
1

ATFuzzer: Dynamic Analysis Framework of AT Interface for
Android Smartphones

IMTIAZ KARIM, Purdue University
FABRIZIO CICALA, Purdue University
SYED RAFIUL HUSSAIN, Pennsylvania State University
OMAR CHOWDHURY, University of Iowa
ELISA BERTINO, Purdue University

Application processors of modern smartphones use the AT interface for issuing high-level commands (or AT-commands)
to the baseband processor for performing cellular network operations (e.g., placing a phone call). Vulnerabilities in this
interface can be leveraged by malicious USB or Bluetooth peripherals to launch pernicious attacks. In this paper, we propose
ATFuzzer that uses a grammar-guided evolutionary fuzzing approach which mutates production rules of the AT-command
grammar instead of concrete AT commands to evaluate the correctness and robustness of the AT-command execution process.
To automate each step of the analysis pipeline, ATFuzzer first takes as input the 3GPP and other vendor-specific standard
documents, and following several heuristics automatically extracts the seed AT command grammars for the fuzzier. ATFuzzer
uses the seed to generate both valid and invalid grammars; following our cross-over and mutation strategies to evaluate both
the integrity and execution of AT-commands. Empirical evaluation of ATFuzzer on 10 Android smartphones from 6 vendors
revealed 4 invalid AT command grammars over Bluetooth and 14 over USB with implications ranging from DoS, downgrade
of cellular protocol version to severe privacy leaks. The vulnerabilities along with the invalid AT-command grammars were
responsibly disclosed to affected vendors and assigned CVE’s.

CCS Concepts: • Security and privacy→Mobile and wireless security; Distributed systems security; Denial-of-service
attacks.

Additional Key Words and Phrases: Android Smartphone Security and Privacy, Vulnerabilities, Attack

ACM Reference Format:
Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino. 2020. ATFuzzer: Dynamic Analysis
Framework of AT Interface for Android Smartphones. Digit. Threat. Res. Pract. 1, 1, Article 1 (January 2020), 29 pages.
https://doi.org/10.1145/3416125

1 INTRODUCTION
Early mobile phones used to have only a single processor, called baseband processor, implementing the cellular
modem to control the radio communications for different cellular networks, such as GSM, UMTS, and LTE. Those
early devices were, therefore, capable of supporting only phone calls and SMS. With the recent advancements in
micro-architectures and operating systems, modern smartphones run on an interconnected dual CPU architecture

Authors’ addresses: Imtiaz Karim, Purdue University, karim7@purdue.edu; Fabrizio Cicala, Purdue University, ficiala@purdue.edu; Syed
Rafiul Hussain, Pennsylvania State University, hussain1@psu.edu; Omar Chowdhury, University of Iowa, omar-chowdhury@uiowa.edu;
Elisa Bertino, Purdue University, bertino@purdue.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2020 Association for Computing Machinery.
2576-5337/2020/1-ART1 $15.00
https://doi.org/10.1145/3416125

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://www.acsac.org/2019/
https://doi.org/10.1145/3416125
https://doi.org/10.1145/3416125

1:2 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

consisting of a general purpose application processor and a baseband processor. The application processor provides
a self-contained operating environment that delivers necessary system capabilities required to support user
applications, including parallel processing, I/O and memory management, graphics processing, and multimedia
decoding. The application processor can issue ATtention (AT) commands [59] through the radio interface layer
(RIL, also called AT interface) to interact with the baseband processor for performing different cellular network
operations (e.g., placing a phone call). Most of the modern smartphones also accept AT commands issued by
peripherals connected via Bluetooth or USB.
Problem and scope. The AT interface is an entry point for accessing the baseband processor. Therefore, any
incorrect execution behavior in processing AT commands may cause unauthorized access to private information,
inconsistent system states, and crashes of the RIL daemon and the telephony stack. This paper thus focuses
on developing a systematic approach for analyzing the correctness and robustness of the baseband-related AT
command execution process to uncover vulnerabilities that can be easily exploited to carry out attacks.
Incorrect execution of AT commands may manifest in one of the following forms: (1) Syntactic errors: the

device accepts and processes syntactically invalid AT commands. For instance the AT command AT+COPN;III
is processed by Nexus5, LG G3 and many other COTS smartphones and leaks sensitive information. However,
the command does not conform to any command syntax from the specifications; and (2) Semantic violations:
the device processes syntactically correct AT commands, but does not conform to the prescribed behavior. The
command AT+COPS=0,1,c19vf,2 conforms to the standards, but on LG G3 it causes a crash in the RIL daemon.

A successful exploitation of such invalid commands may enable malicious peripheral devices (e.g., a headset),
connected to the smartphone over Bluetooth, to a access phone’s sensitive information, such as IMSI (International
Mobile Subscriber Identity, unique to a subscriber) and IMEI (International Mobile Equipment Identity, unique to
a device), or to downgrade the cellular protocol version or stop the cellular Internet, even when the peripheral is
only allowed to access the phone’s call and media audio.
Prior efforts. Existing approaches [42, 43, 55] strive to identify the types of valid AT commands (i.e., commands
with valid inputs/arguments conforming to the 3GPP reference [18, 22, 24, 25, 54] or vendor-specific commands [3,
19, 20, 33] added for vendor customization) exposed through USB interfaces on modern smartphone platforms and
the functionality they enable. Yet these studies have at least one of the following limitations: (A) The analyses [55]
do not test the robustness of the AT interface in the face of invalid commands; (B) The analyses [55] only
consider the USB interface and thus leave the Bluetooth interface exposed to invalid AT commands; and (C) The
analyses [12, 42, 44, 48] are not general enough to be applicable to smartphones from different vendors.
Challenges. Conceptually, one can approach our problem using one of the following two techniques: (1) static
analysis; (2) dynamic analysis. As the source code of firmware is not always available, a static analysis-based
approach would have to operate on a binary level. The firmware binaries, when available, are often obfuscated
and encrypted. Making such binaries amenable to static analysis requires substantial manual reverse engineering
effort. To make matters worse, such manual efforts are often firmware-version specific and may not apply to other
firmware, even from the same vendor. Dynamic analysis-based approaches also often require instrumenting the
binary to obtain coverage information for guiding the search. Like static analysis, such instrumentation requires
reverse engineering effort which again is not scalable. Also, during dynamic analysis, due to the separation of
the two processors, it is often difficult to programmatically detect observable RIL crashes from the application
processor. Finally, in many cases, undesired AT commands are blacklisted [37–39] and hence can induce rate-
limiting by completely shutting down the AT interface. The only way to recover from such a situation is to reboot
the test device which can substantially slow down the analysis.
Our approach. In this paper, we propose ATFuzzer– a framework which overcomes the limitations of current
static and dynamic analysis approaches to test the correctness and robustness of the AT interface of COTS android
smartphones. One of the key objectives driving the design of ATFuzzer is discovering problematic input formats

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:3

instead of just some misbehaving concrete AT commands. Towards this goal, ATFuzzer employs a grammar-
guided evolutionary fuzzing-based approach. Generation-based fuzzers [13, 14, 56] typically use a grammar to
generate syntactically correct inputs so that they can be correctly parsed by the program-under-test. Consequently,
this allows the fuzzer to exercise some critical functionality implemented deeply in the code. Mutation-based
fuzzers [10, 28–30, 45, 62], on the contrary, blindly mutate higher-ranked concrete input instances to generate new
inputs. Ranking of an input instance is often measured by its ability to uncover new code or triggering a crash.
Unlike typical mutation-based and generation-based fuzzers, ATFuzzer follows a different strategy. It mutates the
production rules of the AT command grammars and uses sampled instances of the generated grammar to fuzz
the test programs. Our approach has the following two clear benefits. First, a production rule (resp., grammar)
describing a valid AT command can be viewed as a symbolic representation for a set of concrete AT commands.
Such a symbolic representation enables ATFuzzer to efficiently navigate the input search space by generating
a diverse set of concrete AT command instances for testing. The diversity of fuzzed input instances is likely
achieved because mutating a grammar can move the fuzzer to test a different syntactic class of inputs with high
probability. Second, if ATFuzzer can find a problematic production rule whose sampled instances can regularly
trigger an incorrect behavior, the production rule can then be used as an evidence which can contribute towards
the identification of the underlying flaw that causes the misbehavior.
ATFuzzer is an automated fuzzing framework that takes as input the 3GPP and other vendor specific standard

documents and following several heuristic generates the seed grammar for the fuzzer. This AT grammar of AT
commands is used to generate the initial population of grammars by mutating the seed grammars. Each grammar
from this initial population is sampled by ATFuzzer to generate grammar-compliant random inputs. The fitness
of each grammar is evaluated through this inputs following our proposed fitness function. Since code-coverage
or subtle memory corruptions are not suitable to be used as the fitness function for such vendor-specific, closed-
source firmware, we leverage the execution timing information of each AT command as a loose-indicator of
code-coverage information. Based on the fitness score of each grammar, ATFuzzer selects the parent grammars for
crossover operation. We design a grammar-aware two-point crossover operation to generate a diverse set of valid
and invalid grammars. After the crossover operations, we incorporate six proposed mutation strategies to include
randomness within the grammar itself. The intuition behind using both crossover and mutation operations is
to test the integrity of each command field as well as the command sequence1. Through running the fuzzer for
sometime, we report the incorrect AT grammars that have the highest fitness score.
Findings. To evaluate the generality and effectiveness of our approach, we evaluated ATFuzzer on 10 Android
smartphones (from 6 different vendors) with both Bluetooth and USB interfaces. ATFuzzer has been able to
uncover a total of 4 erroneous AT grammars over Bluetooth and another 14 AT grammars over USB. Impacts of
these errors range from complete disruption of cellular network connectivity to retrieval of sensitive personal
information. We show practical attacks through Bluetooth that can downgrade or shutdown Internet connectivity,
and also enable illegitimate exposure of IMSI and IMEI when such impacts are not achievable through valid AT
commands. In addition, the syntactically and semantically flawed AT commands over USB can cause crashes,
compound actions, and syntactically incorrect commands to be processed. For instance, an invalid AT command
ATDI in LG Nexus 5 induces the program to execute two valid AT commands— ATD (dial) and ATI (display IMEI),
simultaneously. These anomalies add a new dimension to the attack surface when blacklisting or access control
mechanisms are put in place to protect the devices from valid yet unsafe AT commands. The vulnerabilities along
with the invalid AT command grammars were responsibly disclosed to the affected vendors. Among the discovered
vulnerabilities, two of them (i.e., DoS and privacy leaks attacks) have been assigned CVEs (CVE-2019-16400 [40]
and CVE-2019-16401 [41]). Moreover, to test the effectiveness of our AT grammar extraction process we apply

1Achieving some cellular network operations through the AT interface (e.g., sending an SMS) may require issuing a sequence of AT commands
instead of a single AT command.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

Applications

Native	Daemons

/dev/ttyABCRILD

Modem
Driver

Baseband
Processor

User
Space

Kernel
Space

Smartphone

/dev/ttyACM*	
				(Linux)

			COM*
(Windows)

Bluetooth	Application

Bluetooth	API

Bluetooth
Hal

Interface

Bluetooth
Stack

Application
Level

System	
Level

Smartphone

AT
command
Injector

Host	Machine/Bluetooth	
									Peripherals

Vendor
Configuration

Communication	
						channel

JNI

Rfcomm	
socket

RILD

Modem
Driver

Baseband
Processor

(a)	USB (b)	Bluetooth

Fig. 1. AT Interface for Android Smartphones connected to a host machine through USB interface

it to four AT command standard PDF’s, extracting more than 300 AT commands compared to the manually
extracted 75 grammars with a false positive rate of less than 2%.
Contributions. The paper has the following contributions:

(1) We propose ATFuzzer— an automated and systematic framework that leverages grammar-guided, evolu-
tionary fuzzing for dynamically testing the AT command interface in modern Android smartphones. We
have made our framework open-source alongside the corpus of AT command grammars we tested. The
tool and its detailed documentation are publicly available at: https://github.com/Imtiazkarimik23/ATFuzzer

(2) We develop an automated AT grammar extractor that automatically extracts seed AT grammars from the
specifications by leveraging two heuristics.

(3) We show the effectiveness of our approach by uncovering 4 problematic AT grammars through Bluetooth
and 14 problematic grammars through USB interface on 10 smartphones from 6 different vendors.

(4) We demonstrate that all the anomalous behavior of the AT program exposed through Bluetooth are
exploitable in practice by adversaries whereas the anomalous behavior of AT programs exposed through
USB would be effectively exploitable even when valid but unsafe AT commands are blacklisted. The impact
of these vulnerabilities ranges from private information exposure to persistent denial-of-service attacks.

2 BACKGROUND
In this section, we introduce background concepts on the AT commands and the interfaces to issue such
commands. We also show how to extract the AT commands supported by a specific smartphone and derive the
related grammars.

2.1 AT Commands
In addition to the set of AT commands defined by the standards for cellular networks [24], vendors of cellular
baseband processors and operating systems support vendor-specific AT commands [3, 17, 20] for testing and
debugging purposes. Based on the functionality, different AT commands have different formats, differing in
number and types of parameters. According to the specific usage of a command, there are four primary types of
AT commands:

(1) Execution command to execute an action, e.g., ATH causes the device to hang up the current phone call.
(2) Read command to get/read a parameter value, e.g., AT + CFUN? returns the current parameter setting of

+CFUN which controls cellular functionalities.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://github.com/Imtiazkarimik23/ATFuzzer

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:5

(3) Test command to test for allowed parameters, e.g., AT + CFUN =? returns the allowed parameters for +CFUN
command.

