
Analyzing the Attack Landscape of Zigbee-enabled IoT Systems
and Reinstating Users’ Privacy

Weicheng Wang
wang3623@purdue.edu

Purdue University

Fabrizio Cicala
fcicala@purdue.edu
Purdue University

Syed Rafiul Hussain
hussain1@purdue.edu
Purdue University

Elisa Bertino
bertino@purdue.edu
Purdue University

Ninghui Li
ninghui@cs.purdue.edu

Purdue University

Abstract
Zigbee network security relies on symmetric cryptography based
on a pre-shared secret. In the current Zigbee protocol, the network
coordinator creates a network key while establishing a network. The
coordinator then shares the network key securely, encrypted under
the pre-shared secret, with devices joining the network to ensure
the security of future communications among devices through the
network key. The pre-shared secret, therefore, needs to be installed
in millions or more devices prior to deployment, and thus will be
inevitably leaked, enabling attackers to compromise the confiden-
tiality and integrity of the network. To improve the security of
Zigbee networks, we propose a new certificate-less Zigbee join-
ing protocol that leverages low-cost public-key primitives. The
new protocol has two components. The first is to integrate Elliptic
Curve Diffie-Hellman key exchange into the existing association
request/response messages, and to use this key both for link-to-link
communication and for encryption of the network key to enhance
privacy of user devices. The second is to improve the security of the
installation code, a new joining method introduced in Zigbee 3.0
for enhanced security, by using public key encryption. We analyze
the security of our proposed protocol using the formal verification
methods provided by ProVerif, and evaluate the efficiency and ef-
fectiveness of our solution with a prototype built with open source
software and hardware stack. The new protocol does not introduce
extra messages and the overhead is as lows as 3.8% on average for
the join procedure.

CCS Concepts
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

Keywords
IoT, Zigbee, Attacks, Privacy, ECDH, Key Management, Formal
Analysis

ACM Reference Format:
WeichengWang, Fabrizio Cicala, Syed Rafiul Hussain, Elisa Bertino, andNinghui
Li. 2020. Analyzing the Attack Landscape of Zigbee-enabled IoT Systems

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 13th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec ’20), July 8–10, 2020,
Linz (Virtual Event), Austria, https://doi.org/10.1145/3395351.3399349.

and Reinstating Users’ Privacy. In 13th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec ’20), July 8–10, 2020, Linz
(Virtual Event), Austria. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3395351.3399349

1 Introduction
In recent years, Internet-of-things (IoT) devices have become ubiq-
uitous. According to SafeAtLast statistics [5], in 2019, there were
about 26.6 billion active IoT devices, and the number is expected to
reach 30 billion within 2020. The constant spreading of IoT tech-
nologies and the increasing demand led to the development of
several IoT standards. Among these, Zigbee [3] is one of the earliest
and most widespread standards. According to the official documen-
tation, Zigbee [2] was developed as a “very low-cost, very low-
power-consumption, two-way, wireless communications standard”,
designed to be embedded in building automation and industrial
controls. The standard is implemented in a large number of different
devices that range from home automation products to industry-
related devices, such as smart lights, door locks, cameras, smart
sensors and detectors (e.g., smoke and fire detectors). As this con-
tinuous growth is transforming our houses and work environments
into highly connected networks of smart devices, the security and
privacy aspects of the Zigbee protocol are becoming more impor-
tant and urgent. Indeed, as the connectivity increases, so does the
risk of vulnerability points that can be exploited by malicious users.

Problem and scope. Zigbee deploys cryptographic protocols to
achieve security and privacy objectives. However, existing protocols
are based on a faulty adversary model in which all benign devices
share some secret master key, not accessible to the attacker. To
guarantee interoperability among devices from different vendors
and manufacturers, every device must be provided with the pre-
shared secret. Any secret key that needs to be shared by a large
number of devices will inevitably be reconstructed and become
public knowledge. An attacker with the secret key can destroy
the security of any Zigbee network it aims to attack. While a new
security feature in Zigbee 3.0 called installation code helps alleviate
this problem; installation code still uses symmetric cryptography.
As a result, installation code is vulnerable to attackers who control
devices that can read the installation code. In this paper, we propose
enhancements to the current version of the Zigbee protocol to
address these vulnerabilities.

