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Abstract—Cellular protocol implementations must comply with
the specifications, and the security and privacy requirements.
These implementations, however, often deviate from the security
and privacy requirements due to under specifications in cellular
standards, inherent protocol complexities, and design flaws induc-
ing logical vulnerabilities. Detecting such logical vulnerabilities
in the complex and stateful 4G LTE protocol is challenging due
to operational dependencies on internal-states, and intertwined
complex protocol interactions among multiple participants. In
this paper, we address these challenges and develop ProChecker
which— (1) extracts a precise semantic model as a finite-
state machine of the implementation by combining dynamic
testing with static instrumentation, and (2) verifies the properties
against the extracted model by combining a symbolic model
checker and a cryptographic protocol verifier. We demonstrate
the effectiveness of ProChecker by evaluating it on a closed-
source and two of the most popular open-source 4G LTE control-
plane protocol implementations with 62 properties. ProChecker
unveiled 3 new protocol-specific logical attacks, 6 implementation
issues, and detected 14 prior attacks. The impact of the attacks
range from denial-of-service, broken integrity, encryption, and
replay protection to privacy leakage.

Index Terms—Cellular networks, Mobile and wireless security,
Formal security models

I. INTRODUCTION

Implementations of cellular network protocols, such as
4G LTE and 5G NR, must adhere to the specified security
and privacy requirements. Unfortunately, lack of secure-by-
design approaches for these complex protocols often induces
vulnerabilities in implementations with security and privacy
repercussions. While memory corruption vulnerabilities (e.g.,
buffer overflows, use-after-free) can be detected without prior
knowledge about the protocol utilizing memory sanitization
techniques [1], detecting logical vulnerabilities (e.g., resetting
the counter to break the replay protection of protocol mes-
sages) in large and complex protocol implementations is chal-
lenging since logical vulnerabilities do not have externally-
discernible effects such as crashes or memory leaks. Instead,
they require an in-depth semantic understanding of the proto-
col interactions and are thus primarily detected through manual
analysis.
Problem. Recent work has demonstrated the effectiveness of
formal verification in identifying logical vulnerabilities in 4G
LTE [2] and 5G NR [3] protocols. Most of these proposals,
however, primarily focus on developing a standalone security
and privacy analysis framework for verifying specifications of
protocols on a manually constructed simplified model, which
is hardly an option for commercial-scale complex implemen-
tations. On detecting logical flaws of 4G LTE protocol im-
plementations, previous approaches [4]–[9] have one or more
limitations: (A) The analysis [4]–[8] is completely manual; (B)

The analysis [9] performs stateless semi-automatic dynamic
testing of the implementation but requires significant manual
analysis and can only test few pre-defined properties. Even
though such manual or semi-automated security analyses are
effective to some extent, from a commercial vendor’s point-
of-view the use of different test infrastructures for separate
functional and security testing is often expensive and leaves
security testing at a low priority. To address these challenges,
this paper aims at answering the following research question:
Is it possible to evaluate the security and privacy properties
of a commercial-scale 4G LTE protocol implementation and
integrate the evaluation with the mainstream functional testing
framework to uncover logical vulnerabilities?
Challenge. Prior work [2], [3], [10], [11] evaluating the design
of cellular network protocols represents the high-level protocol
interactions with finite state machines (FSMs) and evaluates
the FSMs against desired security and privacy properties. Such
approaches can also be naturally applied to the FSM’s of
4G LTE protocol implementations. One major challenge in
applying such model checking based formal verification to
protocol implementations is, however, the automatic extraction
of the FSM from the implementation. It is critical that the
extracted model (represented by a FSM) is in bounds for
the state-of-the-art model checking tools, contains semantic
meaning, and is explicit enough to allow one to identify
logical vulnerabilities. However, due to under-specifications
in the standards, developers are free to design and implement
some part of the protocol in their own way— with the
only requirement of matching input/output behavior. Thus
implementations of internal protocols structure most often
deviate from the standards. This necessitates a sophisticated
and automated model extraction technique to reverse-engineer
a model from the implementation to properly verify properties
on protocol implementations.
Plausible approaches. Conceptually, one can extract the
model using one of the following two broad approaches: (1)
static analysis, and (2) dynamic analysis. For a typical indus-
trial implementation with pointers and function redirections,
static analysis techniques are unable to meet the precision
required to reason about both implementation soundness [12]
and completeness. On the contrary, though dynamic analysis
would appear to be effective because of its high precision,
it fails to scale for production-level and large-size implemen-
tations, when executing all feasible paths and suffers from
state space explosion. Nonetheless, existing popular dynamic
extraction techniques such as active-automata learning [13],
[14] are used to extract FSM’s of the implementations of other
protocols e.g., TLS, SSH in a black-box setting. However,



such approaches are prohibitively expensive as they require
a significantly high time and number of queries to infer the
target implementation’s FSM. Moreover, the inferred FSM is
not sufficiently large and semantically rich compared to that
of the white-box settings. For the FSM extraction, our goal
is, therefore, to achieve the accuracy of dynamic analysis
without falling into state explosion [1] and utilize the white-
box information to create a semantically rich model.
Our approach. We propose an automated white-box frame-
work, ProChecker, that allows developers to check whether a
4G LTE protocol implementation violates the desired security
and privacy guarantees. The violations can either mean the
implementation deviates from the standards, the protocol is
underspecified or the vulnerability is in the protocol design.
ProChecker works with two major components: (1) model
extraction, and (2) model checking.

For model extraction of commercial 4G LTE implementa-
tions, instead of creating a separate framework for security and
privacy analysis, we capitalize on the functional conformance
testing frameworks developed by protocol standardization bod-
ies and/or commercial test-case developers. We deploy a code
instrumentation mechanism that automatically instruments the
code and then utilizes the conformance testing framework to
generate a detailed log with rich metadata. Based on such
metadata, we designed a model extraction algorithm that
constructs the FSM of the protocol implementation.

For model checking, like LTEInspector [2], we combine
the reasoning powers of the symbolic model checker and a
cryptographic protocol verifier to detect logical vulnerabilities
that adhere to the cryptographic constructs of the protocol. The
reason behind combining the model checker and cryptographic
protocol verifier is to: (i) efficiently capture all the desired
properties that we have observed; (ii) reason about rich tem-
poral properties (e.g., safety, liveliness, correspondence) that
could not be captured if one of them is solely used.
Implementation. We evaluate the effectiveness of ProChecker
on a closed-source and two open-source (srsLTE [15] and
OpenAirInterface [16]) 4G LTE implementations. We instan-
tiate the model checking component of ProChecker with the
nuXmv infinite-state model checker [17] and the ProVerif
cryptographic protocol verifier [18]. For properties, we use the
conformance test suite [19] suggested by the standard along
with the properties which are implicit in the standard. The key
properties and insights leveraged by ProChecker and the major
procedures discussed here remain unchanged in the upcoming
5G deployment, making our framework directly applicable to
5G and securing upcoming generations.
Contributions. The paper has the following contributions:

• We propose ProChecker, a framework for property-guided
formal verification of commercial 4G LTE implementations.

• We design a novel model extraction tool as part of the
framework. It is scalable and leverages the functional testing
infrastructure (inherent to commercial products) to extract a
detailed formal model, e.g., a FSM, from the commercial
and complex codebase. This FSM can also be used to

enhance testing by detecting missing test cases.
• We evaluate ProChecker by implementing and integrating it

into the existing functional testing framework of a closed-
source and two open-source LTE implementations and
analyze their implementations. We evaluate our extracted
models against 62 properties. Along with uncovering 3 new
protocol-specific logical attacks, 6 implementation issues,
ProChecker identified 14 prior attacks in the FSM’s derived
from implementations. The issues range from denial-of-
service attacks, broken integrity, encryption, and, replay
protection to severe privacy leakage.

