝑓1, 𝑓2, . . . , 𝑓𝑛 are functions executed in srsUE. For the
baseline coverage, we identify the 88 test cases related to the RRC
and NAS analysis from the 3GPP conformance test cases [5] and
run them on the srsUE implementation and calculate the line and
function coverage of all the test cases. The rationale is to compare
how DIKEUE covers compared to the standard defined test cases.
The conformance testing has line coverage of 82.58% and func-
tion coverage of 83.4375%, whereas DIKEUE performs significantly
better with 89.47% line coverage and 89.185% function coverage.

We also apply the 88 test cases to the 14 devices. In case the
same conformance test case induces different outputs in different
implementations, we note it as a deviant behavior. Through the
conformance test cases, only 2 deviating behavior can be captured,
compared to the 17 issues automatically identified by DIKEUE.

9.2 Comparison with existing LTE works
Table 4 compares our approachwith existing LTE testing approaches
based on several criteria such as automation, specification, imple-
mentation analysis, and stateful testing.



Paper Auto-
matic

Specific-
ation

analysis

Impleme-
ntation
analysis

Under-
specificat-

ion
detection

Stateful

LTEFuzz [39] ✗ ✗ ✓ ✗ ✗
LTEInspector [30] ✗ ✓ ✗ ✗ ✓
5GReasoner [32] ✗ ✓ ✗ ✗ ✓
5G-
Authentication [12] ✗ ✓ ✗ ✓ ✓

5G-AKA [19] ✗ ✓ ✗ ✓ ✓
ProChecker [37] ✗ ✓ ✓ ✓ ✓
DIKUE ✓ ✓ ✓ ✓ ✓

Table 4: Comparison with existing approaches.

9.2.1 Comparison with LTEFuzz. LTEFuzz [39] is a recent approach
for dynamic testing of LTE protocol based on stateless dynamic test-
ing with pre-generated test cases. In contrast to LTEFuzz, DIKEUE
is different from few angles. First, DIKEUE not only performs dy-
namic testing but also automatically reconstructs the FSM of the
underlying UE implementation, allowing in depth analysis. Second,
DIKEUE can uncover stateful vulnerabilities, whereas the analysis
done by LTEFuzz is stateless. For instance, it is not possible for
LTEFuzz to uncover the Replayed GUTI_reallocation (discussed in
section 8.1.1) attack discovered by DIKEUE and acknowledged by
both Qualcomm and Samsung as a high-severity issue. This is be-
cause the attack is triggered only at a specific state of the protocol
implementation, not for a GUTI_reallocation packet replayed at an arbi-
trary protocol state. Therefore, the testcases generated by stateless
property guided testing of LTEFuzz will not be able to generate
such a stateful testcase that can trigger such a vulnerability.
9.2.2 Comparison with property-guided testing. Previous work [12,
19, 30, 37] has applied property-guided testing on FSMs derived
from standards [12, 19, 30, 37] or extracted from white-box anal-
ysis [37]. To compare DIKEUE with the property-guided testing
approaches, we test the properties from previous approaches and
run model checking on the FSMs derived from the implementations.
As the previous properties are all for the NAS layer only, for a
fair comparison, we only test for NAS layer property violations.
Through property-guided testing, we identify 3 deviations (E2, E5,
O9) among the 10 issues found by DIKEUE in the NAS layer.

10 COMPONENTS PERFORMANCE (RQ3)
We now evaluate the performance of DIKEUE’s main components.

10.1 FSM inference module performance
Table 2 shows the number of states and transitions in the inferred
models for 14 devices. Each model includes on an average 22 states
and around 600 transitions. There are certain notable exceptions in
the model learning phase for different devices. For instance, both
the MediaTek phones (HTC One E9+ and Huwaei Y5) require sub-
stantially more queries and time to learn the models. This is because
MediaTek phones require at most 6 alphabets (i.e., input symbols),
including RRC_sm_command and RRC_reconf in a specific sequence, to
complete the attach procedure. Consequently, it takes the learner
more time to generate this specific sequence of messages, and with-
out it none of the future procedures, i.e., GUTI reallocation, tracking
area update, service procedure, etc., can proceed.