(4) Set command to set/write a parameter, e.g., AT + CFUN = 0 turns off (on) cellular connectivity (airplane
mode).

Note that, +CFUN is a variable which can be instantiated with different functionality (e.g., +CFUN=1 refers to
setting up the phone with full functionality).

2.2 AT Interfaces for Smartphones
AT commands can be invoked by an application running on the smartphone, or from another host machine or
peripheral device connected through the smartphone’s USB or Bluetooth interface (shown in Figure 1). While
older generations of Android smartphones allowed installed applications to run AT commands, recent Android
smartphones have restricted this feature to prevent arbitrary applications from accessing device’s sensitive
resources illegitimately through AT commands. However, unlike the case of installed applications, nearly all
Android phones allow one to execute AT commands over Bluetooth, whereas for USB devices require a minimal
configuration to be set up to activate this feature. Android smartphones typically have different parsers for
executing AT commands over these interfaces. The use of different parsers motivates the testing of AT interface
for both USB and Bluetooth.

2.3 Issuing AT Commands Over Bluetooth and USB
In this section, we introduce details pertaining to issuing AT commands over Bluetooth and USB.

2.3.1 Bluetooth. For executing AT commands over Bluetooth, the injecting host machine/peripheral device
needs to be paired with the Android smartphone. The Bluetooth on a smartphone may have multiple profiles
(services), but only certain profiles (e.g., hands-free profile, headset profile) support AT commands. Figure 1(b)
shows the flow of AT command execution over Bluetooth.

When a device is paired with the host machine, it establishes and authorizes a channel for data communication.
After receiving an AT command, the system-level component of the Bluetooth stack recognizes the AT command
with the prefix "AT" and compares it against a list of permitted commands (based on the connected Bluetooth
profile). When the parsing is completed, the AT command is sent to the application-level component of the
Bluetooth stack in the user space where the Bluetooth API takes the action as per the AT command issued. Similar
to the example through USB, if a baseband related command is invoked (e.g., ATD <phone_no>;), the RILD is
triggered to deliver the command to the baseband processor. Contrary to USB, only a subset of the AT commands
related to specific profiles are accepted/processed through Bluetooth.

2.3.2 USB. If a smartphone exposes its USB Abstract Control Model (ACM) interface [48], it creates a tty device
such as /dev/ttyACM0 which enables the phone to receive AT commands over the USB interface. On the other
hand, in phones for which the USB modem interface is not included in the default USB configuration, switching
to alternative USB configuration [48] enables communication to the modem over USB. The modem interface
appears as /dev/ttyACM* device node in Linux whereas it appears as a COM* port in Windows. Figure 1(a) shows
the execution path of an AT command over USB.

When the AT command injector running on a host machine sends a command through /dev/ttyACM* or COM*
to a smartphone, the ttyABC (ABC is a placeholder for actual name of the tty device) device in the smartphone
receives the AT command and relays it to the native daemon in the Android userspace. The native daemon takes
actions based on the type of command. If the command is related to baseband, for instance, ATD <phone_no>;,
the RILD (Radio Interface Layer Daemon) is triggered to deliver the command to the baseband processor which
executes the command — makes a phone call to the number specified by <phone_no>. On the other hand, if the

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

command is operating system-specific (e.g., Android, iOS, or Windows), such as +CKPD for tapping a key, the
native daemon does not invoke RILD.

2.4 AT Commands and Their Grammars
We obtain the list of valid AT commands and their grammars from the 3GPP standards [18, 21–25, 54]. Note
that, not every standard AT command is processed/recognized by all smartphones. This is because different
smartphone vendors enforce different whitelisting and blacklisting policies for minimizing potential security
risks. Also, vendors often implement several undocumented AT commands. Any problematic input instance
that ATFuzzer finds, we check to see whether it is one of the vendor-specific, undocumented AT commands
following the approach by Tian et al. [55]. We do not report the undocumented, vendor-specific AT commands
that ATFuzzer discovers as invalid since they have already been documented [55]. We aim at finding malformed
AT command sets that are due to the parsing errors in the AT parser itself.

3 OVERVIEW OF OUR APPROACH
In this section, we first present the threat model and then formally define our problem statement. Finally, we
provide a high-level overview of our proposed mechanism with a running example.

3.1 Threat Model
For Bluetooth and USB AT interfaces exposed by modern smartphones, we define the following two different
threat models.

3.1.1 Bluetooth threat model. In the threat model we consider for Bluetooth, the adversary possesses a malicious
Bluetooth peripheral, or can compromise a benign one, that can perform a complete pairing procedure with the
target Android device. The adversary’s equipment can be any type of Bluetooth peripherals, such as headphones,
speakers, smartwatch, and it connects through its default profile. The victim’s smartphone grants only specific
permissions to the adversary’s device based on the default profile. For instance, if the adversary uses a set of
malicious headphones, the victim’s smartphone only allows audio permissions. Also, it can be the case that
the adversary sets up a fake peripheral device through a man-in-the-middle (MitM) attack exploiting known
vulnerabilities of Bluetooth pairing and bonding [2, 32, 51] procedures. Finally, in our threat model, we assume
that the adversary does not have physical access to the target device and cannot install any malicious apps on it.

3.1.2 USB threat model. In the threat model for USB, we consider an adversary who has control over a USB
host, such as a PC or a USB charging station. Hence, the adversary can establish a USB connection with the
target Android device through the malicious host. We assume that the attacker can gain access to the exposed AT
interface even if the victim’s smartphone is in idle state and, thus, send AT commands to the device. Similarly to
the Bluetooth threat model, the adversary cannot install any malicious application on the target smartphone.
Moreover, we do not require the USB debugging option of the device to be turned on.

3.2 Problem Statement
Let I be the set of finite strings over printable ASCII characters, R = {ok, error} be the set of parsing statuses,
andA be a set of actions (e.g., phone-call ∈ A). The AT interface of a smartphone can be viewed as a function P
from I to R × 2(A∪{nop,⊥}) , that is, P : I → R × 2(A∪{nop,⊥}) in which “nop” refers to no operation whereas ⊥
captures undefined behavior including a crash. nop is used to capture the behavior of P ignoring an AT command,
possibly, due to blacklisting or parsing errors.
Given the smartphone AT interface under test PTest and a reference AT interface induced by the standard
PRef , we aim to identify concrete vulnerable AT command instances 𝑠 ∈ I such that PTest and PRef do not agree

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:7

command

AT cmd

dgrammarcmd_AT +CFUN? cfungrammar

DnumD Darg CFUNarg1+CFUN	= CFUNarg2;cmd cmd

[a-zA-Z0-9+*#]* GI [0-9]* [0-1]

...
...

...
...

... ...

Fig. 2. Partial Abstract Syntax Tree(AST) of the reference grammar (Grey-box denotes non-terminal symbols and white box
indicates terminal symbols)

on their response for 𝑠 , that is, PRef (𝑠) ≠ PTest (𝑠). Given pairs ⟨𝑟1, 𝑎1⟩, ⟨𝑟2, 𝑎2⟩ ∈ R × 2(A∪{nop,⊥}) , we write
⟨𝑟1, 𝑎1⟩ = ⟨𝑟2, 𝑎2⟩ if and only if 𝑟1 = 𝑟2 and 𝑎1 = 𝑎2. Note that, 𝑎1 and 𝑎2 are both sets of actions as one command
can mistakenly trigger multiple actions.
Note that, there can be a reason PRef and PTest can legitimately disagree on a specific input AT command

𝑠 ∈ I as 𝑠 can be blacklisted by PTest. Due to CVE-2016-4030 [37], CVE-2016-4031 [38], and CVE-2016-4032 [39],
Samsung has locked down the exposed AT interface over USB with a command whitelist for some phones. In
this case, we do not consider 𝑠 to be a vulnerable input instance. Precisely, when 𝑠 is a blacklisted command, we
observed that PTest often returns ⟨ok, nop⟩. Finally, we instantiate the oracle PRef through manual inspection of
the standard.

command→ AT · cmd
cmd→ dgrammar | cfungrammar
cmd→ 𝜖 | cmd_AT

cmd_AT→ cmd ; cmd
dgrammar→ D · Dnum · Darg ;

cfungrammar→ +CFUN? | +CFUN =CFUNarg1, CFUNarg2
cmd→ +CTFR = number, type, subaddr, satype

Dnum→ [𝑎 − 𝑧𝐴 − 𝑍0 − 9 + ∗#]∗ {𝐿𝑒𝑛𝑔𝑡ℎ (Dnum) ≤ 𝑛}
Darg→ I | G | 𝜖

CFUNarg1→ [0 − 9]∗ {CFUNarg1 ∈ Z and 0 ≤ CFUNarg1 ≤ 127}
CFUNarg2→ [0 − 1] {CFUNarg2 ∈ Z and 0 ≤ CFUNarg2 ≤ 1}
number1 → number1 | number2
number2 → [𝑎 − 𝑧𝐴 − 𝑍0 − 9 + ∗#]∗ {if type = 145}
number→ [𝑎 − 𝑧𝐴 − 𝑍0 − 9 ∗ #]∗ {if type = 129}

type→ 145 |129
subaddr→ [𝑎 − 𝑧𝐴 − 𝑍0 − 9 + ∗#]∗
satype→ [0 − 9]∗ {if satype = 𝜖, satype = 128}

.

.

.

Fig. 3. Partial reference context-free grammar for AT commands.

3.3 Running Example
To explain ATFuzzer’s approach, we now provide a partial, example context-free grammar (CFG) of a small set
of AT commands (see Figure 3 for the grammar and Figure 2 for the partial Abstract Syntax Tree (AST) of the
grammar) which we adopted from the original 3GPP suggested grammar [24, 54]. In our presentation, we use
the bold-faced font to denote non-terminals and regular-faced font to denote terminals. We use “·” to represent

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

.

. .

.
.

Evaluation	Module

Evolution	Module

Seed	Grammar Initial	Population Fitness	Evaluation
AT	command
	Injector

Smartphone	
Under	Test

AT	CommandAT	Grammar

Mutation Crossover Parent	Selection

Connector	Alteration

Field	Addition

				Grammar	

Two	point	Crossover

One	point	Crossover

Action	&	
Output

Population

Specifications

Extractor

Field	Trimming

Condition	Negation

Type	Negation

Fixed	Integer

AT	Grammar	Extractor

Fig. 4. Overview of ATFuzzer framework

explicit concatenation, especially, to make the separation of terminals and non-terminals in a production rule
clear. We use [. . .] to define regular expressions in grammar production rules and [. . .]∗ to represent the Kleene
star operation on a regular expression denoted by [. . .]. In our example,Dnum can take any alphanumeric string
up to length 𝑛 as an argument. Our production rules are of the form: s→ 𝛼 · B1{𝜙} where 𝑠 is a non-terminal, 𝛼
denotes a (possibly, empty) sequence of terminals, B1 represents a possibly empty sequence of non-terminals and
terminals, and 𝜙 represents a condition that imposes additional well-formedness restrictions on the production.
In the above example, we show the correct AT command format for making a phone call. Examples of valid

inputs generated from this grammar can be— ATD ∗ 752# + 436644101453;

3.4 Overview of ATFuzzer
In this section, we first touch on the technical challenges that ATFuzzer faces and how we address them. We
conclude by providing the high-level operational view of ATFuzzer.

3.4.1 Challenges. For effectively navigating the input search space and finding vulnerable AT commands,
ATFuzzer has to address the following four technical challenges.
C1: (Efficient extraction of AT grammars). ATFuzzer needs to be provided with a large number of seed AT
grammars from which the initial seed population is generated. This task, as performed in the initial version of
ATFuzzer [55], is highly manual and labor intensive as one has to review hundreds of pages of 3GPP [21–24]
and other standards [18, 25, 54] from different vendors and manufactures with unique structures and formats to
extract the seed AT grammars. The final challenge is, therefore, to develop a program that can automatically
extract the AT commands and their formats as grammars from the documents to automate the design pipeline of
ATFuzzer.
C2: (Problematic input representation). The second challenge is to efficiently encode the pattern of problematic
inputs. It is crucial as the problematic AT commands that have similar formats/structures but are not identical may
trigger the same behavior. For instance, both ATD123 and ATD1111111111 test inputs are problematic (neither of
them is a compliant AT command due to missing a trailing semicolon) and have a similar structure (i.e., ATD
followed by a phone number), but are not the same concrete test inputs. While processing these problematic AT
commands, one of our test devices, however, stops cellular connectivity. Mutation at the concrete input level
would require the fuzzer to try a lot of inputs of the same vulnerable structure before shying away from that
abstract input space. This may prevent the fuzzer from testing diverse classes of inputs.
C3: (Syntactic correctness). As shown in Figure 3, most of the AT commands have a specific number and type of
arguments. For instance, +CFUN= has two arguments: CFUNarg1 and CFUNarg2. The second challenge is to

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:9

effectively test this structural behavior and argument types, thoroughly by generating diverse inputs that do not
comply with the command structure or the argument types.
C4: (Semantic correctness). Each argument of an AT command may have associated conditions. For instance,
𝐿𝑒𝑛𝑔𝑡ℎ(Dnum) ≤ 𝑛 in the fifth production rule of Figure 3. Also, arguments may correlate with each other, such
as, one argument defines a type on which another argument depends. For instance, +CTFR= refers to a service
that causes an incoming alert call to be forwarded to a specified number. It takes four arguments— the first
two are number and type, respectively. Interestingly, the second argument defines the format of the number
given as the first argument. If the dialing string includes access code character “+”, then the type should be 145,
otherwise, it should be 129. These correlations are prevalent in many AT commands. Hence, the third challenge
is to systematically test conditions associated with the arguments of commands to cover both syntactical and
semantic bugs.
C5: (Feedback of a test input). The AT interface can be viewed as a black-box providing only limited output of the
form: OK (i.e., correctly parsed) or ERROR (i.e., parsing error). The last challenge is to devise a mechanism that
can provide information about the code-coverage of the AT interface for the injected test AT command and thus
effectively guide us through the fuzzing process.