Challenges. While Zigbee allows the creation of complex IoT
networks with low-cost smart devices, the limited capabilities and

https://doi.org/10.1145/3395351.3399349
https://doi.org/10.1145/3395351.3399349
https://doi.org/10.1145/3395351.3399349

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Wang et al.

resources, and the automation requirements present stringent con-
straints over the security protocols. In the following, we discuss two
main challenges in designing a solid enhancement to the current
Zigbee protocol.

(1) Limited capabilities. Low power consumption is a fundamental
requirement for IoT devices, as it leads to extended durability and
reduced energy usage, which allows customers to save money and
avoid buying new devices frequently. To achieve low cost and low
power consumption, Zigbee devices (e.g., light bulbs or electrical
sockets) have limited storage and computational capabilities, and, in
most cases, lack input interfaces. The lack of computational power
poses constraints on the cryptographic primitives that suit the
Zigbee environment, as it is necessary to choose efficient solutions.
Additionally, given the restrained input capabilities, security and
authentication models based on user-inserted passwords, such as
the WiFi model, are not feasible, as they require an input interface.

(2) Efficiency. One of the main benefits of the IoT networks, such
as Zigbee, is communication efficiency. IoT devices are designed to
transmit small-size packets that only contain short and specific com-
mands, and the number of messages exchanged between devices is
kept low (IEEE 802.15.4 limits each message to 127 bytes). Therefore,
our goal is to design a mechanism that improves the security of
the current protocol without adding any additional procedure or
message, while staying under the packet size limit.

Approach. To address the vulnerabilities of the Zigbee protocol
while meeting the constraints imposed by the IoT environment,
we propose to enhance the Zigbee protocol through two main
changes. First, we propose to use the Elliptic Curve Diffie Hellman
(ECDH) [23] algorithm in the key exchange procedure to establish
a link key between each pair of devices that directly communicate
with each other. This eliminates the need for a pre-shared secret
among the devices, and allows each device-to-device communica-
tion link to be secured with a different encryption key established
from two ephemeral secrets. In other words, no other device, be-
sides those involved in the communication, has access to the ECDH
key. This approach secures the Zigbee network against passive
adversaries, but remains vulnerable to active attackers (e.g., man-in-
the-middle). Second, we propose to improve the installation code
mechanism introduced in Zigbee 3.0 by using a public key-based
scheme, enabling secure authentication of specific devices joining
a user’s network, even against active adversaries.

Contribution. In summary, the paper has the following contribu-
tion:

(1) We analyze the attack landscape for the current Zigbee stan-
dard.

(2) We propose enhancements to the protocol to address the at-
tacks. The main goal is to improve the security of the Zigbee
standard, without drastically impacting the performances.

(3) We evaluate the proposed enhancements in two ways. First,
we use ProVerif to verify the correctness of the proposed
protocols. Second, we implement and deploy the new pro-
tocol to evaluate and compare it with the Zigbee standard
implementations in terms of time delay, memory usage, and
message size increment.

2 Background
Zigbee is a low-cost, low-power-consumption protocol that sup-
ports communication among devices via radio transmission. In this
section, we will introduce the roles of devices in Zigbee network,
the architecture of Zigbee and security related protocols in Zigbee.

2.1 Zigbee devices
A Zigbee network contains three types of devices with specific roles
in the network as described below.

Coordinator. Each Zigbee network has a single coordinator, which
establishes the network and allows other devices to join. The coor-
dinator assigns a unique identifier called Personal Area Network
ID (PAN ID) to the network and runs an application called the Zig-
bee Trust center, which manages the routing tables of the network.
The coordinator has an out-of-band channel (e.g., Wiress LAN) to
communicate with the cloud, the user, or both.

End device. End devices are the end points on the network. They
provide functions, such as detecting the sounds, monitoring the
temperature, locking or unlocking the doors, etc.

Router. Routers forward the messages between the end devices
and the coordinator. In order to do that, they maintain routing
tables and forward messages. End devices can also perform the role
of routers, forwarding messages between other devices and the
coordinator.