We now evaluate the effect of different components of the adapter
in FSM inference module applying different domain-specific opti-
mizations. The results of these evaluations are shown in Table 5.
10.1.1 RQ3.1. Impact of optimal alphabet set: In case all the feasible
input symbols from the predicates are included in the alphabet set,

Approach
# Queries

Time
(min)Total M E

Adapter
context-
violations

Read
from
cache

OTA

DIKEUE 5756 1416 4340 1620 1141 9392 11490
DIKEUE w/o cache 5756 1416 4340 1968 0 11796 15552

DIKEUE w/o
optimizations 5756 1416 4340 0 1141 9392 14072
DIKEUE w/o
inconsistency

resolver
5756 1416 4340 896 1141 5025 N/A∗

Table 5: DIKEUE performance of different components. M =
Membership queries and E = Equivalence queries.
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Nexus6 8 11 0 0 0 0 8 9 12 0 6 2 6
HTC1 7 8 8 8 8 0 10 10 8 8 8 8

GalaxyS6 11 11 11 11 6 12 12 11 5 12 5
HTC 10 0 0 0 8 9 12 0 6 0 6
Nexus6P 0 0 8 9 12 0 6 0 6
GalaxyS8+ 0 8 9 12 0 6 2 6
Pixel 3XL 8 9 12 0 6 0 6
HuwaeiY5 10 10 8 8 8 8
Honor8X 6 10 9 10 9
Huwaei P8 12 10 13 10

MiA1 6 0 6
Iphone Xs 6 0

USB 6
Fibocom

Table 6: Number of unique deviants.

the size of the input alphabet set would be 59 (Table 9 shows all the
possible symbols from the predicates and the symbols picked for
the optimized alphabet set). With our optimized design choice, we
reduce the alphabet size to 35. To show the impact of the alphabet
size, we infer the model of two different devices of two different
vendors with an alphabet set of 35 and 59 respectively up to the
attach procedure. Note that with the optimized alphabet set, we are
able to reduce the queries required to learn the attach procedure by
at least 35%. As the number of queries directly correlates to time,
this substantially improves the performance of DIKEUE.

Alphabet size

N
um

be
r o

f q
ue

rie
s

Galaxy S6
(Exynos)

Nexus 6P
(Qualcomm)

35 59

Figure 6: Impact of alphabet size

10.1.2 RQ3.2. Adapter
context checking: To eval-
uate the performance
improvement of the con-
text checker, we create
a variation of FSM in-
ference module with all
the optimizations in the context checker turned off and compare
it with the proposed FSM inference module’s performance. With
optimizations the system found 1620 invariant violations out of
5756 queries up to the attach procedure and thus improved the time
performance by 22%.

10.1.3 RQ3.3. Impact of cache: To evaluate the performance im-
provement of the cache, we turn off caching and compare it with
the original FSM inference module performance. About 19% of the
queries are cached, which reduces the over-the-air queries by 20%
and improves the performance of the system by 26%.

10.1.4 RQ3.4. Impact of inconsistency-resolver: To calculate the
overhead of the inconsistency resolver, we disable the resolver and
compare it with the general system where each query is sent only
once and the result is saved in the cache. However, without the
inconsistency resolver, after a certain time of the learning process,
the learner grinds into complete halt due to inconsistencies in
the responses (shown as N/A in Table 4). At that time, someone
has to manually analyze the queries in the cache and remove the
inconsistent responses, which requires domain knowledge and time.
In our experiments, the learner without inconsistency resolver got
stuck 15 times to learn up to the attach procedure.



10.2 FSM equivalence checker performance
Table 6 presents pairwise all possible deviant behaviors among 14
devices identified by our FSM equivalence checker. For instance,
Nexus 6 and Samsung Galaxy S6 have 11 discrepancies, whereas
Nexus 6 and Nexus 6P has no discrepancy. This is consistent because
Nexus 6 and Nexus 6P have the same vendor (Qualcomm) and a
similar version of baseband. Interestingly, among the devices from
the same vendor, all the devices behave similarly except HiSilicon.
Particularly, two devices from HiSilicon– Huwaei Honor 8X (Kirin
710) and Huwaei P8lite (Kirin 620) behave quite differently and
DIKEUE identifies 6 unique differences among them. We manually
analyze all the discrepancies and report 17 unique issues in Table 3.

To evaluate the timing performance of FSM equivalence checker,
we calculate the time required for all pairwise deviation checking 5
times and report the average, max, min and standard deviation in
Table 10. On an average, FSM equivalence checker takes 42 minutes
to find all the deviations. The timing cost of querying to the model
checker is shown in Figure 8 in Appendix A.2.