3.4.2 Insights on addressing challenges. For addressing C1, we collect the corpus of AT command specifications
provided by different standard organizations and vendors. These documents include the complete lists of AT
commands. While some of the commands are shared among all the standards and implementations, others are
unique to specific vendors. We, therefore, aim at implementing a program to scan and parse the content of
the documents based on a regular expression (regex) that matches specific sequences of characters. As we are
interested in extracting both AT commands and the corresponding parameter structures, we need a regex formula
to match the specification of the entire command.
For addressing C2, we use the extracted grammar itself as the seed of our evolutionary fuzzing framework

rather than using a particular instance (i.e., a concrete test input) of the grammar. This is highly effective as the
mutation of a production rule can influence the fuzzer to test a diverse set of inputs. Also, when a problematic
grammar is identified, it can serve as abstract evidence of the underlying flaw in the AT interface. Finally, as
a grammar can be viewed as a symbolic representation of a set of concrete input AT commands, mutating a
grammar can enable the fuzzer to cover large diverse classes of AT commands. The insight here is that testing
diverse input classes is likely to uncover diverse types of issues. This enables us to encode a class of bugs through
a problematic grammar itself.

To address challengesC3 andC4, at each iteration,ATFuzzer chooses parents with the highest fitness scores and
switches parts of the grammar production rules among each other. This causes changes not only to the structural
and type information in the child grammars but also forms two very different grammars that try to break the corre-
lation of the arguments. For instance, suppose that ATFuzzer has selected following two production rules from two
different parent grammars: +CFUN = CFUNarg1,CFUNarg2 and +CTFR = number, type, subaddr, satype.
After applying our proposed grammar crossover mechanisms, the resultant child grammar production rules
are: +CFUN = CFUNarg1, type, subaddr, satype and +CTFR = number CFUNarg2. The production rule
+CFUN takes only two arguments whereas our new child grammar creates a production rule that has four
arguments. The same reasoning also applies to +CTFR. Thus, the new grammars with modified production rules
would test this structural behavior precisely. Furthermore, +CTFR’s first argument number is correlated with
its second argument type. In the modified child grammars, type, however, has been replaced with CFUNarg2.
Recall from our grammar definition, type takes argument from the set {145, 129} whereas +CFUNarg2 takes
argument from the set {0, 1}. Therefore, this single operation completes two tasks at once— it not only tests the
correlation among two arguments of +CTFR but also tests conditions of both +CFUN and +CTFR. Crossing
over grammar production rules creates a drastic modification in the input format and it aims to explore the

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

diverse portions of the input space to create highly unusual inputs. To test both the structural aspects, we use six
very different mutation strategies which create little change to the grammar (compared to crossover) but prove
highly effective for checking the robustness of the AT interface.
Finally, for addressing C5, we use the precise timing information of injecting an AT command and receiving

its output. We keep an upper bound on this time, i.e., a timer (T). If the output is not received within T , we infer
that the AT interface has become unresponsive possibly due to the blacklisting mechanism enforced by several
vendors. We use this timing information as a loose-indicator for code-coverage information. Our intuition is to
explore as much of the AT interface as possible. A high execution time loosely indicates that the test command
traverses more basic-blocks than the other inputs with lower execution time. We try to leverage this simple
positive correlation to design a feedback edge (i.e., a fitness function) of the closed-loop. The timing information,
however, cannot help to infer how many new basic-blocks a test input could explore. Since our focus is mainly
on baseband related AT commands, an error in the AT interface has a higher probability of causing disruptions
in the baseband which also trickles down to cellular connectivity. We leverage this key insight and consider
both the cellular Internet connectivity information from the target device and the device’s debug information
(Logcat, dumpsys, tombstone) as an indication of the baseband health after running an AT command. Using this
information, we devise our fitness function for guiding ATFuzzer.

3.4.3 High-level description of ATFuzzer. ATFuzzer comprises of two modules, namely, evolution module and
evaluation module, interacting in a closed-loop (see Figure 4). The evolution module is bootstrapped with a seed
AT command grammar which is mutated to generate Psize (refers to population size – a parameter to ATFuzzer)
different versions of that grammar. Concretely, new grammars are generated from parent grammar(s) by ATFuzzer
through the following high-level operations: (1) Population initialization; (2) Parent selection; (3) Grammar
crossover; (4) Grammar mutation. Particularly relevant is the operation of parent selection in which ATFuzzer uses
a fitness function to select higher-ranked (parent) grammars for which to apply the crossover/mutation operations
(i.e., steps 3 and 4) to generate new grammars. Choosing the higher-ranked grammars to apply mutation is
particularly relevant for generating effective grammars in the future.

Evaluating the fitness function requires the evaluation module. For a given grammar 𝑔, the evaluation module
samples several 𝑔-compliant commands to test. It uses the AT command injector (as shown in Figures 1 and 4) to
send these test commands to the device-under-test. The fitness function uses the individual scores of the concrete
𝑔-compliant instances to assign the overall score to 𝑔.

4 DETAILED DESIGN OF ATFUZZER
In this section, we discuss our proposed crossover and mutation techniques for the evolution module followed by
the fitness function design used by the evaluation module.

4.1 AT Grammar Extractor
To compile a substantial amount of valid AT commands and their structures, we first collected manuals available
online in PDF format ([9, 24, 52, 54]). Since these manuals are provided by different vendors, each manual has
a unique format, and the lists of AT commands are structured in different ways. We, therefore, apply several
heuristics, described in what follows, to effectively extract the AT grammars from the specifications.

H1: (Extraction using AT regular expression:) For most specifications, the definition of AT commands and their
grammars are spread over multiple lines, and are often not difficult to parse. However, for all these documents, the
AT commands start with the prefix "AT". For these cases we extract the content of each PDF manual and convert
it into unicode-8 text. Then, we arrange the content of each page on a single line by replacing the newline symbol
with a space. Once the full content of each page is organized on the same line, we can match AT commands

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:11

Algorithm 1: ATFuzzer
Data: Psize , Ppop , GAT , Tsize
Result: Gbest : Best Grammar

1 P← InitializePopulation(Psize, Ppop,GAT) ;
2 while stopping condition is not met do
3 for each grammar Gi ∈ P do
4 Generate random input 𝐼
5 AssesFitness(Gi, I)
6 if Fitness(Gi) > Fitness(Gbest) then
7 Gbest = Gi ;
8 end
9 end

10 Q = {}
11 for Psize

2 times do
12 Pa ← ParentSelection(P, Tsize)
13 Pb ← ParentSelection(P, Tsize)
14 Ca,Cb ← GrammarBasedCrossover(Pa, Pb)
15 Q = Q ∪ {Mutate(Ca),Mutate(Cb) }
16 end
17 P← Q
18 end

AT + CMD
AT + CMD ?																				

+ CMD
=<par1>,	<par2>

AT
+ CMD

=	?																
AT

1.	Execution
2.	Read
3.	Test
4.	Set

Prefix Extension Command	Name Optional	ParameterCommand	Types

Fig. 5. General structure of AT commands

through an appropriate regular expression. We leverage the structure of the general AT commands shown in
Figure 5.

An AT command usually starts with the prefix “AT", with a command extension which can be from a specific
set {+&# ∗ ..}. For instance, for the command AT+CFUN=0,1, “+" is the extension. The extension can also be
null. In general, based on the fours types of AT commands, a command can appear in the specifications in any of
the following forms:

• Execution command: AT + CMD;
• Read command: AT + CMD?;
• Test command: AT + CMD =?;
• Set command: AT + CMD = [< par1 > [, < par2 > [, ..., < parn >]]].

Here, CMD is the command and it can also have some optional parameters. Tian et al. [55] also utilized the
general structure of AT commands for extracting AT commands from firmware images. Apart from the structure
of AT commands, the specifications also follow some specific structures in defining AT commands. The general
structure can be defined as CMD = [< par1 > [, < par2 >]], < par3 >. The parameters par1, par2, par3 are always
included between angular brackets, whereas the square brackets are used to identify a group of parameters. Even
though the structure appears to be very simple, there are several cases in which they do not match the general
structure. For instance, the extended command (“+”) can be null, or there is no equal sign, or the elements of
the list of parameters occur in different order. Furthermore, due to formatting errors in the conversion from
PDF to text, there are also additional empty spaces, or the command itself could be concatenated with other

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

strings irrelevant for the AT command. To address all these issues, we develop a regular expression that matches
extended AT commands in the specification PDF files (see Figure 6). The regular expression syntax is from Python.

1 (? P<cmd>AT [!@#$%^&∗+]?[A−Z \ d] +) (? P<arg > (\ ? | = \ ? | (= | \ s | \ [[< > \ [+ : ; % , ? \ s \w\ d
] + \] + | [< >] + [; \ s \w\ d] + > | ,)) ∗)

Fig. 6. The regular expression derived in Python for extracting AT command grammars from specifications.

In the regular expression in Figure 6 we can identify the two main groups (?𝑃 < 𝑐𝑚𝑑 > ...) and (?𝑃 < 𝑎𝑟𝑔 > ...):
• < 𝑐𝑚𝑑 > matches the AT commands of the form AT + CMD or ATCMD, that is, it matches execution
commands or the first part of the other three types of AT command;
• < 𝑎𝑟𝑔 > is structured as a sequence of 𝑂𝑅 options to match read (?), test (=?) or set commands. The latter
matches any sequence of parameters in angular and square brackets that can be preceded by the equal
symbol (e.g., = [< par1 > [, < par2 >]], < par3 > ...). Since each parameter has to be contained within the
brackets, we can avoid additional meaningless text that might be concatenated to the command due to
formatting errors.

H2: (Extraction from tables:) For some specifications [24], the description of each AT command does not include
the prefix “AT”. Fortunately, these documents contain the list of AT commands and their parameters in tables. We
can, therefore, extract the AT commands described in the document by inspecting the content of the tables in the
manual using some keywords with grep.

After executing the AT command extractor over the specification documents, we have available the list of AT
commands and associated parameters. Each parameter has specific properties according to its type and function
within the command. However, since AT commands tend to have similar parameters, we can infer such attributes
from the name of the argument. Therefore, from a given entry of the list of AT commands, we can reconstruct
the complete grammar that is later used as a seed for ATFuzzer.

4.2 Evolution Module
Given the AT grammar (shown in Figure 3), ATFuzzer’s evolution module randomly selects at most 𝑛 cmds to
generate the initial seed AT grammar denoted as GAT. The evolution module yields the grammars Gbest with
the highest scores until a certain stopping condition is met, such as total testing time or number of iterations.
Algorithm 1 describes the high-level steps of ATFuzzer’s evolution module.

4.2.1 Initialization. The evolution module starts with initializing the population P (Line 1 in Algorithm 1) by
applying both our proposed crossover and mutation strategies with three parameters: the population size Psize;
the probability Ppop of applying crossover and mutation on the grammar; the tournament size Tsize. The key
insight in using Ppop is that it correlates with the number of syntactic and semantic bugs explored. The higher
the value of Ppop is, the diverse the initial population is and vice versa. The more diverse the initial population is,
the higher the number of test inputs that check syntactic correctness is and vice versa. Therefore, to explore both
syntactic and semantic bugs, we vary the values of Ppop, aiming to strike a balance between grammar diversity.
To assess the fitness of the initial population P, the evolution module invokes the evaluation module (Line 3-8)
with the generated grammars.

4.2.2 Parent selection for the next round. We use the tournament selection technique to get a diverse population
at every round. We perform “tournaments” among P grammars (Line 12-13 in Algorithm 1). The winner of each
tournament (the one with the highest fitness score) is then selected for crossover and mutation. In what follows,

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:13

Algorithm 2: Two-Point Grammar Crossover
Data: ParentGrammar Pa , ParentGrammar Pb
Result: Pa ,Pb

1 Randomly pick production rule 𝑅𝑎 from 𝑃𝑎 and 𝑅𝑏 from 𝑃𝑏
2 𝑅𝑎 ← 𝑅𝑎1 , 𝑅𝑎2 , ..., 𝑅𝑎𝑙

3 𝑅𝑏 ← 𝑅𝑏1 , 𝑅𝑏2 , ..., 𝑅𝑏𝑚
4 𝑐1 ← random integer chosen from 1 to𝑚𝑖𝑛 (𝑙,𝑚)
5 𝑐2 ← random integer chosen from 1 to𝑚𝑖𝑛 (𝑙,𝑚)
6 if 𝑐 > 𝑑 then
7 swap 𝑐1 and 𝑐2
8 end
9 for 𝑖 from 𝑐 to 𝑑 − 1 do
10 swap grammar rules of 𝑅𝑎𝑖

, 𝑅𝑏𝑖
11 end

we discuss in detail our tournament selection technique addressing the functional and structural bloating problems
of evolutionary fuzzers [56].

+CFUN	=	CFUNarg1				,	CFUNarg2															
																								

+CTFR	=		number,									type	,subaddr,	satype	

c1 c2

+CFUN	=	number									,	CFUNarg2															
																								

+CTFR	=		CFUNarg1,			type	,subaddr,	satype	

c1 c2

Fig. 7. Examples of two-point grammar crossover mechanism.