Figure 1: Zigbee protocol architecture.

2.2 Zigbee Network Architecture
Zigbee protocol stack is a layered stack. From the bottom to the
top, the layers are Physical, Media Access Control (MAC), Net-
work and Application as shown in Figure 1. Physical and MAC
layers are defined by the IEEE 802.15.4 standard. Similar to other
protocols, the aim of these two layers is to support packets trans-
mission and the payloads/contents added by these two layers are
unencrypted. The network layer is responsible for network layer
packets forwarding, whereas the application (support) layer han-
dles the concrete application-level commands, such as open/close
door lock. The contents of these two layers are encrypted using
AES-CCM* algorithm.

2.3 Zigbee Security Keys
There are several types of keys in the Zigbee network. The Network
Key (NWK) is a 128-bit secret randomly generated by the coordina-
tor when it forms the network. When a device joins the network,
the device receives the NWK, stores it in a specific key table, and
updates it as needed. Devices use the NWK to achieve message
secrecy and authenticate the network layer payload through the
AES-CCM* cryptographic algorithm.

Analyzing the Attack Landscape of Zigbee-enabled IoT Systems and Reinstating Users’ Privacy WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Figure 2: Join procedure of the Zigbee Network. Dashed lines rep-
resent unencrypted messages, whereas solid lines represent en-
crypted messages.

Each device uses one of the Trust Center Link Keys (TCLKs)
to communicate with the coordinator during the initial joining
procedure. The NWK is delivered to the device under the encryption
of a TCLK. All Zigbee devices uses a Global Master Key (GMK),
whose value is derived from the string “ZigbeeAlliance09”, as one
of its TCLKs. Since GMK is public knowledge, some vendors choose
another key and use it as an additional TCLK for its devices. Some
of these keys have also been leaked to the public.

The Zigbee protocol provides the possibility to secure the com-
munication between a pair of devices individually using a key
specific to the connection (called Link Key) instead of the NWK. If
such a key is employed, other nodes cannot decrypt the content of
the messages. In the current Zigbee stack profile, the usage of link
keys is optional, as the NWK can be used both for network layer
and for application layer encryption. Currently, most commercial
Zigbee devices only use link key in NWK exchanging process and
then use NWK to encrypt all the messages in default [32] [12].

2.4 Join Procedure
When a user wants to add a new end device to an existing Zig-
bee network, the user sends a command (through an out-of-band
channel) to the coordinator, which turns the network’s state from
closed to open. In closed state, no new device is allowed to join
the network, whereas, after the network is switched to open state,
the coordinator broadcasts a permit_join_responsemessage, which
notifies all devices that the network is in open state and new joining
requests are accepted.

When an end device wants to join a Zigbee network, it keeps
broadcasting an unencrypted beacon_request message, until it re-
ceives a beacon message as response. When a router receives a
beacon_request, if the network is in the open state, it broadcasts a
beacon message with the association permit sub-field set to 1
(permit association). Router’s MAC address and Personal Area
Network (PAN) ID are also included in the beacon message.

After receiving a permit association from the router, the end
device starts establishing a connection by sending an association_request
message to the router, which respondswith an association_response
message. Both are unencrypted unicast messages. Then the router

Attacker with
TCLK

Closed network

Attacker with
Link keys

Closed network

Attacker with
Link keys

Open network

Communication
Disruption

Privacy
leakage

Fake
device

injection

Device
control

User opens/closes
the network

Attacker decrypts
transport key message

TCLK exposedTCLK exposed

Attacker decrypts
link key
message

User opens/closes
the network

User opens/closes
the network

Attacker with no keys
Closed network / Open network

Attacker with
TCLK

Open network

Attacker with
NKW

Open network

Attacker with
NKW

Closed network

Figure 3: Zigbee attacks graph. Each layer identifies a set of infor-
mation possessed by the adversary and the type of attack it can per-
form. An adversary with stronger information can perform attacks
that require less information.

sends an update_devicemessage to the coordinator for authorizing
the new device to join the network. If the coordinator authorizes
the joining, it transmits a transport_key message, which encrypts
the NWK under the TCLK, via the router to the end device. After
receiving and decrypting the message, the end device joins the
network and can use the NWK in future communications.