Responsible Disclosure. We have reported the protocol vul-
nerability findings of ProChecker to GSMA through the
coordinated vulnerability disclosure (CVD) program and are
actively coordinating with GSMA regarding the issues. The
CVD submission (CVD-20201-0043) has been awarded Mo-
bile Security Hall of Fame status by GSMA [20]. We have
also reported implementation issues to open-source 4G LTE
protocol stack developers [15], [16].

II. BACKGROUND

We introduce relevant aspects of the 4G LTE protocol,
logical vulnerabilities, and elaborate the key properties of
cellular network protocols leveraged by ProChecker.
A. LTE System Architecture

The 4G architecture can be divided into three components:
(i) UE, (ii) E-UTRAN, and (iii) EPC. The “User Equipment"
(UE) is a device (e.g., smartphone) and contains the modem
that is essential for communication. The UE has the SIM
card, which securely stores the unique international mobile
subscriber identity (IMSI) number and associated keys for
UE identification and authentication. For communication, each
area is divided into hexagonal cells. Each cell is served
by a single base station known as eNodeB. The eNodeB
connects the UE to the core network. The network between
the UE and the eNodeB and pairs of eNodeBs is the radio
access network (E-UTRAN). Evolved packet core (EPC) is a
mesh of interconnected services and is divided into several
components. The Mobile Management Entity (MME), the
most important to our discussion, manages attach, detach,
and other important procedures of the UE’s in a particular
hexagonal cell.
B. NAS Layer Procedures

When a UE reboots, it tries to connect to the nearby
eNodeB with the highest signal strength. After the con-
nection establishment with the eNodeB, the UE starts the
attach procedure by sending the attach_request to the
MME through the established connection. The attach pro-
cedure then goes through two important phases. First, for
verifying the authenticity of both the UE and MME a
challenge-response authentication procedure is completed
through the authentication_request/response messages.
Second, the security algorithm is negotiated through the
security_mode_command/complete messages. After these two
procedures, the attach procedure completes; all the subsequent
messages are encrypted and integrity protected and the MME



assigns a globally unique temporary identifier (GUTI) to the
UE to limit the exposure of IMSI. Other than this the GUTI
reallocation procedure, the paging procedure, and the tracking
area update procedure are used to change the GUTI of a user’s
device, provide service, and update the user’s tracking area
simultaneously (see Figure 1).

UE MMEeNodeB

UE_idle
......

authentication_request / response
attach_request

security_mode_command / complete
attach_accept /complete

paging / service_request
tracking_area_update / accept / complete

GUTI_reallocation_command/complete

Fig. 1: Overview of NAS Layer Procedures

C. Logical Vulnerabilities
Logical vulnerabilities are issues that force the protocol to

deviate from (i.e., yield a trace that violates) basic security
(confidentiality, integrity, availability) and privacy guarantees
without having an externally-discernible effect such as crash
or memory corruption. The deviations can be attributed to pro-
tocol level design-flaws, underspecifications in the standards,
and implementation mismatch. For instance, underspecifica-
tions and inadequate checks in replay protection induce logical
vulnerabilities in 4G/5G protocols enabling an adversary to
force a user to use the same session keys [4] (also known as
key-reinstallation attack) and reset the replay protection coun-
ters [3]. Note that all these previously uncovered issues have
been identified manually or from manually derived models.
D. Properties of LTE Protocol Implementation

We now briefly discuss common properties of 4G LTE
implementations that ProChecker leverages to extract a FSM
of a given implementation. The properties are identified by
analyzing sample protocol implementations followed by com-
mercial and most open-source protocol implementations.
Event-driven communication architecture. 4G LTE follows
an event-driven communication paradigm. For instance, when-
ever a protocol entity receives a message, it reciprocates with a
reply message. At a high-level, it means that every action by an
entity depends on the action taken by the other participating
entity. We can thus translate the action of one entity to the
event (or condition) of the other communicating entity.
Statefulness of the protocol. As the 4G LTE protocol is
stateful, every action of a participant is decided based on
the current state and the external/internal event (e.g., packet
reception or timer expiration) that occurred at the protocol
level. Since events may be triggered at different components
of the protocol implemented/managed by different source files,
from an implementation’s design perspective, state variables or
pointers to them are represented with global variables so that
they can be accessible from all the source files. This obser-
vation holds irrespective of language or design patterns used
for any implementation. Besides, for tractability and efficient
interoperation, implementations try to use the standard names

of the protocol states and messages that are explicitly defined
in the protocol specifications.
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Fig. 2: Architecture of ProChecker
Validation of well-formedness. Implementation guidelines
for 4G LTE recommend checking the well-formedness of
cryptographic primitives (e.g., authenticity/integrity) of in-
coming messages. For instance, when a message is received,
the participant first unpacks the message, checks the well-
formedness and the sanity of specific fields of the payload,
and then validates the message authentication code (MAC).
Therefore, whenever a packet is received, it is passed to the
respective message handler for performing these tasks.

III. OVERVIEW OF ProChecker

In this section, we discuss the threat model followed by our
definition of a FSM, challenges in designing such a system
and overview of our framework.
A. Threat Model

We consider a Dolev-Yao adversary model [21] in which
the communication channel between the client and the server
is subject to the following adversary actions: arbitrary packet
dropping, injection, or modification while impersonating a
legitimate participant. In this model, the adversary adheres to
cryptographic assumptions, i.e., it can decrypt a packet only
if it has the keys.
B. Protocol Finite State Machine

We model the 4G LTE protocol abstractly as a set of
deterministic FSM’s. A state machine αµ communicates with
another state machine βµ with two unidirectional channels,
one carrying message from αµ to βµ and vice-versa. Each
state machine is a 5-tuple (Σ,Γ,S, s0, T ), where Σ and Γ are
the non-empty sets of conditions and actions for the protocol
respectively, S is a finite set of states in which the protocol can
reside, s0 is the initial state of the protocol, and T is a finite
set of transitions in S. We consider a transition as a 4-tuple
(sin ∈ S, sout ∈ S, σ ⊂ Σ, γ ⊂ Γ). Here, sin is the source
state, sout the destination state, σ and γ are the condition and
action defined on this transition respectively.
C. Challenges

The most difficult problem in the design of ProChecker is
to extract a high-level protocol model of the implementation
with minimal knowledge of the protocol code. Solving such a
problem requires addressing several challenges:
C1: (Colossal codebase). The main challenge is the sheer
scale of the complex 4G LTE protocol implementation; in
the case of industrial implementations with legacy codes this
problem becomes intractable. For such implementations, both



static and dynamic analysis results in imprecision [12] or
state space explosion. The models generated from exclusively
applying different static or dynamic analysis techniques either
contain low-level intricacies of intra- and inter-procedural
interactions and thus result in scalability issues.
C2: (Pointer aliases and cryptographic constructs). 4G LTE
implementations contain large amounts of pointer aliases and
cryptographic constructs. This makes the extraction of FSM
challenging and results in intractability and false positives.
C3 (Semantic model). To detect logical vulnerabilities the
extracted model must have semantic meaning and should not
include low-level details, such as parsers, cryptographic pro-
tocol implementations, etc. Providing such an abstract model
requires that someone with the implementation knowledge
extracts the high-level protocol semantics for the resulting
model to be amenable for automated analysis.
C4 (Layered protocol). 4G LTE has a layered architecture. A
generated model that contains the interaction and information
of all the layers would break the scalability of general-
purpose model checkers. It is therefore important to extract the
different layers separately to be in bounds with model checkers
limits. However, this imposes an additional requirement when
extracting a model of the underlying implementation, where
all the layers are intertwined.
D. Insights on Addressing Challenges