Restraining functional bloating. We leverage another insight in selecting grammars at each round of the
tournament selection procedure to reduce functional bloating [56]— the continuous generation of grammars
containing similar mutated production rules— which adversely affects diverse input generation in evolutionary
fuzzing. At each round, we randomly select grammars from our population. This is due to the fact that while
running an evolutionary fuzzing, the range of fitness values becomes narrow and reduces the search space it
focuses on. For example, at any round, if the fuzzer finds a grammar that has a mutated production rule related
to +CFUN causing an error state in the AT interface, then all the grammars containing this mutated rule will
obtain high fitness values. If we then only select parents based on the highest fitness, we would inevitably fall
into functional bloating and would narrow down our focused search space with grammars that are somehow
associated with this mutated version of +CFUN only.
To constraint this behavior, we perform the tournament selection procedure in which we randomly choose

Tsize (where T denotes the set of selected grammars for the tournament and Tsize ≤ Psize) number of grammars
from the population P. The key insight of choosing randomly is to give chances to the lower fitness grammars in
the next round to ensure a diverse pool of candidates with both higher and lower fitness scores.
Restraining structural bloating. After running ATFuzzer for a while, i.e., after a certain number of generations,
the average length of individual grammar grows rapidly. This behavior is characterized as structural bloating.
Referring to the AT grammar in Figure 3, multiple cmds (production rules) can contribute to generating the final
commands that are sent to the AT command injector for evaluation. These commands can grow indefinitely,
but do not induce any structural changes, and thus cause structural bloating. These input commands, therefore,
hardly contribute to the effectiveness of the fuzzer. To limit this behavior, we restrict the grammar to have at
most three cmds at each round to generate the input AT commands for testing.

4.2.3 Grammar crossover. In the grammar crossover stage, ATFuzzer strives to induce changes in the grammar
aiming to systematically break the correlation and structure of the grammar. For this, we take inspiration from
traditional genetic programming and apply our custom two-point crossover technique to the grammars.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

Two-point crossover. ATFuzzer picks up two random production rules from the given parent grammars and
generates two random numbers 𝑐1 and 𝑐2 within ℓ where ℓ is the minimum length between the two production
rules. ATFuzzer then swaps the fields of the two production rules that are between points 𝑐1 and 𝑐2.
Figure 7 shows how ATFuzzer performs the two-point crossover operation on production rules +CTFN =

and +CTFR = (a subset of the AT grammar in Figure 3) used for controlling the cellular functionalities and for
urgent call forwarding, respectively. By applying two-point crossover on +CFUN = CFUNarg1,CFUNarg2 and
+CTFR = number, type, subaddr, satype, ATFuzzer generates +CFUN = number, CFUNarg2 and +CTFR =

CFUNarg1, type, subaaddr, satype which in turn contribute in generating versatile inputs.

Algorithm 3: Grammar Mutation
Data: Grammar Ga , Tunable parameters : 𝑃𝛼 , 𝑃𝛽 , 𝑃𝛾𝑃𝛿 , 𝑃𝜃 , 𝑃𝜖
Result:Mutated Ga

1 Randomly pick production rule 𝑅𝑎 from𝐺𝑎

2 𝑅𝑎 ← 𝑅𝑎1 , 𝑅𝑎2 , ..., 𝑅𝑎𝑙

3 𝑐 ← random integer chosen from 1 to 𝑙
4 𝑃 ← Generate random probability from (0, 1)
5 if 𝑃𝛼 ≥ 𝑃 then
6 trim argument 𝑅𝑎𝑐 from production rule 𝑅𝑎

7 end
8 if 𝑃𝛽 ≥ 𝑃 then
9 replace 𝑃𝑐 {𝜙 } with 𝑃𝑐 {¬𝜙 }in production rule 𝑅𝑎

10 end
11 if 𝑃𝛾 ≥ 𝑃 then
12 𝑑 ← random integer chosen from 1 to 𝑙
13 add argument 𝑃𝑎𝑐 at position 𝑙 in production rule 𝑅𝑎

14 end
15 if 𝑃𝛿 ≥ 𝑃 then
16 change the type of 𝑅𝑎𝑐 from production rule 𝑅𝑎

17 end
18 if 𝑃𝜃 ≥ 𝑃 then
19 change 𝑅𝑎𝑐 to a fixed value between {𝑖𝑛𝑡 .𝑚𝑎𝑥, 𝑖𝑛𝑡 .𝑚𝑖𝑛, 0, 1,−1}
20 end
21 if 𝑃𝜖 ≥ 𝑃 then
22 change the connector between AT commands to other special characters
23 end

4.2.4 Grammar mutation. During crossover operation, ATFuzzer constructs grammars that may have diverse
structures which are, however, not enough to test the constraints and correlations associated with a command
and its arguments. This is due to the fact that AT commands have constraints not only on the fields but
also on the commands itself. Therefore, generating versatile grammars that can generate such test inputs
is an important aspect of ATFuzzer design. To deal with this pattern, we propose six mutation strategies—
field addition, field trimming, condition negation, type negation, fixed integers, and connector alteration. We use
+CTFR=number,type,subaddr,satype;CFUN=CFUNarg1,CFUNarg2 (one of the grammars generated from
the example seed grammar presented in Figure 3) to illustrate these mutation strategies with examples shown in
Figure 8.
Field addition.With our first strategywe randomly insert/add a field chosen from the production rule of the given
grammar at a random location. For instance, applying this mutation strategy (shown in Figure 8(a)) to one of the
grammars +CTFR=number,type,subaddr,satype;CFUN=CFUNarg1,CFUNarg2 yields +CTFR=number,type,
satype,subaddr ,satype;CFUN=CFUNarg1,CFUNarg2 containing an additional argument added after the sec-
ond argument of the actual grammar. The mutation has changed both the number of arguments and structure of
the grammar and, thereby, tests the structure of the grammar.
Field trimming. Our second mutation strategy is to randomly trim an argument from a production rule for the
given grammar. Referring to Figure 8(b), applying this to our example grammar, we obtain a production rule

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:15

+CTFR=number,type,subaddr;CFUN=CFUNarg1,CFUNarg2which also deviates from the original grammar
with respect to both the structure and type.
Condition negation. Our third mutation strategy focuses on the constraints associated with the arguments of a
command. Referring to the AT grammar in Figure 3, we encode the constraints with additional conditions (denoted
with {. . . }) in the grammar production rules. With the negation strategy, we randomly pick a production rule of
the grammar and choose a random argument that has a condition associated with it. We negate the condition
which we use to replace the original one at its original place in the production rule. Figure 8(c) demonstrates
how we negate the production rule associated with number used to represent a phone number. The number
is a string type with a constraint on its length. We negate this condition with the following three heuristics:
(i) Generating strings that are longer than the specified length; (ii) Generating strings that contain not only
alphanumeric characters but also special characters; and (iii) Generating an empty string.
Type negation. This mutation strategy aims at effectively testing the type of each argument. The grammars
are encoded as having several types e.g., strings, integers, floats. Following this mutation strategy a random
production rule is picked and the type of the rule is changed from its original to any of the other types. Figure 8(d)
demonstrates how the rule is applied to the example grammar. In the original grammar, satype is an integer.
Following our type negation mutation strategy, the type is changed to string.
Fixed integer. Through this mutation strategy the integer handling of the AT parser is properly tested. Following
the strategy, a production rule having type integer is packed and replaced with fixed integers such as: highest
possible positive number, highest possible negative number, zero, -1, 1. Our example in Figure 8(e) shows the
application on satype, where satype is changed to the maximum possible integer.
Connector alteration. Multiple AT commands are connected with𝑚𝑎𝑡ℎ𝑠 𝑓 ; "semicolon". To effectively test the
conjunction of multiple AT commands, we introduce this mutation strategy. The idea is to replace the connectors
with other special characters e.g., $, %, , $. # etc. As to restrain structural bloating, we have restricted the grammar
to have at most three AT commands. Therefore, we can have at most two connectors and modify one of them
randomly. Following our same example, the impact of this mutation strategy is shown in the generated example
grammar where the connector is changed from “; ” to “#” (Figure 8(f)) .

4.3 Evaluation Module
The primary task of the evaluation module is to generate a number of test inputs (i.e., concrete AT command
instances) for the grammar received from the evolution module. It then evaluates the test inputs with the AT
command injector, and finally evaluate the grammar itself based on the scores of the generated test inputs. To
what follows, we explain how the evaluation module calculates the fitness score of a grammar.

4.3.1 Fitness evaluation. At the core of ATFuzzer is the fitness function that guides the fuzzing and acts as a
liaison for the coverage information. We devise our fitness function based on the timing information and baseband
related information of the smartphone. Our fitness function comprises of two parts: (1) Fitness score of the test
inputs generated from a grammar; (2) Fitness score of the grammar in the population.
Fitness score of the test inputs of a grammar. The fitness evaluator of ATFuzzer generates 𝑁 inputs from
each grammar and calculates the score for each input. We define this fitness function for an input AT command
instance 𝑥 as:

fitness(x) = 𝛼 × timingscore + (1 − 𝛼) × disruptionscore
where 𝛼 is a tunable-parameter that controls the impact of timingscore and disruptionscore. Let 𝑡𝑥 be the time

required for executing an AT command 𝑥 (0 ≤ 𝑥 < 𝑁) on the smartphone under test. Execution time of an AT
command is defined as the time between when the AT command is sent and when the output is received by the
AT command injector. Note that, we normalize the execution time by the input length.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

Let 𝑡1, 𝑡2, ..., 𝑡𝑁 be the time for executing 𝑁 AT commands, we define the timing score for instance 𝑥 in a

population of size 𝑁 as follows: timingscore =
ti

t1 + t2 + + tN
.

Note that while running AT commands over Bluetooth, the commands and their responses are transmitted
in over-the-air (OTA) Bluetooth packets. To compute the precise execution time of the AT command on the
smartphone, we take off the transmission and reception times from the total running time. Also, to make sure
Bluetooth signal strength change does not interfere with the timing information, our system keeps track of the
RSSI (Received Signal Strength Indication) value and carries out the fuzzing at a constant RSSI value.
We define disruptionscore based on the following four types of disruption events: (i) Complete shutdown

of SIM card connectivity; (ii) Complete shutdown of cellular Internet connectivity; (iii) Partial disruption in
cellular Internet connectivity; (iv) Partial disruption of SIM card connectivity with the phone. For cases (i) and
(ii), complete shutdown causes denial of cellular/SIM functionality, recovery from which requires rebooting
the device. ATFuzzer uses adb reboot command which takes ∼ 15 − 20 seconds to restart the device without
entailing any manual intervention. On the contrary, partial shutdown for the cases (iii) and (iv) induce denial of
cellular/SIM functionality for ∼ 3 − 5 seconds and thus does not call for rebooting the device to recuperate back
to its normal state. These events are detected and monitored using the open-source tools available to us from
Android, e.g., logcat, dumpsys, and tombstone. When injecting the AT commands we use these tools to detect
the events at run time. We take into account if there is a crash in the baseband or the RIL daemon. We assign a
score between 0 − 1 to a disruption event in which 0 denotes no disruption at all (i.e., the device is completely
functional) with no adverse effects and 1 denotes complete disruption of the cellular or SIM card connectivities.
Fitness score of a grammar. After computing the fitness scores for all the concrete input instances, we calculate
the grammar’s score by taking the average over all instance scores.

+CTFR=	number,	type,	subaddr,	satype;+CFUN=	CFUNarg1,CFUNarg2

satype,+CTFR=	number,	type,	subaddr,	 satype;+CFUN=	CFUNarg1,CFUNarg2

(a) Field addition

+CTFR=	number,	type,	subaddr,	satype;+CFUN=	CFUNarg1,CFUNarg2

+CTFR=	number,	type,	subaddr, ;+CFUN=	CFUNarg1,CFUNarg2

(b) Field trimming

+CTFR=	number,	type,	subaddr,	satype;+CFUN=	CFUNarg1,CFUNarg2

+CTFR=	number,	type,	subaddr, satype										 ;+CFUN=	CFUNarg1,CFUNarg2

(c) Condition negation

+CTFR=	number,	type,	subaddr,	satype;+CFUN=	CFUNarg1,CFUNarg2

+CTFR=	number,	type,	subaddr, 					satype{String}								 ;+CFUN=	CFUNarg1,CFUNarg2

(d) Type negation

+CTFR=	number,	type,	subaddr,	satype;+CFUN=	CFUNarg1,CFUNarg2

+CTFR=	number,	type,	subaddr, 					satype{int.max}								 ;+CFUN=	CFUNarg1,CFUNarg2

(e) Fixed integer

+CTFR=	number,	type,	subaddr,	satype # +CFUN=	CFUNarg1,CFUNarg2

+CTFR=	number,	type,	subaddr,	satype;+CFUN=	CFUNarg1,CFUNarg2

(f) Connector alteration

Fig. 8. Example of all the grammar mutation strategies

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:17

5 EVALUATION
Our primary goal in this section is to evaluate the effectiveness of ATFuzzer by following the best possible
practices [7, 57] and guidelines [27]. We, therefore, first discuss the experiment setup and evaluation criteria, and
then evaluate the efficacy of our prototype against the widely used AFL [62] fuzzer— customized for our context.

5.1 Experiment Setup
ATFuzzer setup. We implemented ATFuzzer with ∼4000 lines of Python code. We encoded the grammars
(with JSON) for a corpus of 90 baseband-related AT commands following the specification in the 3GPP [24]
documentation and extracting some of the vendor-specific AT commands following the work of Tian et al. [55].
During its initialization, ATFuzzer receives the name of the AT command as input, retrieves the corresponding
grammar that will be used as the seed (GAT in algorithm 1) from the file, generates the initial grammar population,
and realizes the proposed crossover and mutation strategies. Hence, our approach is general and easily adaptable
to other structured inputs, since it is not bound to any specific grammar structure. Since testing a concrete AT
command instance requires 15-20 seconds on average (because of checking the cellular and SIM card connectivity
after executing a command and for rebooting the device in case of AT interface’s unresponsiveness for blacklisting),
we set Psize to 10 which we found through empirical study to be the most suitable in terms of ATFuzzer’s stopping
condition. Following the same procedure, we test 10 concrete AT commands in each round for a given grammar.
We set the probability Ppop to 0.5 to ensure uniform distribution in the grammar varying ratio.