3 Characterizing Attack Landscape of Zigbee
Network

As discussed in Section 2.3, messages between coordinators and end
devices are encrypted under the NWK. As a result, an attacker that
possesses the NWK can eavesdrop on every message transmitted
within the network, as well as disrupt the functionalities of the
network by sending forged messages. In the rest of this section,
we define the adversary model and explore the attack landscape
within such a model. We organize our discussions based on whether
the attacker can obtain the NWK or not. In Figure 3 we provide a
graphic representation of the overall attack landscape.

3.1 Adversary Model
The adversary model we consider is compliant with the Dolev-Yao
model [10]. Namely, the adversary can read, modify, delete, and
inject messages on the communication channel, and impersonate
legitimate devices in the network. However, the adversary adheres
to all cryptographic assumptions.

Moreover, we make two assumptions over the devices in the
network: (1) the devices controlled by the user are benign (i.e., the
devices are not compromised with malware or backdoor that can
be exploited by an attacker); (2) the adversary can bring malicious

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Wang et al.

devices into the Zigbee network area, and send and receive packets
arbitrarily.

Given such assumptions, we consider two types of attackers:
passive and active. A passive attacker can set up a sniffer in the
target’s Zigbee network that can collect all the Zigbee packets
transmitted over the air. The attacker can then analyze the packets
and retrieve information about the devices in the network. An
active attacker can bring a malicious device that can send Zigbee
packets. The malicious device can act as an end device to join the
network, or act as a coordinator and set up another Zigbee network.
It can also spoof existing devices by forging the public identity (like
MAC address, PAN ID) to deceive the other devices in the network.

In this paper, we do not consider an adversary that exploits other
security aspects of Zigbee systems, such as compromising a device’s
pre-shared secret or the installation code through physical or re-
mote access during manufacturing or post-manufacturing time, and
denial-of-service or resource exhaustion by jamming the device’s
communication with arbitrary physical or network layer messages.

3.2 Attackers with no NWK
We first consider attackers who are unable to obtain the NWK of a
Zigbee network. This happens in two situations. The first is when
the coordinator of the Zigbee network uses a TCLK that the attacker
does not have. For instance, when the coordinator uses a vendor-
specific TCLK that the attacker does not know. This means that the
attacker cannot decrypt the transport_key message and obtain the
NWK. The second is when the NWK is never transmitted while the
attacker can eavesdrop on the communication. For instance, the
network can be established before any attacker-controlled device
is present, or the network may never be in open state after the
attacker is present.

Without access to the NWK, the attacker can still retrieve ad-
dressing information of the devices in the network. In fact, through
passive sniffing of regular Zigbee packets, the attacker can obtain
MAC and network addresses of the devices as well as the PAN ID.
The attacker can also retrieve the Extended PAN ID (EPID) of the
network. For instance, the attacker can broadcast beacon requests
and wait for the beacon response, which contains the EPID, along
with the notification related to the state of the network. Exploiting
this information, an adversary can try to impersonate one of the
devices, or even the coordinator, and send forged messages in order
to disrupt the normal communication flow.

3.3 Attacker with the NWK
An attacker can obtain the NWK if the following two conditions
are both satisfied. First, the attacker knows the TCLK used by the
coordinator, either because the coordinator uses the GMK (which
is public knowledge) as the TCLK, or because the vendor-specific
TCLK used by the coordinator has already been exposed. Indeed,
in many inter-manufacturer device communication, the devices
still employ the GMK to perform the join procedure. In addition,
an attacker could retrieve a private TLCK by reverse engineer any
authorized Zigbee device or by external sources if the key is leaked
(for instance, the ZLL Master key was leaked in March 2015 [22]).
Hence, we can assume that an adversary with reasonable means can
obtain either the GMK or the TCLK. Second, the attacker is present

when the network is in the open state, accepting new devices to
join the network. If an attacker appears when the network is in
the closed state, the attacker can either monitor the network state
and wait until it is changed to the open state by the user, or try to
perform some actions (through some out-of-band channel) to cause
the user to open the network. When the above two conditions are
satisfied, an active adversary can exploit the knowledge of both the
TCLK and the NWK to perform several attacks that we categorize
into three main categories:

• A1 User privacy leakage
• A2 User device control
• A3 Fake device injection

In the following, we discuss these classes of attacks separately.