For addressing C1 and C2, ProChecker does not rely
directly on the codebase to extract the FSM of the implemen-
tation; rather it leverages the execution logs of the protocol
interaction. The logs are captured from the execution of
conformance test cases provided by the protocol standard body
and/or the code manufacturers. 3GPP, the 4G LTE standard
body, provides conformance test suites for protocol imple-
mentation verification [22]. Also, commercial vendors have
their own functional testing infrastructure and code coverage
information. To address C3 we automatically instrument the
codebase to inscribe necessary information in the execution
logs to create a FSM with semantic information. For C4
we only extract interactions of a particular layer from the
execution logs and utilize the state and protocol message
names from the standards [19].
E. High Level Description of ProChecker
ProChecker comprises of two components: (i) Model ex-

traction; and (ii) Model checking (see Figure 2). For infer-
ring a 4G LTE implementation’s FSM, the model extraction
leverages the testing logs generated from the functional confor-
mance test suite. It is, therefore, important to provide a detailed
execution log enriched with a sufficient-level of semantic
information to the model extractor. For this, our simple source-
code level instrumentor automatically instruments the code
to dump the values of global and local variables. Note that,
our instrumentor does not require any knowledge about the
implementations, such as control-flow, program-dependency
or call graphs. The information-rich log is then passed to
the model extractor, which from the log extracts the specific
state, condition, and actions of the FSM following a generic
algorithm (see Algorithm 1). The algorithm utilizes the traits

of a generic 4G LTE implementation (that holds for both
commercial and open-source implementations) and state and
protocol message names from the specification. Our extracted
model abstracts out all cryptographic assumptions and for all
encrypted/integrity-protected messages, the plain-text counter-
part is extracted. For instance, a specific protocol message may
always be encrypted and transmitted with integrity protection;
our extracted model does not include that information and only
includes the interaction as plain-text. for analysis.

For model checking, our approach is based on the
counter-example-guided-abstraction-refinement principle (CE-
GAR) [23]. In the CEGAR framework, an initial abstract
model, and property are passed to the verifier. If the abstract
model results in erroneous (or “spurious”) counterexamples,
the model is revised to rule out the spurious counterexam-
ples. This continues until the verification goes through or a
realizable counterexample is found. Based on CEGAR, in
ProChecker, (1) our extracted 4G LTE model abstracts out
the cryptographic assumptions. (2) We then instrument that
model with Dolev-Yao [21] adversarial assumptions and call
it a threat-enhanced model. (3) The threat-enhanced model and
properties to check are passed to a general-purpose symbolic
model checker. Note that the model may generate a spurious
counterexample due to the absence of cryptographic abstrac-
tions. (4) To resolve this, we use a cryptographic protocol
verifier. If the protocol verifier confirms that all the steps in the
counterexample adhere to the cryptographic assumptions, then
the counterexample (alternatively, the attack) is reported by
ProChecker. Otherwise, we refine the property to ensure this
spurious counterexample is never generated again. Like the
CEGAR framework, this loop continues until the verification
completes or a realizable counterexample is found.

IV. DETAILED DESIGN OF ProChecker

We now dive deep into both the components of ProChecker.
A. Model extraction
ProChecker leverages the properties discussed in Sec-

tion II-D and extracts a scalable and verifiable FSM from the
logs with the following high-level operations.
(1) Creating an information-rich log. To build a FSM, we
extract information on the current/next protocol state, con-
dition variables defining the next state, and corresponding
actions from the log. The default execution log, however, only
provides whether a particular function is executed, which is
used for obtaining the coverage information. This informa-
tion, however, is not enough for obtaining protocol states,
conditions, and actions. To address this problem, we develop a
source code-level instrumentation mechanism to automatically
incorporate certain information into the log.
(2) Code instrumentation. The challenge for code instrumenta-
tion is to add information to the log with minimal implementa-
tion knowledge. To address this challenge, our code instrumen-
tation prints only the values of global variables, local variables
and function entrance/entry points in the log for each function.
The value of global variables on the entry and exit for each
function is used to detect state transitions, whereas the output



of local variables right before the exit of a function is used to
detect those variables’ last value in the current function scope.
The instrumented source code, when executed through the
conformance test cases, thus creates a log containing the state
information obtained from global variables, condition/action as
protocol interaction inferred from function entrance, and even
more detailed information, such as packet parsing/processing
results, as local variables. This information-rich log is then
used for extracting the FSM of the implementation. The
only required manual intervention is the identification of the
specific source files of a specific layer of the protocol that
requires instrumentation. From our experience of industrial
and open-source code, protocol source files of a specific layer
are always located in separate directories and to make the
instrumentation scalable and automatic, it is recommended to
apply the instrumentation to the particular layer of the 4G LTE
implementation under analysis. To achieve this instrumentation
with minimal knowledge of the source code, we leverage
insights from standard C/C++ coding practices such as (1)
global variables defined in separate header (.h) files, (2) local
variables defined in the first basic block in each function.
(3) Dissecting the log to detect relevant states, conditions

Algorithm 1: ProChecker Model Extractor
Data: Log, state_signatures, incoming_signatures, outgoing_signatures
Result: FSM(Σ,Γ,S, s0, T )

1 while end of Log not reached do
2 B← DivideBlock(Log, incoming_signatures)
3 for each line L ∈ B do
4 if L contains any s ∈ state_signatures then
5 append s to FSM.S
6 if s is the first state_signature ∈ B then
7 sin ← s
8 end
9 else

10 sout ← s
11 end
12 end
13 else if L contains any σ ∈ incoming_signatures then
14 append σ to conditions set FSM.Σ
15 end
16 else if L contains any γ ∈ outgoing_signatures then
17 append γ to conditions set FSM.Γ
18 end
19 end
20 if γ is empty then
21 γ ← null_action
22 end
23 append transition tuple (sin, sout, σ, γ) to FSM.T
24 remove B from Log
25 end

and actions. The log created through code-instrumentation and
conformance test suite contains all the global, local variable
values, and function entrance indications that are executed/ac-
cessed during the test case execution. The next challenge is to
use this information with minimal implementation knowledge
to extract the FSM. We leverage key insights from the 4G
LTE protocol and their implementations for this step. As
the 4G LTE protocol follows an event-driven paradigm, we
can dissect the log into blocks based on each incoming
message to the protocol. After the packet is received by the
implementation, it is passed to the corresponding incoming
message handler designated for unpacking, decrypting, sanity
checking (e.g., packet type and well-formedness), and valida-
tion of cryptographic primitives (e.g., message authentication

code or MAC). Depending on which checks are passed, the
internal state of the protocol is changed accordingly and the
control moves to the corresponding outgoing message handler
designated for taking the responsive action. Depending on the
results of checks performed by the incoming message handler
and protocol context, the receiver may take an action, i.e., send
a response packet (accept or reject based on the validation
results) to the other communicating entity (UE/MME) or take
no action at all (referred to in our FSM as null_action). For
example, whenever an authentication challenge is received,
it is passed to the incoming message handler for processing
authentication challenges. Upon completion of sanity checking
and internal state transition, the authentication completion
message is sent as a response from the outgoing message
handler. Since the condition variables used in the sanity
checking are local variables, we obtain their values from
the information-rich log containing values of all the local
variables declared and defined in the corresponding message
handler. In a similar vein, we extract the current and next
state information from the inscribed global state variables
in the log. Based on the incoming message handler (from
the function entrance indication in the log) and the outgoing
message handler execution, we extract the type of message
received i.e., the condition and sent i.e., the action of the FSM.
(4) Mapping protocol specific variables to implementation. To
map the 4G LTE protocol/standard specific state variables,
incoming and outgoing messages, and condition variables to
the myriad of implementation-specific variables in the log, we
leverage the following intuitions: (1) 4G LTE state names de-
fined in the standards [19] are directly used in the implementa-
tions to ensure interoperability. Therefore, by simply knowing
the name of each state defined in the standards, we can detect
the corresponding state represented with global variables. (2)
Similarly, incoming/outgoing message names defined in the
protocol specification are indirectly used in the implementa-
tion as function signatures. For industrial implementations,
the same signature is followed consistently throughout the
implementation and even for the open-sourced implementa-
tions, consistent signatures have been used. The consistency
aides tractability, efficient portability, and interoperability. For
instance, a sample signature is to prepend send_/recv_ (based
on whether the protocol message is incoming or outgoing) as a
prefix before the actual protocol message name. Instances of
this signature can be send_authentication_request, recv_