11 RELATEDWORK
We divide the related work in two broad categories: (i) Model learn-
ing and protocol state fuzzing; (ii) Cellular network security.
Model learning in different domains. Model learning can be
distinguished between a passive and an active approach. In passive
learning, only existing data is used and based on the data, a model
is constructed. For example, in [18], passive learning techniques
are used on observed network traffic to infer a state machine of
the protocol used by a botnet. This approach has been combined
with the automated learning of message formats in [29], which
then also used the model obtained as a basis for fuzz testing. When
using active automated learning techniques, as done in this paper,
an implementation is actively queried by the learning algorithm
and based on the responses, a model is constructed. State machines
learning has lately become a tool for analyzing the security protocol
implementations of various protocols, such as: TLS [21], DTLS [26],
TCP [25], IoT [53], OpenVPN [20], QUIC [46], and SSH [27]. In the
area of cellular networks, recently Chlosta et al. [15] aimed to apply
model learning to a component of the core network (MME). How-
ever, they only apply to open-source MME networks and do not
experiment with real-world implementations and therefore do not
face a lot of challenges that DIKEUE encounters and solves. Stone
et al. [43] extend state learning to analyze implementations of the
802.11 4-way handshake. In practice, model learning often falls to
non-determinism due to unreliable commuinication medium and re-
quires an prohibitively large number of queries to learn an FSM of a
protocol implementation. Several approaches have been developed
by the research community to deal with these issues. HVLearn [52]
and SFADiff [11] uses cache to avoid the communication cost of
repeated queries and improve performance. Furthermore, majority
voting has been used to deal with non-determinism [26, 43, 44].
Cellular network security. Previous work on 4G LTE implemen-
tation security has either been found by complete manual analy-
sis [16, 23, 28, 38, 40, 41, 48, 51] or semi automated testing [39, 47].
Other than protocol implementations, there is another body of
work related to protocol specifications. Rupprecht et al. [49] showed
missing integrity allows the redirection of malicious websites by an

active attacker. Hussain et. al. used manually constructed models
for verifying certain parts of the 4G [30] and 5G [32] protocols.

12 DISCUSSION
Limitations of DIKEUE. Similar to any testing paradigm, our ap-
proach is incomplete and may result in false negatives due to— (1)
not considering all possible message predicates in model learning;
(2) precluding infeasible message sequences from testing; (3) use
of custom termination condition for model learning to balance
scalability and coverage; (4) disconnected FSMs resulting from re-
moving a deviation-inducing transition used for identifying other
noncompliance instances of the same diversity class; and (5) inher-
ent limitation of not being able to detect noncompliance instances
when both implementations under test are noncompliant to stan-
dard but are equivalent. DIKEUE, however, pairwise checks the
equivalence of devices drawn from 14 different UE models belong-
ing to 5 vendors (i.e.,

(14
2
)
= 91 pairwise comparisons). It is, therefore,

highly unlikely that all devices deviate from the standard in the
same way. If one device deviates from standard in a different way
than the rest, our equivalence checker can identify it.
Property agnostic. DIKEUE is not entirely property-agnostic if
predicates (e.g., is_null_security(𝑚)) of messages are considered as
properties. In this paper, we consider the typical notion of prop-
erty [12, 19, 30, 32] which refers to stateful end-to-end guarantees
of a system. Since DIKEUE does not require any such properties to
identify noncompliance instances between any two implementa-
tions, we consider DIKEUE to be property agnostic.
Applicability on 5G. To the best of our knowledge, there is no
open-source protocol stack for the standalone 5G core network that
can be used to develop a 5G-adapter. Therefore, we leave testing of
5G cellular devices with DIKEUE as future work. Our LTE-specific
insights, although are based on LTE protocol invariants, are equally
applicable to 5G. As an example, similar to LTE, 5G has a multi-layer
design with most of the procedures unchanged from LTE. Thus, the
multi-layer protocol handling, context-checker, and other insights
will largely remain the same when adopting DIKEUE to 5G.

We also discuss parallelizing model learning and automatic ex-
ploit generation from deviant behavior in Appendix A.4.