A1. User privacy breaches. The attacker decrypts every message
transmitted inside the victim’s Zigbee network with the NWK and
accesses their content. This may include sensitive information re-
lated to door locks, cameras and sensors, security tools such as
gas/smoke detectors, alarms. Thus, the adversary has access to a
broad set of data that could be exploited for further attacks. Nonethe-
less, since different end devices, manufactured by different vendors,
use the same NWK key to communicate with the coordinator in the
same Zigbee network, this potentially allows an end device (e.g.,
smart light) to learn the secure communication between the con-
troller and other devices, such as smart camera and door lock. This
violates device’s data privacy and thus enables a compromised or
honest but curious device to expose other devices’ communication
to an adversary.

A2. User device control. The attacker forges and spreads valid
packets through the network. Knowing the NWK, the attacker can
impersonate the coordinator of the network, by setting up a fake de-
vice with the same MAC and network addresses as the coordinator,
and send specially crafted commands to a target device. Since the
messages are correctly encrypted, the target device accepts them
as valid and executes the commands. To understand the severity of
this vulnerability, we provide two example scenarios. In the first
scenario, the adversary takes control over a smart door lock and
can open/close the device at any time. In this case, the attacker can
lock a victim out of the house or open the main door while no one
is inside. In the second scenario, the attacker takes control of secu-
rity devices such as sensors and cameras. In this case, the attacker
has access to sensitive information about the victim that could be
further exploited for monetary purposes. As the attacker can gain
control over single devices, he can also extend his attack scope and
aim for the entirety of the Zigbee network. If such an event were
to happen, the victim’s network would be utterly compromised.

A3. Fake device injection. For this type of attack, the attacker only
needs the TCLK, but requires to be present when the network is in
open state. Since the coordinator does not verify the identity of a
joining device, an attacker that is present in an open state network
can join the network with a fake device. The knowledge of the
TCLK allows the attacker to correctly complete the join procedure
and receive the NWK transport message which he can decrypt with
the TCLK. Once the attacker has joined the victim’s network, he
can silently monitor the network and obtain sensitive information.

Analyzing the Attack Landscape of Zigbee-enabled IoT Systems and Reinstating Users’ Privacy WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Moreover, after obtaining the NWK, the attacker can perform the
attacks discussed in A1 and A2.

4 Analyzing the Solution Space
In order to enhance the security of the Zigbee protocols, the Zigbee
Alliance has introduced additional security features (e.g., installa-
tion code), and previous researchers have also proposed crypto-
graphic enhancements to the protocols. However, such solutions
either fail to adequately defend against the attacks we discussed in
the previous section or exceed the resource constraints of typical
Zigbee devices. In the following, we discuss some of the current
solutions and their limitations.

4.1 Security features by Zigbee Alliance
Wefirst discuss the security features outlined by the Zigbee Alliance
and their limitations.

Zigbee Link keys. According to the Zigbee specification [2], an
end device can request the coordinator to generate a link key to be
used between the requesting device and a neighboring end device.
The coordinator will send the link key encrypted under the NWK to
both devices, which can use the link key to encrypt communications
between them. However, since the message that carries the link key
is encrypted with the NWK, an attacker who has access to the NWK
can easily obtain the link key and perform attacks, such as sensitive
data theft (A1) and device control through forged messages (A2).
Thus, although unique link keys allow encrypting each device-to-
device communications, the key exchanging mechanism fails to
prevent third devices in the network, both benign and malicious,
from retrieving them. In summary, link keys fail to improve the
security of the protocol.