authentication_response. Leveraging this insight, we use
the function entrance information to extract both the type of
message received and sent during protocol interaction and
represent them as conditions and actions in a transition of
the FSM. The algorithm for model extraction from the log is
shown in Algorithm 1. The algorithm takes the generated Log,
state, and incoming/outgoing message signatures as inputs and
outputs the FSM . First, the log is divided into a block based
on the incoming message signature that caused the protocol
interaction. The block is then scanned line by line to extract
states (FSM.S), conditions (FSM.Σ), and actions (FSM.Γ)
[line (4-18)]. Intuitively, the first extracted state of the block



is denoted as the incoming state and the second one as the
outgoing state [line (6-11)]. As already discussed, there might
be the case when the incoming message does not trigger any
action for the protocol (due to failed validation); in that case,
the action is denoted as null_action [line (20-21)]. At the end
of the extraction, the tuple (sin, sout, σ, γ) is added to FSM.T
to keep track of the transition relation system.
B. Model checking

Our approach combines a symbolic model checker (MC)
and a cryptographic protocol verifier (CPV). As the 4G
LTE protocol can be considered as a set of communicating
FSM’s, we model each communication between two FSM’s,
for instance, the communication between the UE and MME
as, UEµ and MMEµ, with two uni-directional channels; one
from UEµ to MMEµ and another from MMEµ to UEµ. The
choice of using two unidirectional channels instead of a
single bidirectional channel provides more flexibility (e.g., one
direction of the public channels to be adversary controlled
whereas the other to be reliable) in reasoning about specific
scenarios and filtering spurious counterexamples. From the
extracted models UEµ and MMEµ and including the two uni-
directional channels, we enhance the model to include a Dolev-
Yao-Style adversary and create a threat instrumented model
IMPµ. We then use a general-purpose model checker [17] and
a property to check whether the model satisfies the property.
If the model satisfies the property, we adjudicate the property
to be verified on the model. If, however, a counterexample is
generated, there can be two possibilities: (a) the implemen-
tation model violates the property; (b) due to the abstraction
of cryptographic-constructs, a spurious counterexample was
generated. To prevent spurious counterexamples we run steps
of the counterexample to a symbolic CPV. If the CPV confirms
that all steps conform to the cryptographic assumptions, the
counterexample can be considered valid. If the CPV adjudi-
cates one of the steps taken by the adversary to be infeasible,
we refine the property to ensure that the adversary does
not exercise offending action in the future iterations of the
verification. The verification loop continues until either the
property is satisfied or a realizable counterexample is found.

V. RUNNING EXAMPLE

To illustrate our model extraction approach, we walk
through a simplified example code (see Figure 3) of the attach
procedure for a device in 4G LTE UE. The code is abstracted
to include only the protocol interactions of Non-Access Stra-
tum (NAS) layer of the cellular stack. The same algorithm
can be utilized for other protocol layers. For our running
example, we focus on the code of a UE for the final phase
of the attach procedure, i.e., the protocol interaction through
attach_accept/attach_complete. For ease of exposition, we
assume that the simplified implementation contains three func-
tions (see Figure 3). air_msg_handler takes a message from
the MME, parses the message, identifies its type, and passes
it to the corresponding handler associated with it. For our
example, the incoming message is an attach_accept and it
is thus routed to recv_attach_accept. The first task in any

implementation of recv_attach_accept is to check whether
the message contains a valid MAC. If the MAC check is
passed, the control is transferred to the respective outgoing
message handler that sends an appropriate response– which
in our case is send_attach_complete. In this example code
snippet, our instrumentation tool automatically includes few
print statements that inscribe all global and local variables
values, and function entrance information (see Figure 3, the
instrumented lines are shown in blue) when relevant test
cases are executed. For instance, consider a simple test case:
“When a properly formatted attach_accept message with
appropriate MAC is sent to the UE, the UE responds with
an attach_complete”. As the test case gets executed with the
instrumented code, we get a detailed log (see Figure 3(d)).

Now the task of the model extractor is to build the FSM
from the log. For building the FSM, we need to extract four
specific pieces of information from the log: (1) incoming
state, (2) outgoing state, (3) conditions, and (4) actions. in
our example, line 3 of the log (Figure 3(d)) indicates that
the control has moved to recv_attach_accept handler, which
essentially means that the condition for this transition is the
incoming attach_accept message. Down the trace, line 8
indicates that the MAC for the message is computed as valid.
Note that the initial state for this transition is extracted from
line 6 and identified as UE_REGISTERED_INIT. The final state
is extracted from line 9 as before completing the specific
test case the state transitions to UE_REGISTERED state. Line 5
manifests that an attach_complete message was sent by the
device in response to this particular test case. This example
shows the effectiveness of our approach in building a FSM
of an implementation without requiring detailed knowledge
about the source code. In a practical case, the generated log
will contain information about multiple rounds of interaction
between the UE and the MME. In that case, the log can be
divided into blocks based on the incoming message signature
names. From the blocks, a similar strategy can be applied to
extract the entire state machine.

VI. IMPLEMENTATION

We now discuss the implementation of ProChecker. Though
completed for LTE, we are adapting the framework for 5G.
Formal property gathering. The set of properties that
ProChecker aims to check includes authenticity (e.g., disallow-
ing impersonation attacks), availability(e.g., preventing denial
of service attacks), integrity(e.g., restricting unauthorized mes-
sages), privacy of user’s sensitive information (e.g., preventing
location data, activity profiling, and preserving users soft
identity), and replay protection. (e.g., restricting reception of
the same message more than once). We identify and extract the
precise and formal security goals from the informal and high-
level descriptions given in the conformance test suites [22] and
technical specification documents [19] provided by 3GPP and
translate them into properties. We extracted, formalized, and
verified a total of 62 properties among them 25 are related to
privacy and 37 related to security.
Codebases. For the closed-source implementation, the com-



1 air_msg_handler(air_msg){
2 print "air_msg_handler"
3 print current_state
4 ... ... ... ... ... ...
5 ... ... ... ... ... ...
6 air_msg_id = parse(air_msg)
7 case(air_msg_id){
8 attach_accept:
9 recv_attach_accept( )

10 authentication_request:
11 recv_auth_request( )
12 ... ... ... ... ... ...
13 ... ... ... ... ... ...
14 }
15 print air_msg_id
16 print current_state
17
18 }

(a) air_msg_handler

1 recv_attach_accept(air_msg){
2 print "recv_attach_accept"
3 print current_state
4 ... ... ... ... ... ...
5 ... ... ... ... ... ...
6 mac_valid = extract(air_msg)
7 if(mac_valid){
8 send_attach_complete( )
9 }else{

10 send_emm_status( )
11 }
12 ... ... ... ... ... ...
13 ... ... ... ... ... ...
14 print mac_valid
15 print current_state
16 }

(b) recv_attach_accept

1 send_attach_complete( ){
2 print "send_attach_complete"
3 print current_state
4 ... ... ... ... ... ...
5 ... ... ... ... ... ...
6 #create attach_complete packet
7 send_tx_conf( ) #send to MME
8 ... ... ... ... ... ...
9 ... ... ... ... ... ...