Conceptually, one can argue for testing at a “batch” mode to chop the average time for fuzzing an AT grammar.
For instance, injecting 10 AT commands together and then checking the cellular and SIM connectivity at once.
Although this design philosophy is intuitive, it fails to serve our purpose. The reason is that this approach
may be able to detect permanent disruptions but it is unable to detect temporary disruptions to cellular or SIM
connectivity. For instance, even if the second AT command in the batch induces a temporary disruption, there
will be no trace of disruptions at all by the time when the tenth (i.e., the last) AT command is executed.
Target devices configuration.We tested 10 different devices (listed in Table 1) from 6 different vendors running
6 different android versions to diversify our analysis. For Bluetooth, we do not require any configuration on the
phone, whereas for running AT commands over USB some phones require specific set up procedures.
The first step for all the Android devices we tested is to enable the USB debugging option in the Developer

options menu, which is normally hidden. To unlock this menu it is necessary to tap seven times the Build
number entry in the device settings, enable the Developer options, and finally enable USB debugging. The USB
debugging feature (among other features in the Developer menu) aims at providing direct access to the device’s
system, functionalities for debugging operations, access to the file system, etc. It is important to ensure that the
USB configuration is set on MPT (Media Transfer Protocol). For additional details see [1].
The second step is to configure the USB interface within the device’s system. Some of the devices we tested

expose their modem functionality by default and therefore required no additional configuration (also listed in
Table 1). On the other hand, for the devices that do not expose any modem, it was necessary to root them and set
a specific type of USB configuration. The USB configuration can be changed by setting sys.usb.config property.
Thereby the devices can be accessed through ADB (Android Debug Bridge) and Fastboot tools. With ADB it
is possible to access the device’s file system, reboot it in different modes, such as bootloader mode, rooting
it, and finally change the device’s properties directly with the command setprop <property-name> <value>.
Fastboot, instead, allows operating the device in bootloader mode, install new partitions, and change pre-boot
settings required for rooting.

Few devices required specific configurations. For instance, for LG Nexus 5, we have to set sys.usb.config from
the default “mnt,adb” to “diag,adb” through adb shell. This setting allows accessing the phone in diagnostic
mode and therefore to communicate with the AT command interface. For Motorola Nexus 6 and Huawei Nexus

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

6P, the USB configuration can be changed by rebooting the phone in bootloader mode by executing the
command “adb reboot fastboot”. Then, issue the command “fastboot oem bp-tools-on” and “fastboot oem
enable-bp-tools” for Nexus 6 and Nexus 6P, respectively as reported in [12]. The command sets the property
sys.usb.config to diag,serial_smd,rmnet_ipa,adb allowing establishing a serial communication with the
device and interacting with it through the AT interface.

Note that running ATFuzzer using Windows operating system might require additional settings and to instal-
l/reinstall some of the drivers. For instance, when connecting Nexus 6 and Nexus 6P after setting the phone
USB properties, Windows should detect the device and correctly set the USB drivers. It is possible to check
the setting through the hardware panel where the entries “Android Composite ADB Interface”, “Qualcomm
HS-USB Diagnostics”, “Qualcomm HS-USB Modem”, “Qualcomm Wireless HS-USB Ethernet Adapter” and
“USB Composite Devide” should be listed. The ADB interface is specifically needed to perform ADB operations,
whereas the Qualcomm modem is necessary to use AT Commands. If the Qualcomm modem is not listed, one
problem could be the Windows drivers. If that is the case, it is necessary to uninstall the drivers for all the Nexus
6 (Nexus 6P) devices listed (more then one could be listed), reconnect the phone to the computer and wait for the
drivers to be automatically installed.

5.2 Evaluation Criteria
ATFuzzer has three major components— grammar crossover, mutation, and feedback loop— to effectively test a
target device. We, therefore, aim to answer the following research questions to evaluate ATFuzzer:

• RQ1: How proficient is ATFuzzer in finding erroneous AT commands over Bluetooth?
• RQ2: How proficient is ATFuzzer in finding erroneous AT commands over USB?
• RQ3: How effective is our grammar-aware crossover strategy?
• RQ4: How effective are our grammar-aware mutation strategies?
• RQ5: When using grammars, how much does the use of timing feedback improve fuzzing performance?
• RQ6: Is ATFuzzer more efficient than other state-of-the-art fuzzers for testing AT interface?
• RQ7: How effective is the AT grammar extraction module of ATFuzzer?

To tackle RQ1-RQ2, we let our ATFuzzer run over USB and Bluetooth each for one month to test the 10 different
smartphones listed in Table 1. ATFuzzer has been able to uncover a total of 4 erroneous AT grammars inducing a
crash, downgrade, and information leakage over Bluetooth and 14 erroneous AT grammars over USB. Based on
the type of actions and responses to the problematic AT command instances, we initially categorize our results as
syntactic and semantic problematic AT grammars, and further categorize the syntactically problematic grammars
into three separate classes: (i) responds ok with composite actions; (ii) responds ok with an action; (iii) responds
error with an action. Here, an action means either a crash (i.e., any disruption event defined in Section 4), or
leakage of any sensitive information, or the execution of a command (e.g., hanging up a phone call).
We summarize ATFuzzer’s findings for Bluetooth in Table 2 and for USB in Table 3. To answer the research

questions RQ3-RQ5, we evaluate ATFuzzer by disabling one of its components at a time. We create three new
instances of ATFuzzer: ATFuzzer without crossover, ATFuzzer without mutation, and ATFuzzer without fitness
evaluation. In what follows we evaluate these three variants with the AT grammar (in Figure 3) and compare
their efficacy in discovering bugs against original ATFuzzer with all capabilities switched on. Moreover, to answer
the research question RQ6, we create our variation of AFL (American Fuzzy Lop). To perform a fair comparison,
we run all our experiments on Nexus 5 for each variations of ATFuzzer and our version of AFL each for 3 days.
To tackle research question RQ7 and test the effectiveness of the AT grammar extraction module, we apply it to
four AT command standard PDF’s and compare it to our previous manual AT grammar extraction.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:19

Device Android
Version

Build
Number

Baseband
Vendor

Baseband USB Config OS Interface

Samsung
Note2

4.3 JSS15J.
I9300XU
GND5

Samsung
Exynos
4412

N7100DD
UFND1

None Linux Bluetooth
and
USB

Samsung
Galaxy
S3

4.3 JSS15J.
I9300XX
UGND5

Samsung
Exynos
4412

I9300XX
UGNA8

None Linux Bluetooth
and
USB

LG G3 6.0 MRA58K Qualcomm
Snap-
dragon
801

MPSS.DI.2.0.1.
c1.13-00114
-M8974AA
AAANPZM-
1.43646.2

None Linux Bluetooth
and
USB

HTC
Desire 10
lifestyle

6.0.1 1.00.600.1
8.0_g
CL800193
release-
keys

Qualcomm
Snap-
dragon
400

3.0.U205591
@60906G_01.
00.U0000. 00_F

sys.usb.config
mtp,adb,diag,
modem, mo-
dem_mdm,
diag_mdm

Windows Bluetooth
and
USB

LG
Nexus 5

5.1.1 LMY48I Qualcomm
Snap-
dragon
800

M8974A-
2.0.50.2.26

sys.usb.config
diag,adb

Linux Bluetooth
and
USB

Motorola
Nexus 6

6.0.1 MOB30M Qualcomm
Snap-
dragon
805

MDM9625_
104662.22.
05.34R

fastboot oem bp-
tools-on

Windows Bluetooth
and
USB

Huawei
Nexus 6P

6.0 MDA89D Qualcomm
Snap-
dragon
810

.2.6.1.c4-
00004-M899
4FAAAAN
AZM-1

fastboot oem
enable-bp-tools

Windows Bluetooth
and
USB

Samsung
Galaxy
S8+

8.0.0 R16NW.G95
5USQU5CRG3

Qualcomm
Snap-
dragon
835

G955US
QU5CRG3

None Linux Bluetooth
and
USB

Huawei
P8 Lite
ALE-L21

5.0.1 ALE-
L21CO2B140

HiSilicon
Kirin 620
(28 nm)

22.126.12.00.00 None None Bluetooth

Pixel 2 8.0.0 OPD3.1708
16.012

Qualcomm
MSM8998
Snap-
dragon
835

g8998-00122-
1708231715

None None Bluetooth

Table 1. List of the devices we tested, with software information, USB configuration required and the operating system we
used to fuzz each device.

5.3 Findings Over Bluetooth (RQ1)
Unlike USB, Bluetooth does not require any pre-processing or configuration to the phone to execute AT commands.
Besides this, over-the-air Bluetooth communications are inherently vulnerable to MitM attacks [2, 32, 51]. All
these enable the adversary to readily exploit the vulnerabilities over Bluetooth with sophisticated attacks.

5.3.1 Results. We first discuss the results that relate to invalid AT commands and then we discuss the attacks
and impacts of both invalid and valid AT commands.
(1) Syntactic errors – responds ok with actions. ATFuzzer uncovered four problematic grammars in these
categories in seven different Android smartphones. We observer that the target device responds to the invalid

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

Class of
Bugs

Grammar and Command Instance action/implication Nexus5 LG G3 Nexus6 Nexus6P HTC S8plus S3 Note2 Huawei P8lite Pixel 2

Syntatctic –
returns OK
with action

cmd→D.Dnum.Darg1.Darg2
Dnum→[𝐴 − 𝑍0 − 9 + #]∗
Darg1→𝐼 |𝐺 |𝜖
Darg2→;. Darg3
Darg3→[𝐴, 𝐵,𝐶]+
E.g. ATD + 4642048034I;AB;C

crash/internet connectiv-
ity disruption

✓ ✓

cmd→D.Dnum.Darg1.Darg2
Dnum→[𝐴 − 𝑍0 − 9 + #]∗
Darg1→𝐼 |𝐺 |𝜖
Darg2→;. Darg3
Darg3→[𝐴, 𝐵,𝐶]+
E.g. ATD + 4642048034I;AB;C

crash/downgrade ✓ ✓

cmd→+CIMI.Arg1
Arg1→[𝑎 − 𝑧𝐴 − 𝑍0 − 9 + #]∗
E.g. AT + CIMI; ; ; ; abc

read/IMSI leak ✓ ✓ ✓

cmd→+CGSN.Arg1
Arg1→[𝑎 − 𝑧𝐴 − 𝑍0 − 9 + #]∗
E.g. AT + CGSN; ; ; ; abc##

read/IMEI leak ✓ ✓ ✓

Correctly
formatted
command

cmd→+CIND? read/leaks call status,
call setup stage, internet
service status, signal
strength, current roam-
ing status, battery level,
call held status

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

cmd→+CHUP execution (cutting phone
calls)/ DoS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

cmd→Arg.D.Dnum.Darg;
Arg→[𝑎 − 𝑧𝐴 − 𝑍]
Dnum→[𝑎 − 𝑧𝐴 − 𝑍0 − 9 + ∗#]∗
Darg→𝐼 |𝐺 |𝜖
E.g. ATD ∗ ∗61 ∗ +1812555673 ∗ 11 ∗ 25#;

execution/ call forward-
ing, activating do not dis-
turb mode, activating se-
lective call blocking

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Summary of ATFuzzer’s Bluetooth parser findings.

AT command and also performs an action. For instance, ATFuzzer found a specific variant of ATD grammar
ATDA;A;B in Nexus 5 which is syntactically incorrect, but returnsOK and make the cellular Internet connectivity
temporarily unavailable. Beside this, the concrete instances of the same grammar also downgrade the cellular
connectivity from 4G to the 3G/2G in Nexus 6 and Nexus 6P smartphones thus entails severe security and privacy
impacts.

5.3.2 Attacks with invalid AT commands. We now present three practical attacks that can be carried out using
the invalid grammars uncovered through ATFuzzer.
Denial of service. The adversary using a malicious Bluetooth peripheral device (e.g., Bluetooth headphone
with only call audio and media permissions) or a MitM instance may exploit the invalid AT command, e.g.,
ATDB;A;B and temporarily disrupt the Internet connectivity of the Pixel 2 and Nexus 5 phones. To cause long term
disruptions in Internet connectivity, the adversary may inject this command intermittently and thus prevent the
user from accessing the Internet. Note that, there is no valid AT command that controls the Internet connectivity
over Bluetooth and thus it is not possible to achieve this impact using a valid AT command.
Downgrade. The same invalid grammar (shown in table 2) exploited in the previous DoS attack in Nexus 5
phone can also be exploited to downgrade the cellular connectivity on Nexus 6 and Nexus 6P phones. Similar to
the previous DoS attack, such downgrade of cellular connectivity is not possible with any valid AT commands
running over Bluetooth. Downgrade (also known as bidding-down) attacks have catastrophic implications as they
open the avenue to perform over-the-air man-in-the-middle attacks in cellular networks [6, 34].
IMSI & IMEI catching. ATFuzzer uncovered the invalid variations (AT + CIMI; ; ; ; ; abc and AT + CGSN123df)
of two valid AT commands (+CIMI and +CGSN) which enable the adversary to illegitimately capture the IMSI and
IMEI of a victim device over Bluetooth. Exploiting this, any Bluetooth peripheral connected to the smartphone
can surreptitiously steal such important personal information of the device and the network. We have successfully
validated this attack in Samsung Galaxy S3, Samsung Note 2, and Samsung Galaxy S8+. One thing to be noted
here is that after manual testing we found out that the valid versions of these two commands also leak IMSI and
IMEI. We argue that even if there is a blacklist/firewall policy put into place to stop the leakage through valid AT

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:21

commands, yet it will not be sufficient because it will leave the scope to use the invalid versions of the command
(that ATFuzzer uncovered) to expose this sensitive information.