Installation code. A key challenge in Zigbee security is how to
authenticate a device that is about to join a network. When a user
intends to add a device to a network, how does the coordinator
distinguish that device from other (potentially malicious) devices
that are also within the communication range. To solve this problem,
Zigbee 3.0 introduces a new join mechanism called installation code
to enable more control over the joining devices. Zigbee installation
code, also referred to as install code, is an 18-byte value (a 16-byte
random key + 2-byte CRC) put on the outside of a device (e.g., in the
form of a QR code). The code is also stored inside the device. The
user can scan the code using a smartphone application, which then
sends the code to the coordinator. According to the specifications
([18]), the installation code is used as a pre-configured secret, from
which a link key is derived through the AES-MMO algorithm. The
link key is then used to encrypt the initial transport_key message
from the coordinator to the device during the join procedure. Only
devices that know the code can decrypt the transport_keymessage
and join the network.

While enabling the identification of a joining device, the instal-
lation code mechanism, however, still suffers from several vulner-
abilities. First, as the installation code is printed on the outside
of a device, an attacker who has a malicious device in the same
environment may use a camera or scanner to obtain the installation
code, and derive the secret key. The attacker is then able to decrypt
the transport key message and obtain the NWK, which leads to

A1 and A2. Second, even if the attacker is not present at the join-
ing time, the mechanism fails to provide forward secrecy, which
means that an adversary can log the encrypted communication
and later retrieve the installation code and decrypt the messages
(for instance, to perform behavioral analysis). In conclusion, the
installation code in the current standard does not provide adequate
protection in terms of Zigbee security and privacy vulnerabilities.

Touchlink. Touchlink [2] is another authentication procedure
that is included in the current Zigbee standard. In Touchlink, the
user places a new connecting end device within a short distance
from the coordinator so that the latter can verify its identity. In
other words, Touchlink provides an authentication scheme based on
vicinity. Although this approach seems reasonable in the context of
domestic networks, it is not as acceptable in the context of industrial
networks in which the end device could require to be located at a
considerable distance from the controller.

4.2 PKI-based Proposals
In the following, we discuss why the existing proposals are inade-
quate and fail to mitigate the vulnerabilities in the Zigbee protocol.

Certificate-based model. It is obvious that the root cause of some
of the vulnerabilities in Zigbee is that only symmetric cryptography
is employed. As a result, adding a trusted device to the network
while preventing untrusted devices in the environment to join is
challenging. Some researchers have proposed to solve this problem
using a public key infrastructure (PKI) [24]. In this case, each device
has a pair of public/private key, and a certificate signed by the
manufacturer. During the joining process, the coordinator verifies
the end devices certificate to check whether it is authorized.

The problem of using PKI is that it fails to distinguish the device a
user wants to add to the network, from the billions of other devices
that could be added to the network. In an open ecosystemwithmany
vendors, the number of devices certified through a valid certificate
chain is vast, and it is easy for attackers to have malicious devices
that are certified through certificate chains, either by modifying
the software on a device or by becoming a vendor. Also, there
are challenges in installing the root certificates of all vendors in
resource constrained Zigbee devices at the production phase. This
seriously affects the ubiquity and the re-usability of these devices
when a device wants to communicate with another device but is not
provisioned with the vendor’s root certificate of the other device.

Certificate-less model. Choi et al. [8] and Hassan et al. [15] pro-
posed to use ECDH for secure key distribution and subMAC (con-
structed with selective bits of an HMAC) to prevent MitM attacks.
These proposals, however, have several limitations. First, the at-
tacker can drop the original packets and send the fake ones to carry
out MitM attacks. Second, the attacker can still perform A3 attacks
with their solutions in place since neither the end device nor the
coordinator can identify when the attacker injects a fake device into
the target network. Finally, it is not clear how the secret keys can
play the role of NWK as suggested by their solutions, because NWK
needs to be shared with all devices in a network so that broadcast
messages can be decrypted by every device. If all devices in the
network share the same key, then the protocol is still under attack
of A1, A2 and A3.

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Wang et al.