10 print current_state
11 }

(c) send_attach_complete

1 air_msg_handler
2 current_state: UE_REGISTERED_INIT
3 recv_attach_accept
4 current_state: UE_REGISTERED_INIT
5 send_attach_complete
6 current_state: UE_REGISTERED_INIT
7 current_state: UE_REGISTERED
8 mac_valid: True
9 current_state: UE_REGISTERED

10 air_msg_id: attach_accept
11 current_state: UE_REGISTERED

(d) Generated detailed log

Fig. 3: Instrumented generic example implementation (instrumented lines in the code are colored as blue)

plete size of the codebase is around 80 GB (including
all testing infrastructure and legacy support). We integrate
ProChecker with the mainstream functional testing framework
of the implementation. For the open-source implementations
we use the two most popular ones, srsLTE [15] and OpenAir-
Interface(OAI) [16]. All the codebases are written in C++.
Conformance test suite. For the closed-source codebase, the
conformance test suite we leveraged is part of the codebase and
contains 7087 test cases. These test cases can be considered as
protocol level functional test cases, testing a separate protocol
interaction. The test suite is completely automatic and all test
cases can be run together to get a detailed log. Both srsLTE
and OAI also have completely automatic testing environments
as part of their codebase but do not have the implementations
of all the conformance test cases. To test all the procedures
of NAS layer and generate enough coverage we add 9 test
cases to srsLTE (getting to 84% coverage for the NAS layer),
and 7 test cases to OAI. Note that these additional test
cases are not required for ProChecker, as any commercial
LTE implementation must include the conformance testing
framework following the 3GPP standards. This part is included
only for demonstrating the viability of ProChecker on open-
source LTE implementations.
Code instrumentation. We developed our instrumentation
tool which takes the code directory of the specific protocol
layer as input, and instruments the code with print statements
for function entrance, global and local variables. For all three
of our implementations, source files of a specific layer are
located together in separate directories. We only instrument
the NAS layer of the protocol. After the source code of the
NAS layer is instrumented, the whole code is put through the
conformance test suite to generate a detailed Log.
Model extractor. We implement the model extractor in Python
2.7 with around 1000 lines of code. We leveraged the protocol
state names directly from the standards [19] as the implemen-
tations use identical names. We mapped the incoming/outgoing
message signatures, sanity checking variable names following
the incoming/outgoing message names from the standards,
and a manual inspection of the source files of the NAS
layer. For future generations, this mapping can be documented
with minimal effort while designing the implementation, thus
eliminating this one-time manual intervention altogether. For
the largest log from the closed-source implementation, it takes

our model extractor around 5 minutes to analyze the log and
generate the semantic model.
Adversarial model instrumentor. The adversarial model
instrumentor takes two FSM’s— UEµ and MMEµ for UE and
MME as input and returns another model IMPµ which is an
extension of UEµ and MMEµ containing explicit adversarial
influence. Given two public communication channels– c1 from
UEµ to MMEµ, and c2 from from MMEµ to UEµ, our
ProChecker incorporates adversarial capabilities into UEµ and
MMEµ and thus combine them all to build a new threat-
instrumented abstract model IMPµ. For instrumenting threat to
a given transition, the adversary non-deterministically decides
either to drop/pass/change the message. We have developed
a model generator that takes as input the state machine of
the protocol written in Graphviz-like language and outputs a
SMV [17] description of the model. For our implementation,
we extracted the models of the UE by using our proposed
model extraction module. We, however, did not have access
to the commercial/closed-sourced implementation of a core
network and thus used the open-source core network’s FSM
manually constructed by Hussain et al. [2], which precisely
served our purpose as we were interested in identifying
vulnerabilities on the UE side. But it is evident that, given
the implementation and the test cases, this approach can also
be applied to the core network’s implementation.
Model checker (MC). To model check IMPµ, we use NuXmv
[17]. A major challenge in formal verification is scalability; the
model checker may not be able to terminate when the model
is large. We want to report that it was indeed possible to run
a model checker on the model extracted from an industry-
level large codebase. This is because of our semantic model-
extraction based on high-level protocol interactions from the
log and abstracting out low-level details of implementation.
Cryptographic protocol verifier (CPV). The counterexample
generated from MC is fed to the ProVerif [18] CPV to
determine its validity. For each adversary action in the model
checker provided as a counterexample, we query the CPV to
check its feasibility. If all adversarial actions can be proven
feasible, then the counterexample is presented as a feasible
attack and tested on the testbed. Otherwise an invariant is
added to the property ruling out the infeasible adversarial
action to refine the property. The verification loop between
MC and CPV is continued until either the property is satisfied
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Fig. 4: Service disruption using authentication_request

by the model or a realizable counterexample is found.
Testbed. We build a testbed using low-cost software-defined
radios and open-source LTE software stack, srsLTE [15],
totaling to a cost of around USD $4000. After verifying the
counterexample, we manually analyze the counterexample to
determine whether it is due to the implementation deviating
from the protocol specification or the deviation is due to
underspecification, design-flaw in the standards.

VII. EVALUATION AND FINDINGS

The main goals of our evaluation of ProChecker are to
answer the following research questions:
• RQ1. Logical Vulnerability Detection: How effective are

the extracted models of ProChecker? Is it possible to rea-
son about security and privacy properties to detect logical
vulnerabilities with the models?

• RQ2. Model Comparison: How expressive is the automat-
ically extracted FSM of ProChecker compared to the state-
of-the-art model [2] for formal verification?

• RQ3. Scalability: Is the generated model scalable with the
COTS model checking tools?

A. RQ1. Logical Vulnerability Detection
ProChecker uncovered 3 new protocol specific logical at-

tacks (applicable to any implementation), 6 implementation
issues, and identified 14 prior attacks (Table I).

1) New counterexamples
We first discuss the 3 protocol specific (P1-P3) logical

attacks, which are true for all three implementations, and then
4 most severe implementation specific (I1-I4) vulnerabilities.
(P1) Service disruption using authentication_request:
With this attack, the adversary exploits a potential vul-
nerability of authentication_request sequence number
(SQN) handling. The attack utilizes previously captured
authentication_request to desynchronize keys, disrupt ser-
vice, and force the UE to go through power-consuming au-
thentication procedure over and over again, causing a denial
of service and battery depletion.
Detection and attack description. We uncover this attack by
model checking IMPµ with respect to the property: “If the UE
is in the registered initiated state, it will get authenticated with
an authentication sequence number (SQN) which is greater than
the previously accepted SQN”. We observe a counterexample
in IMPµ where the UE accepts a SQN value smaller than

the current value. We validate the capability of the adversary
to fabricate attach_request message to generate legitimate
authentication_request by the MME using ProVerif. The
steps of the attack are shown in Figure 4. The adversary
using a malicious UE sends attach_request message to
the MME to capture authentication_request message to
be used later in the attack. At the time of the attack, the
attacker replays such captured authentication_request to
the victim UE. Due to the specific design of the generation
and verification of authentication_request message’s SQN

(which we describe in detail in the next section), the victim
UE accepts and processes this stale authentication_request

message, and regenerates all session keys causing a key
desynchronization between the UE and the legitimate MME.
As a result, the UE will also keep discarding actual packets
from the legitimate MME until the connection is dropped
and the authentication procedure is invoked from scratch
by the legitimate MME. By analyzing the traces of real
operational networks, we uncover that it is possible to use pre-
viously captured authentication_request messages–which
are days old to carry out such an attack. To extend the attack
impact, the adversary can keep using previously captured
authentication_request messages and replay them to the
victim UE recurrently.
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Fig. 5: Sequence number handling in USIM

Vulnerability. The SQN generation and verification for
authentication_request message is performed through a
complex scheme defined in TS 33.102 [24] Annex C. The
SQN is divided into two concatenated parts SQN = SEQ||IND,
namely the sequence (SEQ) and the index (IND). To gener-
ate a fresh SQN, the core network increments both IND and
SEQ, concatenates them together and sends to the UE. For
verification on the UE side, the USIM keeps track of a
SQN_array of a = 2IND items, where each item is a SQN

as shown in Figure 5. Whenever a new SQNj = SEQj||INDj

(0 ≤ INDj ≤ (a− 1)) in an authentication_request is re-
ceived by the UE, the USIM in the UE looks up its
SQN_array, checks if INDi == INDj, and based on that it
retrieves the corresponding SEQi value from the SQN_array.
After comparing this saved SEQi with the received SEQj,
the UE either accepts or rejects the SQN number and the
authentication_request message. In case SEQj ≤ SEQi,
the USIM generates an authentication synchronization failure
message using the highest previously accepted SQN anywhere



in the SQN_array. Due to this design, the UE allows out-of-
order SQN values.