The impact of this attack is particularly more fatal than that of the previous two attacks. This is because the
illegitimate exposure of IMSI and IMEI through Bluetooth provides an edge to the adversary to further track the
location of the user or intercept phone calls and SMS using fake base stations [15, 16] or MitM relays [50]. Samsung
has already acknowledged the vulnerabilities and is working on issuing patches to the affected devices. We also
summarize the findings of ATFuzzer in Table 2. CVE-2019-16401 [41] has been assigned to this vulnerability along
with other sensitive information leakage for the affected Samsung devices.

5.3.3 Attacks with valid AT commands. We summarize ATFuzzer’s other findings in which we demonstrate that
the exposed AT interface over Bluetooth allows the adversary to run valid AT commands to attain malicious goals
that may negatively affect a device’s expected operations. The results are particularly interesting as Bluetooth
interface has not yet been systematically examined.
Information leak. The adversary can use a valid AT command to learn the whole set of private information
about the phone. The malicious Bluetooth peripheral device can get the call status, call setup state, Internet
service status, the signal strength of the cellular network, current roaming status, battery level, and call hold
status for the phone using this valid AT commands.
DoS attacks. A malicious peripheral can exploit the AT + CHUP command to prevent the victim device from
receiving any incoming phone call. From the previous information leakage (e.g., call status) attack, an attacker
can probe periodically to detect whether there is a phone call or not. Whenever he detects there is a phone call,
the attacker injects AT + CHUP to cut the phone call. To make the matters worse, the attack is transparent to
the victim, i.e., there is no indication on the mobile screen that an attack is going on. The victim device user
perceives either there is no incoming call or abrupt call drops due to poor signal quality or network congestions.
CVE-2019-16400 [40] has been assigned for this along with other reported denial of service attacks in Samsung
phones.
Call forwarding. If the victim device is subscribed to call forwarding service, the adversary may exploit the
ATD command to forward victim device’s incoming calls to an attacker-controlled device. Exploiting this, the
adversary first prevents the victim device from receiving the incoming calls and then learns sensitive information,
such as password or pin for two-factor authentication possibly sent by an automated teller. Note that, such call
forwarding is also transparent to the user since the user is unaware of any incoming calls.
Activating do not disturb mode. The adversary using a malicious Bluetooth peripheral or MitM instance can
turn on the do not disturb mode of the carrier through ATD command. Similar to call forwarding attack, it is
also completely transparent to the user as no visible indication of do not disturb mode is displayed on the device.
While the user observes all the network status bars and the Internet connectivity, the device, however, does not
receive any call from the network.
Selective call blocking. A variation of the previous attack is also possible in which the adversary may allow
the victim phone to receive selective calls by intermittently turning on/off the do not disturb mode. This may
force the user to receive calls only from selective users not affecting others.

5.4 Findings over USB (RQ2)
We now discuss findings over USB.
(1) Syntactic errors – responds ok with composite actions. It is one of the interesting classes of problematic
grammars for which the AT interface of the affected devices respond to invalid AT commands with ok, but
performs multiple actions together. These invalid commands are compositions of invalid characters and two
valid AT commands with no semicolon as their separator. For instance, ATFuzzer generated an invalid command
ATIHD + 4632048034; using two valid grammars for ATD and ATI (as shown in Figure 3) and invalid characters

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

for which the target device returns ok but places a phone call to 4632048034 and shows the manufacturer, model
revision, and IMEI information simultaneously.

Class of
Bugs

Grammar and Command Instance action/implication Nexus5 LG G3 Nexus6 Nexus6P HTC S8plus

Syntatctic
–returns
OK with
composite
actions

cmd→I.Arg.D.Dnum.Darg;
Arg→[𝑎 − 𝑧𝐴 − 𝑍]
Dnum→[𝑎 − 𝑧𝐴 − 𝑍0 − 9 + ∗#]∗
Darg→𝐼 |𝐺 |𝜖
E.g. ATIHD + 4642048034I;

read, execution/ leaks
manufacturer, model
revision and IMEI

✓ ✓ ✓ ✓ ✓

cmd→+COPN; Arg
Arg→[𝑖 |𝐼]∗
E.g. AT + COPN; III

read/ leaks list of op-
erators, manufacturer,
model revision and IMEI

✓ ✓ ✓ ✓

Syntatctic –
returns OK
with an ac-
tion

cmd→Arg1.I.Arg1
→[𝑋 |𝐻]
E.g. ATHIX

read/ leaks manufacturer,
model revision and IMEI

✓ ✓ ✓ ✓ ✓

cmd→Arg1.I.Arg1.Arg1
Arg1→𝑋
E.g. ATXIX

read/ leaks manufacturer,
model revision and IMEI

✓ ✓ ✓

cmd→Arg1.Arg2.Arg3
Arg1→+𝐶𝐼𝑀𝐼 | 𝐼 | +𝐶𝐸𝐸𝑅
Arg2→∗|;
Arg3→Q|Z
E.g. AT + CIMI ∗Q

read/ leaks IMSI, manu-
facturer, model revision
and IMEI

✓ ✓

cmd→+CLCC;Arg1
Arg1→[𝑎 − 𝑧𝐴 − 𝑍0 − 9]∗
E.g. AT + CLCC;ABC123

read/leaks current call
list

✓ ✓ ✓ ✓ ✓

cmd→Arg1; Arg2
Arg1→+𝐶𝑂𝑃𝑁 | +𝐶𝐺𝑀𝐼 |
+𝐶𝐺𝑀𝑀 | +𝐶𝐺𝑀𝑅
Arg2→[𝑋 |𝐸]
E.g. AT + COPN;X

read/leaks list of opera-
tors, IMEI, model and re-
vision information of the
device

✓ ✓ ✓ ✓ ✓ ✓

Syntatctic –
returns ER-
ROR with
an action

cmd→Arg1.Arg2.Arg3
Arg1→+𝐶𝐼𝑀𝐼 | 𝐼 | +𝐶𝐸𝐸𝑅
Arg2→; |∗
Arg3→ˆ[𝑄 |𝑍]
E.g. ATI; L

read/ leaks IMSI, manu-
facturer, model revision
and IMEI

✓ ✓ ✓ ✓

cmd→Arg1; Arg2
Arg1→+𝐶𝑂𝑃𝑁 | +𝐶𝐺𝑀𝐼 |
+𝐶𝐺𝑀𝑀 | +𝐶𝐺𝑀𝑅
Arg2→ˆ[𝑋 |𝐸]
E.g. AT + CGMM;O

read /leaks list of opera-
tors, IMEI, model and re-
vision information of the
device

✓ ✓ ✓ ✓

cmd→Arg.D.Dnum.Darg;
Arg→[𝑎 − 𝑧𝐴 − 𝑍]
Dnum→[𝑎 − 𝑧𝐴 − 𝑍0 − 9 + #]∗
Darg→𝐼 |𝐺 |𝜖
E.g. ATMD + 4632048034

crash/ internet connec-
tivity disruption

✓

cmd→D.Dnum.Darg;Arg
Arg→[𝑎 − 𝑧𝐴 − 𝑍&#}{}]∗
Dnum→[𝑎 − 𝑧𝐴 − 𝑍0 − 9 + #]∗
Darg→𝐼 |𝐺 |𝜖
E.g. ATD + 4632048034; I#

crash/ internet connec-
tivity disruption

✓ ✓

cmd→+CUSD=,String
String→[𝑎 − 𝑧𝐴 − 𝑍0 − 9 + ∗#]∗
E.g. AT + CUSD =,ABC

crash/ internet connec-
tion disruption

✓ ✓

Semantic –
returns OK
with an ac-
tion

cmd→+CCFC=Arg1,Arg2,Arg3,
145,32,Arg4,13,27
Arg1→[1 − 5]
Arg2→[1 − 2]
Arg3→[0 − 9]∗
Arg4→[𝑎 − 𝑧𝐴 − 𝑧0 − 9]∗
E.g. AT + CCFC = 3, 2, 732235, 145,
32, cA4{NYv, 13, 27

crash/ internet connec-
tivity disruption

✓ ✓ ✓

cmd→+COPS = 0,Arg1,Arg2,2
Arg1→[0 |1]
Arg2→[𝑎 − 𝑧𝐴 − 𝑧]∗
E.g. AT + COPS = 0, 1, c19v6fC, 2

crash/internet connectiv-
ity disruption

✓

Table 3. Summary of ATFuzzer’s findings over USB.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:23

(2) Syntactic errors – responds ok with an action. In this type of syntactically problematic grammars, the
target device responds to an invalid command instance with ok but performs an action. For instance, the grammar
cmd→Arg1. I .Arg2 in Table 3 can be instantiated with an invalid command instance ATHIX which returns
sensitive device information.
(3) Syntactic errors – responds error with an action. In this class of syntactic errors, the AT interface rec-
ognizes the inputs as faulty by acknowledging with error, but it still executes the action associated with the
command and even does worse by crashing the RIL daemon and inducing complete disruptions in the cellular
Internet connectivity. It basically reveals a fundamental flaw in the AT interface— if a command is considered as
erroneous, it should not be executed. For example, the grammar cmd→D . Dnum in Table 3 can be instantiated
with ATD+4632048034 (a variation of the ATD production rule in Figure 3) which is supposed to start a cellular
voice call. Instead, the grammar returns error in the form of NO CARRIER and induces the cellular Internet
connectivity to go down completely for a certain amount of time (15-20 seconds). We have also found grammars
for which the device returns other error statuses, e.g., ERROR, NO CARRIER, CME ERROR, ABORTED, and NOT
SUPPORTED, but still executes those invalid commands.
(4) Semantic errors. This class of grammars conforms with the input pattern defined by the standards [24],
but induces disruptions in the cellular connectivity for which the recovery requires rebooting the device. The
grammars of this class are shown in Table 3.
Possible exploitation. It may appear that the implications of invalid AT commands over USB are negligible as
compared to the valid AT commands which may wreak havoc by taking full control of the device. We, however,
argue that if AT interface exposure is restricted through blacklisting the critical and unsafe valid AT commands
by the parser in the first place, the adversary will still be able to induce the device to perform same semantic
functionalities using invalid AT commands. This is due to the uncovered vulnerabilities for which the parser will
fail to identify the invalid AT commands as the blacklisted commands and thus allows the adversary to achieve
same functionalities as the valid ones.

5.4.1 Efficacy of grammar-aware crossover (RQ3). ATFuzzer without crossover (by disabling the crossover in
ATFuzzer) uncovered only 3 problematic grammars as compared to ATFuzzer with all proposed crossover and
mutations (Table 4). This is due to the fact that ATFuzzer without crossover cannot induce enough changes in the
structure and type of the arguments of parent grammars, as a result of which it reduces the search space.

5.4.2 Efficacy of grammar-aware mutation (RQ4). Since ATFuzzer without mutation cannot induce changes in the
arguments and the respective conditions, it uncovered only 2 problematic grammars. ATFuzzer without crossover,
however, performs slightly better than that of the ATFuzzer without crossover. This also justifies our intuition
that mutation strategies play a vital role in any fuzzer as compared to crossover techniques. Without mutation, a
fuzzer unlikely generates interesting inputs for the system under test.

5.4.3 Efficacy of timing feedback (RQ5). We observed that ATFuzzer without feedback performs better than the
other two (RQ2 and RQ3) variations. ATFuzzer without feedback uncovered 5 problematic grammars and thus is
less effective than ATFuzzer with feedback. AT interface being a complete black box with little to no feedback we
had to resort to various creative ways including timing information to generate feedback score. However, This
resorts to an upper bound for the coverage information and loosely dictates ATFuzzer.

5.4.4 Comparison with other state-of-the-art fuzzer (RQ6). We compare the effectiveness of ATFuzzer against
AFL (American Fuzzy Lop) [62]. Since current versions of AFL require instrumenting the test programs, we
implemented a modest string fuzzer that adopts five mutation strategies (walking bit flips, walking byte flips,
known integers, block deletion and block swapping) employed by AFL and incorporated our proposed timing-based
feedback loop to it. We evaluate this AFL variant with 80 different seeds (consisting of valid and invalid command
instances of randomly chosen 40 different AT reference grammars).

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

Fuzzing Approach Problematic Grammars
ATFuzzer 9

ATFuzzer w/o feedback 5
ATFuzzer w/o crossover 3
ATFuzzer w/o mutation 2

Modified AFL 2

Table 4. Result obtained with different fuzzing approaches on Nexus5 over a period of 3days for each approach.

Approach Commands Extracted False Positives
Manual extraction 75 0%

AT grammar extraction 300> <2%

Table 5. Comparison between manual and automated AT grammar extraction

Table 4 shows that the AFL variant uncovered 2 different problematic grammars whereas ATFuzzer uncovers 9
unique grammars after running for 3 days. Though we decided to compare our tool with AFL, which is the best
choice we had as AFL is considered the state-of-the-art tool for fuzzing, we do not claim the comparison to be
ideal. Because AFL relies heavily on code average information and for our case, we replaced the code coverage
with the best available substitute (i.e., coarse-grained timing information as a loose indicator to code coverage).
We acknowledge that this is a best-effort approach and the evaluation may be sub-optimal.