13 CONCLUSION AND FUTUREWORK
We present DIKEUE which can automatically infer the FSMs of 4G
LTE UE implementations, and identify deviant behaviors among the
implementations in a property-agnostic way. To show the viability,
we applied DIKEUE to 14 COTS devices from 5 vendors. DIKEUE
uncovered 15 deviant behaviors; among them 11 are exploitable.
We have responsibly disclosed the vulnerabilities to the affected
stakeholders and they have acknowledged our findings.
FutureWork. In future, wewill accommodate sessionmanagement
and other data layer protocols and port DIKEUE to 5G. We will also
develop an automated attack strategy generator to provide end-to-
end attack scenarios from the deviating behavior traces.
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Component Tools Lines of Code
Learner LearnLib [35] 248 (Java)
Adapter – 1807 (Java)

Membership Cache – 507 (Mysql and Java)
Modified cellular stack srsLTE [6] ∼4000 (C++)

Device resetter – 640 (Python 2.7)
FSM Equivalence Checker – 2240 (Python 2.7)

Table 7: Additions/modifications to the tools used in DIKEUE.
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A APPENDIX
A.1 NAS and RRC Layer procedures
A.1.1 NAS Layer Procedures. We now briefly discuss the NAS layer
procedures that aremost relevant in the context of our paper (shown
in Figure 7, the NAS layer procedures are shown in black).
Initial attach. After rebooting, the UE performs a radio setup pro-
cedure. After the radio setup the UE establishes communication
through the RRC layer following the RRC Connection Setup. The
UE starts the NAS attach procedure by sending the attach_request

message. After successful authentication through auth_request and

UE MME

......

  RRC Security Mode 
Command/Complete

Paging 

... ...

NAS
RRC

NAS
S1APRRC S1AP

Attach Request
Authentication Request/Response

Security Mode Command/Complete

RRC Connection Request/
      Setup/Complete

        RRC Connection 
Re-configuration/Complete

         Attach Accept/Complete

RRC Release

UE Idle
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Service Request
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Downlink NAS Transport/ Uplink NAS Transport

Tracking Area Change ...

Tracking Area Update/Accept/Complete

eNodeB

Attach Reject

Identity Request/Response

Figure 7: LTE control plane procedures. NAS and RRC layer
procedures are shown in black and blue, respectively.

Device OS Version Baseband
Motorola Nexus 6 Android 7.1.1 Qualcomm APQ8084 Snapdragon 805
HTC One E9+ Android 6.0 Mediatek MT6795M Helio X10
Samsung Galaxy S6 Android 8.0 Exynos 7420 Octa
HTC Desire 10
Lifestyle Android 6.0 Qualcomm MSM8928 Snapdragon 400
Huawei Nexus 6P Android 8.0 Qualcomm MSM8994 Snapdragon 810
Samsung Galaxy S8+ Android 9.0 Qualcomm MSM8998 Snapdragon 835
Google Pixel 3 XL Android 11 Qualcomm SDM845 Snapdragon 845
Huawei Y5 Prime Android 8.1 Mediatek MT6739
Honor 8X Android 8.1 HiSilicon Kirin 710
Huawei P8lite Android 6.0 HiSilicon Kirin 620
Xiaomi Mi A1 Android 9.0 Qualcomm MSM8953 Snapdragon 625
Apple iPhone XS iOS 12 Intel XMM 7660 (Apple A12 Bionic)
Yoidesu 4G LTE USB
WiFi Modem – Not known
Fibocom L860-GL – Intel XMM 7560

Table 8: List of tested devices

auth_response messages, the MME moves towards the negotiation of
ciphering and integrity algorithms through the security mode com-
mand procedure. At this point, the NAS level security context is
established between the UE and MME, and the selected encryption
and integrity protection algorithms will be applied to subsequent
NAS massages. The MME concludes the attach procedure by send-
ing attach_accept message with a Globally Unique Temporary Identity
(GUTI) and the UE responds attach_complete message. In case the at-
tach cannot be accepted by the network, the MME shall send an
attach_reject message to the UE including an appropriate cause value.
Later we show how this message is utilized to create a transparent
reset for DIKEUE.
Other procedures. The identification procedure is used to know
the identity, in most cases, the International Mobile Subscriber Iden-
tity (IMSI) of the device. The GUTI reallocation procedure is used
by the MME to reallocate a new GUTI to the UE. The procedure
is started by the MME through sending a GUTI_reallocation and the
UE acknowledges with a GUTI_reallocation_complete. The tracking area
update procedure is a standalone procedure that occurs either when
the UE detects a new tracking area (TA) or a periodic TA update
timer has expired. The downlink NAS transport procedure can be
used by the network to send an actual SMS message in the NAS
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message.