Following our example, in case SQNj = SEQj||INDj

is captured and dropped by an attacker, the MME
would generate another SQNk = SEQk||INDk (where
INDk = (INDj + 1)%a and 0 ≤ INDk ≤ (a− 1)) and send
it to the UE. Upon receiving the message, the USIM would
look up the INDk = INDi+1 index of the SQN_array, retrieve
SEQi+1, compare with the received SEQk, and accept
the SQN. Now, when the previously captured and dropped
SQNj = SQEj||INDj is replayed back to the UE by the
attacker, the USIM would look up SQN_array at index
INDi = INDj and as the sequence part SEQi at this index is
still unchanged and smaller than the received SEQj the UE
would accept this stale SQNj.

According to the specification, this design to accept
authentication_request messages with out-of-order SQN was
designed to allow more efficient authentication of UEs that
move between different regions of a serving network or be-
tween different serving networks in roaming scenarios and thus
frequently run into SQN desynchronization issues. From our
experiments, we, however, uncovered that COTS UEs choose
5 bits for IND and the rest for SEQ, which results in a SQN_array

of a = 25 = 32 values. With this values, the USIM accepts 31
previously captured stale authentication_request message.
From the captured traffic of commercial network operators, we
observed that it takes at least a few (in some cases far more)
days to receive this much authentication_request from the
MME. Therefore, the majority of the COTS UE implementa-
tions accept a couple of days old authentication_request

message sent by the network, making it possible for the
attacker to carry out attacks.

Interestingly, in TS 33.102 [24] Annex C 2.2, there is
a freshness limit (L) on the range of old accepted SQN.
If the difference between the saved sequence part SEQi
at index INDi and the received sequence part, SEQj is
SEQj − SEQi > L, it will be rejected. However, the use of
such a range is completely optional and the value is undefined
for both 4G and 5G. The specification states – “The use of such
a limit is optional. The choice of a value for the parameter L
affects only the USIM. It has no impact on the choice of other
parameters and it is entirely up to the operator, depending on
his security policy. Therefore no particular value is suggested
here". Apparently, being optional and unspecified none of the
major vendors are implementing such a check, paving the way
to the acceptance of old sequence numbers.
(P2) Linkability attack using authentication_response:
This attack can enable an adversary to track the pres-
ence of a user’s device in a particular cell area violating
the user’s privacy by exploiting the different responses of
authentication_request message. From the counterexample
of the previous attack (P1), we identified that the UE accepts
previously captured stale authentication_request with a SQN

value smaller than the current accepted value. We utilize
ProVerif’s capability to reason about observational equivalence
and pose the query: “is it possible to distinguish two UE’s

based on their responses to an authentication_request?",
to identify this attack. The first phase of the attack to capture
authentication_request is similar to P1 (see Figure 4).

For the next step, the attacker with a malicious base
station connects to all the UEs in a particular cell area and
replays the captured authentication_request to all of them.
The victim UE will accept this message and respond with
authentication_response whereas all the other UEs in the
cell will respond with MAC failure due to integrity check
failure (see Figure 6) identifying and tracking the presence of
the victim user. This attack is inspired by the linkability attack
using auth_sync_failure shown in 3G [25] with the caveat
that the distinction between different messages and a different
vulnerability is utilized by the attacker for the two attacks.
In this attack, the attacker differentiates between an out-of-
order accepted authentication_request and a synchroniza-
tion failure auth_sync_failure message to detect the presence
of a user, whereas in the 3G attack two failure messages
(auth_sync_failure and auth_MAC_failure) are utilized for
the attack. The root cause of this attack is same as P1.
Impact on 5G. The generation and verification scheme of

authentication_requestauthentication_request
SQN	<	n

authentication_
response

authentication_
	MAC_failure

AttackerVictim	UE	 Other	UE

SQN	=	n

Fig. 6: Linkability using authentication_response

sequence number (SQN) in authentication_request message
described in P1 (Section VII-A) is exactly the same in the 5G
specifications, thus making the 5G rollout directly vulnerable
to P1 and P2 attacks.
(P3) Selective security procedure denial: In this attack,
the adversary exploits the underspecification of the sequence
number checking to prevent important security procedures
entirely causing severe security and privacy issues.
Detection and attack description. We model check IMPµ

against the property “If the MME initiates a common proce-
dure (e.g., Security Mode Command or GUTI Reallocation),
the UE will complete that procedure”. This is violated by
a trivial counterexample where the adversary drops packets
in transit, but neither UE nor MME could detect such oc-
currences. We, in fact, observed that the adversary can even
drop an arbitrarily large number of packets at once since the
UE always accepts packets with higher sequence numbers,
but does not check the difference of sequence numbers of
two consecutive received packets. As a result, for the security
procedures where a fixed number of trials is attempted, it
is possible to drop packets and surreptitiously prevent the
security procedure altogether. To carry out this attack, the
attacker sets up a man-in-the-middle (MITM) relay between
the UE and MME and drops packets related to important se-
curity procedures, such as GUTI reallocation or security mode
command. The attacker, by inferring the message type (from
the packet meta-data, e.g., packet-length and temporal order of
the encrypted/plaintext packets in transit), can selectively drop



relevant packets until the security procedure is abandoned by
the MME (in most of the times it is tried 4-5 times). This
forces the victim UE and the core network to keep using
previous security contexts or the temporary identifier GUTI.
Vulnerability. Such kind of selective service denial attack is
possible because of the underspecification of the standards. In
TS 24.301 [19] it is specified that “Replay protection must
assure that one and the same NAS message is not accepted
twice by the receiver. Specifically, for a given NAS security
context, a given NAS COUNT value shall be accepted at most
one time and only if message integrity verifies correctly.”
However, the case where an adversary is dropping packets
surreptitiously is not handled in the specification. Due to the
higher sequence number being the only satisfying condition
and the inadequate check on the sequence numbers of two
consecutive packets, it is possible to carry out this attack
without detection.
Impact. The impact of this attack can be catastrophic as it
affects multiple crucial security and privacy-preserving pro-
cedures. For instance, when the MME assigns a new GUTI
to the UE with GUTI_reallocation_command message, the
adversary can drop the message without being detected by
the UE/MME and thus can induce both parties to use the
same GUTI for a longer time than expected. The conse-
quence of such packet dropping on the GUTI reallocation
procedure is critical because of the following specification
- TS 24.301 [19]: “The GUTI reallocation procedure is
supervised by the timer T3450. The network shall, on the
first expiry of timer T3450, reset and restart timer T3450
and shall retransmit the GUTI_reallocation_command. This
retransmission is repeated four times, i.e. on the fifth expiry
of timer T3450, the network shall abort the reallocation
procedure". This implies that an adversary can surreptitiously
drop five consecutive GUTI_reallocation_command messages
and prevent the procedure entirely. After the five tries, the
MME thus aborts the procedure and both MME and UE will
keep using the previous GUTI. Since frequent updates of
GUTI are mandated by the standard to prevent user tracking,
this attack forces the GUTI reallocation to fail and thus enables
the adversary to track the victim for a long period of time.
Similar implications also apply to the security mode command
procedure, where it is also possible to surreptitiously prevent
the UE and MME from re-negotiating the keys. Such kind
of selective procedure denial enables the adversary to force a
device to reuse the same GUTI or session keys for an elongated
time period and thus to track the victim device easily.
Impact on 5G. For the vulnerability and attack described here,
the same procedures exist with the same design in 5G [27]
as well, making it vulnerable to selective security procedure
denial attack. Moreover, 5G introduces some new procedures
which are also vulnerable to this attack. For instance, in TS
24.501 [27] the 5G Configuration Update Procedure it is
stated–“The network shall, on the first expiry of the timer
T3555, retransmit the configuration_update_command mes-
sage and shall reset and start timer T3555. This retransmission
is repeated four times, i.e. on the fifth expiry of timer T3555,