5.4.5 AT grammar extraction effectiveness (RQ7). Compared to our previous manual AT grammar extraction
procedure of 75 command grammars, our automated extraction procedure with two heuristics performs signifi-
cantly better. We could extract 129 grammars from the 3GPP specification [24] and in the order of 300 different
grammars from the other documents (each specification defines vendor-specific commands so that the total
number can vary). Moreover, we want to report that through manual inspection we encountered less than 2% of
false-positive commands on average. The comparison between the manual and our heuristic based command
extraction is summarized in Table 5.

6 RELATED WORK
In this section, we mainly discuss the relevant work on the following four topics: AT commands, mutation-based
fuzzing, grammar-based mutation, grammar-based generation.
AT commands.Most of the previous work related to AT commands follow investigate how an adversary can
misuse valid AT commands to attack various systems. The work from Tian et al. [55] can be considered the most
relevant to our work, however, it is significantly different in the following three aspects: (i) Firstly, they only
show the impact of AT commands over USB as they consider the functionality and scope of AT commands over
Bluetooth too limited to study. We, however, demonstrate the dire consequences of AT commands over Bluetooth
interface with the uncovered invalid and valid AT commands. (ii) Secondly, they only show the impact of valid
AT commands whereas we demonstrate the impact of invalid AT commands exploring different attack surfaces.
(iii) Finally, one of the primary objectives of our work is to test the robustness of the AT interface, which is a
different and complimentary end objective than theirs.
BlueBug [5] exploits a Bluetooth security loophole on few Bluetooth-enabled cell phones and issues AT

commands via a covert channel. It, however, relies on the Bluetooth security loophole to attack and does not
apply to all phones. In contrast, we have demonstrated a variety of attacks using valid and invalid AT commands
running over Bluetooth which do not rely on any specific Bluetooth assumptions and also applicable to all

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:25

the modern smartphones we had in our corpus. Injecting AT commands on android baseband was previously
discussed on the XDA forum [4]. Pereira et al. [42, 44] used AT commands to flash malicious images on Samsung
phones. Hay [11] discovered that AT interface can be exploited from Android bootloader and discovered new
commands and attacks using the AT interface. AT commands have been used to exploit modems other than
smartphones as well. Most prominently, USBswitcher [43, 48] and [42] demonstrate how these commands expose
actions potentially causing security vulnerabilities in smartphones. Some other work use AT commands as a part
of their tool, for instance, Mulliner et al. [36] use the AT commands as feedback while fuzzing SMS of phones.
Xenakis et al. [60, 61] devise a tool using AT commands to steal sensitive information from baseband. None of
them, however, actually analyzes or discovers bugs in the AT parser itself.
Mutation based fuzzers. Initial mutation-based fuzzers [35] used to mutate the test inputs randomly. To make
this type of fuzzers more effective, a huge amount of work has been carried out to develop sophisticated techniques
to improve mutation strategies— coverage information through instrumenting the binary [10, 29, 30, 62]; resource
usage information [28, 45]; control and data flow features [47]; static vulnerability prediction models [31];
data-driven seed generation [57]; high-level structural representation of seed file [46]. There are also a few
mutation-based fuzzers that incorporate the idea of grammars rather than inputs. Wang et al. [58] use grammars
to guide mutation whereas Aschermann et al. [7] rely on code coverage feedback. Simulated annealing power
schedule with genetic fuzzing has also been incorporated in [8]. However, due to the black-box nature of our
system and structural pattern of AT command inputs, none of the existing concepts suffice fuzzing AT parser.
Generation-based fuzzers. Generation based fuzzers generate inputs based on a model [13, 14, 53, 56], specifi-
cation or defined grammars. However, to the best of our knowledge, no fuzzer discovers a class of bugs at the
grammar-level, rather generates concrete input instances. There are also some generation-based, more precisely,
defined grammar-based fuzzers [63] [49] which use manually specified grammars as inputs. For instance, Man-
geleme is an automated broken HTML generator and fuzzer, and Jsfunfuzz [49] uses specific knowledge about
past and present vulnerabilities and uses grammar rules to produce inputs that may cause problems. Both of
them are, however, random fuzzers.

The current paper is an extended version of our previous paper [26]. With respect to the previous paper, the
current paper has several major extensions. The first is the design and implementation of an AT grammar extractor
that automatically retrieves AT command grammars from specification PDFs available online. By integrating
such an extractor with ATFuzzer, we have been able to obtain a considerably larger set of AT commands grammar
(more than 300 compared to the 75 commands we manually extracted in the previous work), which enables
more comprehensive tests. We have also extended ATFuzzer’s fuzzing mutation module introducing additional
mutation strategies. We have evaluated the effectiveness of the new fuzzing mutation module. We notice that
the enhanced ATFuzzer is able to perform a more refined fuzzing which allows us to mutate input AT command
grammars more precisely compared with the version of ATFuzzer described in our previous paper. Therefore we
have been able to uncover a new AT command grammar which causes devices crash and connectivity disruption.
In addition to such major extensions, we have included in the current paper more accurate details about the
experiment setup and the required devices configuration.

7 DISCUSSION
Defenses. Our findings show that current implementations of baseband processors and AT command interfaces
fail to correctly parse and filter out some of the possible anomalous inputs. In this paper, we do not explicitly
explore defenses for preventing malicious users from exploiting these flaws. However, our findings signify that
restricting the AT interface through access control policies, black-listing may not work due to the parsing bugs
and invalid AT commands that the parser executes. Completely removing the exposure of AT modem interface

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

over Bluetooth and USB can resolve the problem. Other than that, at a conceptual level, having a formal grammar
specification of the supported AT command grammar may provide a better way to test the AT interface. Another
aspect that particularly requires attention is the deployment of stricter policies that filter out anomalous AT
commands.
Responsible disclosure. Given the sensitive nature of our findings, we have reported these to the relevant
stakeholders (e.g., respective modems and devices vendors and manufacturers). Moreover, following the respon-
sible disclosure policy, we have waited 90 days before making our findings public. Both Samsung and Google
have released patches to resolve the reported vulnerabilities. The reported vulnerabilities have been assigned
(CVE-2019-16400 and CVE-2019-16401).

8 CONCLUSION AND FUTURE WORK
The paper proposes ATFuzzer for testing the correctness of the AT interface exposed by the baseband processor
in a smartphone. Towards this goal, ATFuzzer leverages a grammar-guided evolutionary fuzzing-based approach.
Unlike generational fuzzers which use the input grammar to generate syntactically correct inputs, ATFuzzer
mutates the production rules in the grammar itself. Such an approach enables ATFuzzer to not only efficiently
navigate the input search space but also allows it to exercise a diverse set of input AT commands. In our evaluation
with ATFuzzer on 10 Android smartphones from 6 vendors revealed 4 invalid AT command grammars that are
processed by the Bluetooth AT interface and can induce DoS, downgrade connectivity, and privacy leaks. For the
USB AT interface, on the other hand, ATFuzzer identified 13 invalid AT command grammars which are equally
damaging as the ones found for the Bluetooth AT interface. Our findings have been responsibly shared with the
relevant stakeholders among which Samsung has acknowledged our findings and are working towards a patch.
Two of our findings have also been assigned CVEs (CVE-2019-16400 and CVE-2019-16401).

As part of future work, we plan to apply hybrid fuzzing to our problem domain. In the hybrid fuzzing paradigm,
a black-box fuzzer’s capabilities are enhanced through the use of lightweight static analysis (e.g., dynamic
symbolic execution, taint analysis). Such an approach would, however, require us to address the issues concerning
firmware binaries’ practice of employing obfuscation and encryption.

One option is to apply both reverse engineering and binary instrumentation approaches to examine firmware
binaries and further investigate the AT execution process. This will also allow us to define a more suitable fitness
evaluation function to improve the ATFuzzer’s evaluation module.

Finally, we want to improve the AT command extractor to retrieve more accurate information. Currently, we
can extract the list of AT commands alongside the sequence of expected parameters. However, some of the details
about such parameters are embedded and mixed into the text in the specifications. Thus, by employing text
analysis strategies and natural language processing approaches, we can further improve the extraction process
and increase its accuracy.

REFERENCES
[1] [n.d.]. Configure on-device developer options. https://developer.android.com/studio/debug/dev-options Android Developers.
[2] [n.d.]. CWE-325: Missing Required Cryptographic Step - CVE-2018-5383. In Cernegie Mellon University ,CERT Coordination Center.

https://www.kb.cert.org/vuls/id/304725/.
[3] [n.d.]. Neo 1973 and Neo FreeRunner GSMmodem, AT Command set. http://wiki.openmoko.org/wiki/Neo_1973_and_Neo_FreeRunner_

gsm_modem.
[4] [n.d.]. XDA Forum [online].

https://forum.xda-developers.com/galaxy-s2/help/how-to-talk-to-modem-commands-t1471241.
[5] M.Herfurt A. Laurie, M. Holtmann. [n.d.]. The bluebug. AL Digital Ltd. https://trifinite.org/trifinite_stuff_bluebug.html#introduction.
[6] Iosif Androulidakis. 2011. Intercepting mobile phone calls and short messages using a gsm tester. In International Conference on Computer

Networks. Springer, 281–288.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://developer.android.com/studio/debug/dev-options
https://www.kb.cert.org/vuls/id/304725/
http://wiki.openmoko.org/wiki/Neo_1973_and_Neo_FreeRunner_gsm_modem
http://wiki.openmoko.org/wiki/Neo_1973_and_Neo_FreeRunner_gsm_modem
https://forum.xda-developers.com/galaxy-s2/help/how-to-talk-to-modem-commands-t1471241
https://trifinite.org/trifinite_stuff_bluebug.html#introduction

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:27

[7] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAU-
TILUS: Fishing for Deep Bugs with Grammars. In Proceedings of the Network and Distributed System Security Symposium (NDSS).

[8] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. 2017. Directed greybox fuzzing. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2329–2344.

[9] ICP DAS. [n.d.]. GTM-203-3GWA AT Commands Manual. http://ftp.icpdas.com/pub/cd/usbcd/napdos/3g_modem/gtm-203m-
3gwa/manual/gtm-203m-3gwa_atcommands_manual.pdf.

[10] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. [n.d.]. CollAFL: Path Sensitive Fuzzing. In 2018 IEEE Symposium on Security
and Privacy (SP), Vol. 00. 660–677. https://doi.org/10.1109/SP.2018.00040

[11] Roee Hay. 2017. fastboot oem vuln: android bootloader vulnerabilities in vendor customizations. In 11th {USENIX}Workshop on Offensive
Technologies ({WOOT} 17).

[12] Roee Hay and Michael Goberman. 2017. Attacking Nexus 6 & 6P Custom Bootmodes. (2017). https://www.docdroid.net/dxKUj5c/
attacking-nexus-6-6p-custom-bootmodes.pdf.

[13] Aki Helin. [n.d.]. Radamsa [online]. https://gitlab.com/akihe/radamsa.
[14] Christian Holler, Kim Herzig, and Andreas Zeller. [n.d.]. Fuzzing with Code Fragments.
[15] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino. 2018. LTEInspector: A Systematic Approach for Adversarial

Testing of 4G LTE. In 25th Annual Network and Distributed System Security Symposium, NDSS, San Diego, CA, USA, February 18-21.
[16] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowdhury, Ninghui Li, and Elisa Bertino. 2019. Privacy Attacks to the 4G and 5G

Cellular Paging Protocols Using Side Channel Information. (2019).
[17] Motorola Inc. [n.d.]. Motorola AT Command Set. https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/

wiki/Motorola_phone_AT_commands.html.
[18] Multi-Tech Systems Inc. [n.d.]. AT Commands For CDMA Wireless Modems. https://canarysystems.com/downloads/documentation/

third_party_documentation/CDMA_AT_Commands.pdf.
[19] Multi-Tech Systems Inc. [n.d.]. EVDO and CDMA AT Commands Reference Guide. https://www.multitech.com/documents/publications/

manuals/s000546.pdf.
[20] Sony Mobile Communications Inc. [n.d.]. Sony Ericsson AT Command set. https://www.activexperts.com/sms-component/at/

sonyericsson/.
[21] ETSI (European Telecommunications Standards Institute). [n.d.]. Digital cellular telecommunications system (Phase 2+); AT Command

set for GSM Mobile Equipment (ME) (3GPP TS 07.07 version 7.8.0 Release 1998). https://www.etsi.org/deliver/etsi_ts/100900_100999/
100916/07.08.00_60/ts_100916v070800p.pdf.

[22] ETSI (European Telecommunications Standards Institute). [n.d.]. Digital cellular telecommunications system (Phase 2+) (GSM); Universal
Mobile Telecommunications System (UMTS); LTE; AT command set for User Equipment (UE) (3GPP TS 27.007 version 13.6.0 Release 13).
https://www.etsi.org/deliver/etsi_ts/127000_127099/127007/13.06.00_60/ts_127007v130600p.pdf.

[23] ETSI (European Telecommunications Standards Institute). [n.d.]. Digital cellular telecommunications system (Phase 2+); Specification of
the Subscriber Identity Module -Mobile Equipment (SIM-ME) interface (3GPP TS 51.011 version 4.15.0 Release 4). https://www.etsi.org/
deliver/etsi_TS/151000_151099/151011/04.15.00_60/ts_151011v041500p.pdf.

[24] ETSI (European Telecommunications Standards Institute). [n.d.]. Digital cellular telecommunications system (Phase 2+), Universal
Mobile Telecommunications System UMTS, LTE, AT command set for User Equipment UE. https://www.etsi.org/deliver/etsi_ts/127000_
127099/127007/10.03.00_60/ts_127007v100300p.pdf.