A.1.2 RRC layer procedures. We now briefly discuss the RRC layer
procedures that aremost relevant in the context of our paper (shown
in Figure 7, the RRC layer procedures are shown in blue).
RRC setup. RRC setup procedure is the backdrop of the NAS attach
procedure. The purpose of this procedure is to establish an RRC
connection and to transfer the initial NAS dedicated information
message from the UE to the network.
RRCsecurity activation.RRC layer security is established through
the RRC security activation procedure. The procedure is started
through the RRC_sm_command message from the eNodeB and com-
pleted by the RRC_sm_complete message by the UE.
RRC release. This procedure is used by the network to release the
established radio bearers as well as all radio resources to suspend
the RRC connection.
RRC connection reconfiguration. The purpose of this procedure
is to modify an RRC connection, e.g., to establish/modify/release
radio bearers. As part of the procedure, dedicated NAS information
may be transferred from the network to the UE. Usually, after this
RRC procedure the UE completes the initial attach. To begin this
procedure, the network sends an RRC_reconf message which the UE
replies with RRC_reconf_complete to complete the procedure.
RRC Connection Re-establishment. A UE in RRC Connected
state, for which security has been activated, may initiate the pro-
cedure in order to continue the RRC connection. The procedure initi-
ates from theUEwith RRC_con_reest_req and completeswith RRC_con_reest,
and RRC_con_reest_complete messages.

A.2 Model checker performance in equivalence
checking

For further analysis, on the timing performance of the FSM equiva-
lence checker, for each output pair, we calculate the time required
for the model checker for repeated queries and take the average of
each round. The results are shown in Figure 8. After each round of
queries, a new invariant is added to the model and the search space
is reduced. In case there are multiple traces for the same input,
and output pair, the model checker goes deeper into FSMs and it
requires much more time. This, in return, contributes to the time
of our FSM equivalence checker.
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Figure 8: Time required for each round of nuXmv query

To evaluate the timing performance of the FSM equivalence
checker, we calculate the time required for all the pairwise deviant
checking 5 times and report the average, max, min, and standard
deviation in Table 10. On an average, it takes our FSM equivalence
checker 42 minutes to find all the deviations. Furthermore, the
timing cost of repeated querying to the model checker is shown in
Figure 8.

A.3 ACRONYMS
3GPP Third generation partnership project
ADB Android Debug Bridge
C-RNTI Cell Radio Network Temporary Identity
COTS Commercial Off-The-Shelf
EEA EPS Encryption Algorithm
EIA EPS Integrity Algorithm
FSM Finite State Machine
eNodeB Evolved NodeB
EPC Evolved Packet Core
GUTI Globally Unique Temporary Identity
IMSI International Mobile Subscriber Identity
LTE Long Term Evolution
MAC Message Authentication Code
MitM Man-in-the-Middle
NAS Non Access Stratum
OTA Over-The-Air
RNTI Radio Network Temporary Identity
RRC Radio Resource Control
TMSI Temporary Mobile Subscriber Identity
SDR Software Defined Radio
SUL System Under Learning
UE User Equipment
USIM Universal Subscriber Identity Module

A.4 Additional discussion
Parallelization. Parallelizing model learning by distributing differ-
ent membership queries from a learner to different UEs is plausible.
This necessitates complex coordination for maintaining soundness
and efficiency of learning which is, however, challenging when
inconsistencies are detected due to observational nondeterminism
across different instances. In exceptional cases (e.g., a majority of
the UE instances having their timers fire at the same time), In that
case, it will also take a long time to complete the learning because of
the majority voting mechanism culminating in a wrong result. For
this to resolve, learning has to revert back. Restarting the learning
process from the place of the wrongmajority voting result, however,
may end up nullifying the performance gain due to parallelization.
These complex cases require more investigation and thus we leave
it as future work.
Deviant behavior to automatic exploitation. DIKEUE automat-
ically provides traces depicting the deviant implementation specific
behavior. This is a concrete evidence of either implementation devi-
ating from the specifications or the standards being underspecified
or containing conflicting specifications. Currently, we manually
construct the attack strategies from these traces, which we plan to
automate in the future.