the procedure shall be aborted" making it possible to drop
five messages, deny the procedure entirely and force the use
of the same 5G-GUTI. Similar to this attack on 4G LTE, the
adversary exploiting the vulnerability in the 5G network can
track the user for long periods of time.
(I1) Broken replay protection with all protected messages:
As discussed in the previous attack (P3), the UE should never
accept any replayed packet after the security context has
been established. We, however, found that both srsUE [15]
and OAI [16] implementations allow the adversary to replay
packets. We tested the FSMs of these implementations with
the replay protection property and observed that OAI accepts
only the last message when replayed, whereas srsUE accepts
any replayed messages and resets the downlink counter with
the counter value given in the replayed packet.
(I2) Broken integrity, confidentiality with all protected
messages: The standard [19] also specifies a primitive property
that a UE must not accept any plain-text messages after the se-
curity context is established. However, while testing the FSM
of OAI with this property, we found a counterexample where
the UE accepts plain-text messages with plain-NAS (0x0) as
the packet header after the security context is established.
We validate the counterexample in the testbed and indeed the
OAI implementation accepts all security-protected messages
in plain-text and un-cyphered after establishing the security
context, effectively breaking integrity and confidentially pro-
tection of the protocol implementation.
(I3) Counter-reset with replayed authentication_request:
We uncover this attack by model checking IMPµ with respect
to the property: “If the UE is in the registered initiated state, it
will get authenticated with an authentication sequence number
(SQN) which is greater than the previously accepted SQN”. We
observe counterexamples where the implementations of srsUE
accept the same sequence number and reset the counter. Due
to this attack, it is possible to break the replay protection by
sending replayed packets over and over again.
(I4) Security bypass with reject messages: As per the
specification, the UE after receiving a release/reject message
(e.g., attach_reject) should delete all the security contexts,
move to the de-registered state and perform authentication
and security mode command procedures again to reconnect
to the network. While checking this property with the srsUE
model, we, however, found counterexamples in which the UE
directly moves from de-registered to registered state without
completing authentication and security mode command proce-
dures. Thus the adversary can bypass the whole security and
authentication procedure.

2) Proving previous attacks:
Along with detecting new logical issues, ProChecker is able

to automatically identify 14 design-level logical vulnerabilities
uncovered by previous works [2], [6], [25], [26] (see Table I).
These vulnerabilities were previously identified through man-
ual inspection or from models that were manually derived.
B. RQ2. Model Comparison

To evaluate the expressiveness of ProChecker’s automati-
cally extracted models we compare the extracted model from



Attack Property
Type Implication Vulnerability Type srsLTE [15] OAI [16]

New Attacks
(P1) Service disruption using authentication_request Security Service disruption Standards
(P2) Linkability using authentication_response (Inspired by [25]) Privacy Location privacy leakage Standards
(P3) Selective service dropping Security Surreptitious service disruption Standards
(I1) Broken replay protection with all protected messages Security Broken replay protection Implementation

(I2) Broken integrity, confidentiality with all protected messages Security-
Privacy Integrity, encryption broken Implementation

(I3) Counter-reset with replayed authentication_request Security Breaks replay protection Implementation
(I4) Security bypass with reject messages Security Security bypass Implementation
(I5) Privacy leakage with identity_request Privacy IMSI leaking Implementation
(I6) Linkability with security_mode_command Privacy Location tracking Implementation

Previous Attacks
Authentication sync. failure [2] Security Denial of Service Standards
Stealthy kicking-off [2] Security Detaching victim surreptitiously Standards
Panic attack [2] Security Creating artificial chaos Standards
Linkability using TMSI_reallocation [26] Privacy Location privacy leak Standards – –
Linkability using IMSI to GUTI using paging_request [25] Privacy Location privacy leak Standards
Linkability using auth_sync_failure [25] Privacy Location privacy leak Standards

Authentication relay [2] Security-
Privacy DoS, location history poisoning Standards

Numb Attack [2] Security Prolonged DoS, batter depletion Standards
Downgrade using tracking_area_reject [6] Security DoS Standards – –
Denial of all services [6] Security DoS Standards
Paging hijacking [2] Security Stealthy DoS, panic Standards
Detach/Downgrade [2] Security DoS, battery depletion Standards
Service Denial [2] Security DoS Standards
Linkability (GUTI/TMSI) [2] Privacy Location Tracking Standards

TABLE I: Summary of ProChecker’s findings. yes, no, – not implemented

ue_register_
initiated ue_registered

security	mode
command/
security	mode
complete

ue_register_
initiated ue_registered

security	mode
command	and
ue_seq_no	=0/
security	mode
complete

(a)	LTEInspector (b)	ProChecker

ue_dereg
initiated

ue_
deregistered

detach
request/ ue_dereg

initiated

ue_dereg_
attach_
needeednull_action

(a)	LTEInspector (b)	ProChecker

ue_
deregistered

!detach	mac
failure/
detach
accept

(i)	Mapping	transitions	with	new	conditions (ii)	Mapping	transitions	with	new	states

detach
accept

detach
request/

Fig. 7: Transition refinement between ProChecker and LTEInspector

the closed-source implementation to the closest available 4G
LTE model from LTEInspector [2]. We compare the extracted
model from the closed-source implementation because it im-
plements all the procedures and has a complete conformance
test suite. For the comparison we first introduce a notion of
refinement for FSMs and use it to compare the models.
Refinement. Let, M1

µ = (Σ1,Γ1,S1, s01 , T1) and M2
µ =

(Σ2,Γ2,S2, s02 , T2) be two protocol FSM’s. We say that M2
µ

is a refinement of M1
µ if the following properties hold: (1)

The set of states S1 is a subset of the set of states S2. For this
property to be true, for each state, s ∈ S1, there is an one-to-
one mapping to a state s′ ∈ S2. (2) The sets of conditions Σ2

and actions Γ2 are a strict supersets of Σ1 and Γ1 respectively,
containing new constraints on the transitions. (3) The transi-
tions in set T1 can be mapped to transitions in T2. For each
transition ti = (siin , siout

, σi, γi) ∈ T1 there can be several
cases: (i) ti can be directly mapped onto a transition in T2; (ii)
ti can be mapped to a transition tj = (siin , siout , σj , γj) ∈ T2,
where tj has the same incoming and outgoing state as ti.
However the condition, σj has the form σi ∧ φ, where φ is a
new condition defined in Σ2, thus making the condition of tj
stricter than ti; (iii) ti can be mapped onto multiple transitions
(based on the new states) in T2. The transition ti from siin to
siout can go through multiple new intermediate states such as
sii , generating transitions of the form ti1 = (siin , sii , σi1, γi1)
and ti2 = (sii , siout

, σi2, γi2), which can be mapped onto
transitions in T2. The mapped transitions in T2 contain all
the previous conditions and actions on ti together with new
conditions and actions defined on ti1 and ti2.
Comparison of the models. We now show that the model

High Level Properties common to ProChecker and LTEInspector

1 If the UE is in the deregistered state, it is always the case that the UE initiates authentication
and moves to the registered initiated state from there on, eventually the UE gets authenticated
and moves to the registered state
2 When the MME is in the tracking area update initiated state and the UE sends track-

ing_area_update_request message, the MME will eventually move to registered state.
3 The UE sends a service_request only if the MME sent the paging message that is pending
4 If the MME sends a security_mode_command message, the security context will be

eventually updated.
5 When the MME is in the service initiated state and the UE sends service_request_message,

the MME will eventually move to the registered state
6 The UE will respond with the GUTI_reallocation_complete message only if the MME sends