[25] ETSI (European Telecommunications Standards Institute). [n.d.]. Digital cellular telecommunications system (Phase 2+); Use of Data
Terminal Equipment - Data Circuit terminating; Equipment (DTE - DCE) interface for Short Message Service (SMS) and Cell Broadcast
Service (CBS) (GSM 07.05 version 5.3.0). https://www.etsi.org/deliver/etsi_gts/07/0705/05.03.00_60/gsmts_0705v050300p.pdf.

[26] Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino. 2019. Opening Pandora’s Box through ATFuzzer:
Dynamic Analysis of AT Interface for Android Smartphones. In Proceedings of the 35th Annual Computer Security Applications Conference
(San Juan, Puerto Rico) (ACSAC ’19). Association for Computing Machinery, New York, NY, USA, 529–543. https://doi.org/10.1145/
3359789.3359833

[27] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating Fuzz Testing. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 2123–2138.
https://doi.org/10.1145/3243734.3243804

[28] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz: Automatically Generating Pathological Inputs. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam, Netherlands) (ISSTA 2018).
ACM, New York, NY, USA, 254–265. https://doi.org/10.1145/3213846.3213874

[29] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation Strategy for Increasing Greybox Fuzz Testing Coverage. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France) (ASE 2018). ACM,
New York, NY, USA, 475–485. https://doi.org/10.1145/3238147.3238176

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://ftp.icpdas.com/pub/cd/usbcd/napdos/3g_modem/gtm-203m-3gwa/manual/gtm-203m-3gwa_atcommands_manual.pdf
http://ftp.icpdas.com/pub/cd/usbcd/napdos/3g_modem/gtm-203m-3gwa/manual/gtm-203m-3gwa_atcommands_manual.pdf
https://doi.org/10.1109/SP.2018.00040
https://www.docdroid.net/dxKUj5c/attacking-nexus-6-6p-custom-bootmodes.pdf
https://www.docdroid.net/dxKUj5c/attacking-nexus-6-6p-custom-bootmodes.pdf
https://gitlab.com/akihe/radamsa
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Motorola_phone_AT_commands.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Motorola_phone_AT_commands.html
https://canarysystems.com/downloads/documentation/third_party_documentation/CDMA_AT_Commands.pdf
https://canarysystems.com/downloads/documentation/third_party_documentation/CDMA_AT_Commands.pdf
https://www.multitech.com/documents/publications/manuals/s000546.pdf
https://www.multitech.com/documents/publications/manuals/s000546.pdf
https://www.activexperts.com/sms-component/at/sonyericsson/
https://www.activexperts.com/sms-component/at/sonyericsson/
https://www.etsi.org/deliver/etsi_ts/100900_100999/100916/07.08.00_60/ts_100916v070800p.pdf
https://www.etsi.org/deliver/etsi_ts/100900_100999/100916/07.08.00_60/ts_100916v070800p.pdf
https://www.etsi.org/deliver/etsi_ts/127000_127099/127007/13.06.00_60/ts_127007v130600p.pdf
https://www.etsi.org/deliver/etsi_TS/151000_151099/151011/04.15.00_60/ts_151011v041500p.pdf
https://www.etsi.org/deliver/etsi_TS/151000_151099/151011/04.15.00_60/ts_151011v041500p.pdf
https://www.etsi.org/deliver/etsi_ts/127000_127099/127007/10.03.00_60/ts_127007v100300p.pdf
https://www.etsi.org/deliver/etsi_ts/127000_127099/127007/10.03.00_60/ts_127007v100300p.pdf
https://www.etsi.org/deliver/etsi_gts/07/0705/05.03.00_60/gsmts_0705v050300p.pdf
https://doi.org/10.1145/3359789.3359833
https://doi.org/10.1145/3359789.3359833
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3238147.3238176

1:28 • Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa Bertino

[30] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu, and Alwen Tiu. 2017. Steelix: Program-state Based
Binary Fuzzing. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). ACM, New York, NY, USA, 627–637. https://doi.org/10.1145/3106237.3106295

[31] Yuwei Li, Shouling Ji, Chenyang Lv, Yuan Chen, Jianhai Chen, Qinchen Gu, and Chunming Wu. 2019. V-Fuzz: Vulnerability-Oriented
Evolutionary Fuzzing. CoRR abs/1901.01142 (2019). arXiv:1901.01142 http://arxiv.org/abs/1901.01142

[32] Angela Lonzetta, Peter Cope, Joseph Campbell, Bassam Mohd, and Thaier Hayajneh. 2018. Security vulnerabilities in Bluetooth
technology as used in IoT. Journal of Sensor and Actuator Networks 7, 3 (2018), 28.

[33] Huawei Technologies Co. Ltd. [n.d.]. HUAWEI MU609 HSPA LGA Module Application Guide. https://www.paoli.cz/out/media/
HUAWEI_MU609_HSPA_LGA_Module_Application_Guide_V100R002_02(1).pdf.

[34] Ulrike Meyer and Susanne Wetzel. 2004. A man-in-the-middle attack on UMTS. In Proceedings of the 3rd ACM workshop on Wireless
security. ACM, 90–97.

[35] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of the Reliability of UNIX Utilities. Commun. ACM 33, 12
(Dec. 1990), 32–44. https://doi.org/10.1145/96267.96279

[36] Collin Mulliner and Charlie Miller. 2009. Fuzzing the Phone in your Phone (Black Hat USA 2009).
[37] NIST (National Institute of Standards and Technology). [n.d.]. CVE-2016-4030. https://nvd.nist.gov/vuln/detail/CVE-2016-4030.
[38] NIST (National Institute of Standards and Technology). [n.d.]. CVE-2016-4031. https://nvd.nist.gov/vuln/detail/CVE-2016-4031.
[39] NIST (National Institute of Standards and Technology). [n.d.]. CVE-2016-4032. https://nvd.nist.gov/vuln/detail/CVE-2016-4032.
[40] NIST (National Institute of Standards and Technology). [n.d.]. CVE-2019-16400. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2019-16400.
[41] NIST (National Institute of Standards and Technology). [n.d.]. CVE-2019-16401. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2019-16401.
[42] André Pereira, Manuel Correia, and Pedro Brandão. 2014. Charge your device with the latest malware.. In BlackHat Europe.
[43] André Pereira, Manuel Correia, and Pedro Brandão. 2014. USB Connection Vulnerabilities on Android Smartphones: Default and

Vendors’ Customizations. In Communications and Multimedia Security, Bart De Decker and André Zúquete (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 19–32.

[44] André Pereira, Manuel Correia, and Pedro Brandão. 2014. USB connection vulnerabilities on android smartphones: Default and vendors’
customizations. In IFIP International Conference on Communications and Multimedia Security. Springer, 19–32.

[45] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017. SlowFuzz: Automated Domain-Independent Detection of
Algorithmic Complexity Vulnerabilities. CoRR abs/1708.08437 (2017). arXiv:1708.08437 http://arxiv.org/abs/1708.08437

[46] Van-Thuan Pham, Marcel Böhme, Andrew E. Santosa, Alexandru Razvan Caciulescu, and Abhik Roychoudhury. 2018. Smart Greybox
Fuzzing. CoRR abs/1811.09447 (2018). arXiv:1811.09447 http://arxiv.org/abs/1811.09447

[47] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos. 2017. Vuzzer: Application-aware
evolutionary fuzzing. In Proceedings of the Network and Distributed System Security Symposium (NDSS).

[48] P. Roberto and F. Aristide. 2014. Modem interface exposed via USB.. In BlackHat Europe. https://github.com/ud2/advisories/tree/master/
android/samsung/nocve-2016-0004.

[49] J. Ruderman, G. Kwong, C. Holler, J. de Mooij, D. Keeler, J. Schwartzentruber, and The SpiderMonkey. [n.d.]. jsfunfuzz [online].
https://github.com/MozillaSecurity/funfuzz/tree/master/src/funfuzz/js/jsfunfuzz.

[50] David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pöpper. [n.d.]. Breaking LTE on layer two.
[51] Mike Ryan. 2013. Bluetooth: With low energy comes low security. In Presented as part of the 7th {USENIX} Workshop on Offensive

Technologies.
[52] SIMCom. [n.d.]. AT Command Set SIMCOM-SIM5320-ATCEN-V2.02. https://cdn-shop.adafruit.com/datasheets/SIMCOM_SIM5320_

ATC_EN_V2.02.pdf.
[53] PEACH TECH. [n.d.]. Peach Fuzzer Platform [online].
[54] Wireless Solutions Telit. [n.d.]. AT Commands Reference Guide. https://www.telit.com/wp-content/uploads/2017/09/Telit_AT_

Commands_Reference_Guide_r24_B.pdf.
[55] Dave (Jing) Tian, Grant Hernandez, Joseph I. Choi, Vanessa Frost, Christie Raules, Patrick Traynor, Hayawardh Vijayakumar, Lee

Harrison, Amir Rahmati, Michael Grace, and Kevin R. B. Butler. 2018. ATtention Spanned: Comprehensive Vulnerability Analysis of
AT Commands Within the Android Ecosystem. In 27th USENIX Security Symposium (USENIX Security 18). Baltimore, MD, 273–290.
https://www.usenix.org/conference/usenixsecurity18/presentation/tian.

[56] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. 2016. IFuzzer: An Evolutionary Interpreter Fuzzer Using Genetic
Programming. In Computer Security – ESORICS 2016, Ioannis Askoxylakis, Sotiris Ioannidis, Sokratis Katsikas, and Catherine Meadows
(Eds.). Springer International Publishing, Cham, 581–601.

[57] J. Wang, B. Chen, L. Wei, and Y. Liu. 2017. Skyfire: Data-Driven Seed Generation for Fuzzing. In 2017 IEEE Symposium on Security and
Privacy (SP). 579–594. https://doi.org/10.1109/SP.2017.23

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3106237.3106295
https://arxiv.org/abs/1901.01142
http://arxiv.org/abs/1901.01142
https://www.paoli.cz/out/media/HUAWEI_MU609_HSPA_LGA_Module_Application_Guide_V100R002_02(1).pdf
https://www.paoli.cz/out/media/HUAWEI_MU609_HSPA_LGA_Module_Application_Guide_V100R002_02(1).pdf
https://doi.org/10.1145/96267.96279
https://nvd.nist.gov/vuln/detail/CVE-2016-4030
https://nvd.nist.gov/vuln/detail/CVE-2016-4031
https://nvd.nist.gov/vuln/detail/CVE-2016-4032
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16400
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16400
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16401
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16401
https://arxiv.org/abs/1708.08437
http://arxiv.org/abs/1708.08437
https://arxiv.org/abs/1811.09447
http://arxiv.org/abs/1811.09447
https://github.com/ud2/advisories/tree/master/android/samsung/nocve-2016-0004
https://github.com/ud2/advisories/tree/master/android/samsung/nocve-2016-0004
https://github.com/MozillaSecurity/funfuzz/tree/master/src/funfuzz/js/jsfunfuzz
https://cdn-shop.adafruit.com/datasheets/SIMCOM_SIM5320_ATC_EN_V2.02.pdf
https://cdn-shop.adafruit.com/datasheets/SIMCOM_SIM5320_ATC_EN_V2.02.pdf
https://www.telit.com/wp-content/uploads/2017/09/Telit_AT_Commands_Reference_Guide_r24_B.pdf
https://www.telit.com/wp-content/uploads/2017/09/Telit_AT_Commands_Reference_Guide_r24_B.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/tian
https://doi.org/10.1109/SP.2017.23

ATFuzzer: Dynamic Analysis of AT Interface for Android Smartphones • 1:29

[58] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2018. Superion: Grammar-Aware Greybox Fuzzing. CoRR abs/1812.01197 (2018).
arXiv:1812.01197 http://arxiv.org/abs/1812.01197

[59] Wikipedia. [n.d.]. Wikipedia. https://en.wikipedia.org/wiki/Hayes_command_set.
[60] Christos Xenakis and Christoforos Ntantogian. 2015. Attacking the baseband modem of mobile phones to breach the users’ privacy and

network security. In Cyber Conflict: Architectures in Cyberspace (CyCon), 2015 7th International Conference on. IEEE, 231–244.
[61] Christos Xenakis, Christoforos Ntantogian, and Orestis Panos. 2016. (U) SimMonitor: A mobile application for security evaluation of

cellular networks. Computers & Security 60 (2016), 62–78.
[62] M. Zalewski. [n.d.]. American fuzzy lop. [online]. http://lcamtuf.coredump.cx/afl/.
[63] Michal Zalewski. [n.d.]. Mangleme [Online]. https://github.com/WebKit/webkit/tree/master/Tools/mangleme.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://arxiv.org/abs/1812.01197
http://arxiv.org/abs/1812.01197
https://en.wikipedia.org/wiki/Hayes_command_set
http://lcamtuf.coredump.cx/afl/
https://github.com/WebKit/webkit/tree/master/Tools/mangleme

	Abstract
	1 Introduction
	2 Background
	2.1 AT Commands
	2.2 AT Interfaces for Smartphones
	2.3 Issuing AT Commands Over Bluetooth and USB
	2.4 AT Commands and Their Grammars

	3 Overview of Our Approach
	3.1 Threat Model
	3.2 Problem Statement
	3.3 Running Example
	3.4 Overview of ATFuzzer

	4 Detailed Design of ATFuzzer
	4.1 AT Grammar Extractor
	4.2 Evolution Module
	4.3 Evaluation Module

	5 Evaluation
	5.1 Experiment Setup
	5.2 Evaluation Criteria
	5.3 Findings Over Bluetooth (RQ1)
	5.4 Findings over USB (RQ2)

	6 Related Work
	7 Discussion
	8 Conclusion and Future Work
	References