Message Input Symbols
(After irrelevant message pruning)

Input Symbols (After final optimiza-
tion) Output Symbols (Λ)

NAS
Enable Attach Request enable_attach enable_attach attach_request

Identity Request

identity_request_replay±
identity_request_plain_text
identity_request_plain_header
identity_request_protected*

identity_request_plain_text identity_response

Authentication Request

auth_request_replay
auth_request_plain_text
auth_request_protected
auth_request_plain_header

auth_request_plain_text auth_response, auth_MAC_failure, auth_seq_failure

Security Mode Command

sm_command_replay
sm_command_plain_text
sm_command_plain_header
sm_command_protected
sm_command_null_security

sm_command_replay
sm_command_plain_text
sm_command_plain_header
sm_command_protected
sm_command_null_security

sm_complete, sm_reject

Attach Accept

attach_accept_protected
attach_accept_replay
attach_accept_plain_text
attach_accept_plain_header

attach_accept_protected
attach_accept_plain_text attach_complete

Enable Tracking Area Update enable_tau
enable_tau

tau_request

Tracking Area Update Accept

tau_accept_replay
tau_accept_plain_text
tau_accept_protected
tau_accept_plain_header

tau_accept_protected
tau_accept_plain_header tau_complete

GUTI Reallocation Command

GUTI_reallocation_replay
GUTI_reallocation_plain_header
GUTI_reallocation_protected
GUTI_reallocation_plain_text

GUTI_reallocation_replay
GUTI_reallocation_protected GUTI_reallocation_complete

Downlink NAS Transport

DL_NAS_tansport_replay
DL_NAS_transport_plain_text
DL_NAS_transport_plain_header
DL_NAS_transport_protected

DL_NAS_transport_protected UL_NAS_transport

Paging paging paging service_request
Authentication Reject auth_reject auth_reject null_action
Tracking Area Update Reject tau_reject tau_reject null_action

RRC
Enable RRC Connection Request enable_RRC_con enable_RRC_con RRC_con_request

RRC Connection Setup

RRC_connection_setup_replay
RRC_connection_setup_plain_text
RRC_connection_setup_protected
RRC_connection_setup_plain_header

RRC_connection_setup_plain_text
RRC_connection_setup_plain_header RRC_connection_setup_complete

RRC Security Mode Command

RRC_sm_command_replay
RRC_sm_command_protected
RRC_sm_command_plain_text
RRC_sm_command_plain_header
RRC_sm_command_null_security

RRC_sm_command_replay
RRC_sm_command_plain_text
RRC_sm_command_plain_header
RRC_sm_command_protected
RRC_sm_command_null_security

RRC_sm_failure, RRC_sm_complete

RRC Connection Reconfiguration

RRC_reconf_replay
RRC_reconf_plain_text
RRC_reconf_protected
RRC_reconf_plain_header

RRC_reconf_replay
RRC_reconf_plain_text RRC_reconf_complete

Enable RRC Reestablishment enable_RRC_reest enable_RRC_reest RRC_con_reest_req
Enable RRC Measurement Report enable_RRC_mea_report enable_RRC_mea_report RRC_mea_report

RRC Connection Reestablishment

RRC_con_reest_replay
RRC_con_reest_plain_text
RRC_con_reest_protected
RRC_con_reest_plain_header

RRC_con_reest_plain_text
RRC_con_reest_protected RRC_con_reest_complete, RRC_con_reest_reject

RRC UE Information Request

RRC_ue_info_req_replay
RRC_ue_info_req_protected
RRC_ue_info_req_plain_text
RRC_ue_info_req_plain_header

RRC_ue_info_req_protected RRC_ue_info_req

RRC Connection Release RRC_release RRC_release null_action

Table 9: List of input symbols and possible output symbols for each of them. From the input symbols from predicates column
only blue color symbols are included in the optimized input alphabet set.
*Protected implies ¬is_plain_header(m) meaning the message is integrity protected and encrypted
± Replay messages are only true for protected messages, plain text messages do not have sequence numbers and replay
protection

Time (min)
Max Min Mean Median Standard deviation
82.51 13.08 41.84 35.975 21.3

Table 10: Performance of FSM equivalence checker.
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