GUTI_reallocation_command

TABLE II: Common properties of ProChecker and LTEInspector

of the closed-source implementation extracted by ProChecker
(Proµ) is a refinement of the model of LTEInspector (LTEµ).
First, the majority of the states in the set SLTE of LTEµ can be
directly mapped onto the states in the set SPro of Proµ. States
in SLTE that do not have a direct mapping in SPro (such as
ue_registered and ue_deregistered) can be mapped onto the set
of sub-states of the respective states. This mapping from states
to sub-states is done following the standards [19]. Specifically,
due to the automated extraction of FSM by ProChecker, it was
possible to extract sub-states of several procedures; manually
generating such sub-states would be severely cumbersome.
Second, the condition ΣPro and action ΓPro sets of Proµ are
strict supersets of ΣLTE and ΓLTE of LTEµ, respectively.
Furthermore, as data and packet payload information were
also extracted in Proµ, new constraints (such as sequence
numbers and back-off counters) and new actions are included
in ΣPro and ΓPro. Finally, some transitions follow one-to-
one mapping between Proµ and LTEµ. Others can be mapped
based on new states or new conditions following our definition
of refinement. The transitions defining new conditions impose
stricter constraints (using predicates) that are based on the
data and packet payload. For instance, the transition tLTE ∈



TLTE presents a change of state from ue_register_initiated
to ue_registered for the condition security_mode_command

and action security_mode_complete. In tPro ∈ TPro,
tLTE is mapped to tPro, which is the refined version of
tLTE where both states and actions remain the same but
the condition has the form security_mode_command and
ue_sequence_number=0, and it is thus stricter. These example
transitions for both LTEInspector and ProChecker are shown
in Figure 7(i). The rest of the transitions in TLTE can also be
mapped onto transitions on TPro based on new states. To illus-
trate this, let us consider the transition from ue_dereg_initiated
to ue_deregistered having the condition detach_request and
action detach_accept in TLTE . In TPro a new intermediate
state is introduced ue_dereg_attach_needed and the transition
is broken into two, introducing new conditions (shown in
Figure 7 (ii)). Proµ is, therefore, a refinement of LTEµ

and considers more procedures and critical aspects, including
transitions based on data and packet payload.
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Fig. 8: Execution time of the common properties used in ProChecker
and LTEInspector. Properties are numbered according to Table II.

C. RQ3. Scalability
We take our largest and most detailed extracted model– from

the closed-source implementation, and record the execution
times for verifying the properties common to the LTEInspector
model (see Table II). We used a laptop with an Intel i7-
3750QCM CPU and 32 GB DDR3 RAM. The results in
Figure 8 show that the time required by ProChecker for each
property is only a fraction higher than LTEInspector. This
result also signifies the scalability of our framework since it
can run a COTS model checker on the automatically extracted
model from an implementation with negligible overhead.

VIII. RELATED WORK

Formal Verification of Cellular Networks and Other
Protocols. Approaches using formal verification either rely on
manually extracted models from specifications [2], [3], [11],
[28], require models in formally-verifiable languages [29],
[30], or require a reference implementation of the protocol
in a custom language [31], [32]. These approaches are not
scalable for commercial protocol implementations [2], [3],
[11], [28]–[32]. Model-checking has also been applied to
verify properties of protocols [33]–[35]. But these approaches
are unable to reason about properties that depend on protocol
events. Execution-based model checking approaches [36], [37]
do not require an explicit model but are prone to state-space
explosion.
FSM extraction. There are approaches that infer protocol
specifications as a model from traces [38], from network
traces [39]–[41], or using program analysis [42]. However, the

FSM’s extracted through such approaches represent discernible
external interactions of the protocol (e.g., the sequence of
exchanged messages) and do not contain enough semantic
meaning to reason about security and privacy properties. In a
black-box setting active-learning [13] has been used to extract
the FSM of a system. However, the extracted FSM does not
have a proper indication of states and in our white-box setup,
we have a lot more information to utilize. Symbolic execution
has also been used to generate formally analyzable models
of protocol implementations. Aizatulin et al. [43] combined
symbolic execution with proof techniques for extracting a
ProVerif model from implementations in C. However, their
technique is limited to protocols without branching.
Security of 4G LTE. Kim et al. [9] design a stateless dynamic
testing framework with pre-generated test cases and discovered
several vulnerabilities. However, their tool is semi-automatic,
requires manual analysis, and only reasons about some specific
properties. Whereas ProChecker can automatically extract the
FSM, reason about any security and privacy property, and
easily scales to the future generation and new releases of
cellular network implementations such as 5G. Rupprecht et
al. [44] found that missing integrity allows the redirection to
a malicious website by an active Man-in-the-Middle attack.
In the area of identifying logical flaws in implementation or
specification, previous approaches use manual inspection [4]–
[8], [25], [26] or use manually extracted models [2].

IX. DISCUSSION AND LIMITATIONS

Completeness of our model. Model completeness depends on
the coverage of test suites. In our experiments, we managed
to extract state machines detailed enough to reason about
protocol aspects critical for security. For commercial 4G
LTE implementations, having a complete conformance testing
suite is a must; therefore this automatically corresponds to
high coverage. We also showed that in the case of open-
source implementations, it is possible to add some procedure-
specific test cases and extract a formal model. Even though
ProChecker’s ability to extract details is limited by the cover-
age of the test suite, its true strength lies in its efficiency. For
a given test environment, it adds negligible resource overhead
to extract a state machine. As the test suite grows in coverage,
ProChecker can generate increasingly detailed FSMs.
Consistent message name signatures. ProChecker leverages
consistent protocol message and packet extraction signatures
for extracting the FSM from the generated log. Our case
study of industrial and open-source 4G LTE implementations,
in fact, substantiates this assumption since those implemen-
tations follow a consistent signature because of tractability,
efficient portability, and interoperability. For instance, srsLTE
and OAI use the consistent signature of send_/parse_ and
emm_send_/emm_recv_ followed by actual protocol message
name from the standards respectively.
FSM for both communicating parties. Since we did not
have access to the source code for the core network, we had
to use an open-source standard model derived by the research
community. For protocols, such as Wi-Fi and Bluetooth, where



both communicating parties of the protocol are implemented
by the same vendor, the same methodology can be applied.
ProChecker for 5G implementations. The design require-
ments of ProChecker for analyzing 5G implementations
are similar to that of 4G (i.e., properly defined protocols
states, protocol message names [27], conformance test case
suite [45]). Therefore, this framework can easily be adapted
to evaluate any 5G implementations. More precisely, since
ProChecker works with a very minimal overhead with the
existing testing infrastructure, it can be easily adapted to
verify the security and privacy properties of the 5G protocol
implementations from the get-go.
Access to the code and testing infrastructure of closed-
source implementation. We got access to the closed-source
source-code and the conformation/functional testing infrastruc-
ture, through a collaboration with industry.
Threat to validity. We used automatically extracted models
for UE FSMs. Due to the low coverage of test suites and
manually constructed MME FSMs extracted from the 3GPP
standard, the counterexamples derived from the model may not
completely reflect the behavior of real operational networks.
Thus inaccuracies in the model may induce false positives
in commercial networks, although, we have not observed any
such behavior. Due to ethical considerations, we validate the
attacks in a custom-built network, which may not faithfully
capture the operation network behavior.

X. CONCLUSION AND FUTURE WORK

We presented ProChecker—a framework for automatically
verifying cellular network protocol implementations to un-
cover logical vulnerabilities. On the horizon of 5G deployment
ProChecker can have important impact in securing 5G imple-
mentations from the very start. The properties discussed here
for cellular networks apply to any communication protocol in
general; therefore, in the future, we plan to use ProChecker
on other protocols such as Bluetooth, and WiFi.
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