Unlike certificate-based schemes, Tedeschi et al. [29] proposed a
certificate-less scheme dubbed Like that uses ECDH to create the
session link key, and Domain Authority (DA) to authenticate the
devices. Compared to the previous scheme, LiKE maintains NWK
for broadcast messages, and can prevent attackers’ fake devices
joining the network. This approach, however, fails to identify an
adversary-controlled device impersonating a benign device. In ad-
dition, the effectiveness of this solution depends on the centralized
Domain Authority which is responsible for assigning the initial se-
cret to all Zigbee devices regardless of vendors. Centralized Domain
Authority is, however, impractical due to deployment challenges
and single point of failure.

5 Proposed Defense
Based on the vulnerabilities related to NWK and TCLK, we need
to reconsider how devices in the network share and employ secret
keys. In addition, we also need to consider the rigid constraints
that the Zigbee environment poses over the possible solution space
due to limited devices’ resources and capabilities and efficiency
requirements, although some of them can be relaxedwithout risking
to impact the protocol drastically. Our proposal tries to effectively
respond to the three categories of vulnerabilities A1, A2, and A3.

A1 andA2 are vulnerabilities related to the use of a single shared
NWK to encrypt all the communication in the network. Therefore,
we aim at minimizing the usage of the NWK and introducing link
keys related to specific coordinator-to-device communication. Fur-
thermore, secure agreement on the shared link key should not
depend on the secrecy of the NWK and should provide forward
secrecy. To achieve this goal, we propose to use a key exchange
scheme based on Elliptic Curve Diffie-Hellman (ECDH) during
the join procedure to establish a shared key between each pair of
devices that direct communicate with each other.

Finally, to overcome A3, we propose to improve the installation
code mechanism, already included in the latest Zigbee protocol,
introducing a public/private key scheme, in which the installation
code encodes the end device’s public key. This avoids the risk of
undesired devices to join the network, as the coordinator only
allows devices for which the user has scanned the code. In what
follows, we describe our proposed defense in detail.

ECDH Link keys. Our proposed defence is motivated by two
main flaws of the current protocol:

(1) link keys are exchanged under the encryption of the NWK,
which defeats the purpose of using link keys in the first
place.

(2) the NWK is encrypted with a pre-installed TCLK, which can
be exposed and compromise the entire network;

In order to fix the first flaw, we change the order in which the keys
are exchanged. That is, the link key is exchanged first, and then
it is used to encrypt the NWK in the transport key message. This
approach avoids having private information, such as a link key,
being accessible by virtually every device in the network. However,
it raises the problem of the second point, which is how to exchange
the link keys securely. To achieve such a goal, we eliminate the use
of pre-installed keys, and we introduce ECDH in the key exchange
scheme.

Coordinator End Device

secret α secret β

{Knwk}L

beacon request

beacon

association request | B

association response | A

Device announcement

L = βA = βαG

B = βG

L = αB = αβG

A = αG

G and n are known

save the network key

Figure 4: Join procedure with Elliptic Curve Diffie-Hellman key ex-
change protocol.

Network key. Link keys ensure that each end-to-end communi-
cation privacy is preserved, against either an external or an internal
threat. However, the Zigbee protocol also involves broadcast mes-
sages. Using link keys to encrypt the same message for each device
individually would be too expensive in terms of both resources and
time. Hence, in our model, we maintain the NWK, but, differently
from the current protocol, the key is used only to encrypt/decrypt
broadcast messages. As before, the coordinator provides the NWK
to each new device during the join procedure, but in our proposal
the NWK is encrypted with the link key rather than with the TCLK.
Note that broadcast messages cannot carry commands for a specific
device (e.g., open/close door lock), but only general network-related
information (e.g., changing the network state from open to closed
and vice versa, and device announcement).

5.1 ECDH Key Exchange in Zigbee
ECDH allows two parties to agree on a shared key without trans-
mitting the actual key. Accordingly to the protocol, two Zigbee
devices 𝑑1 and 𝑑2, can share a secret key as follows:

(1) 𝑑1 and𝑑2 have the parameter of the elliptic curve pre-installed,
including the generator point𝐺 , and 𝑛, an integer associated
with the curve;

(2) 𝑑1 generates a random secret integer 𝛼 in the range [1, 𝑛−1]
and computes 𝐴 = 𝛼𝐺 ;

(3) 𝑑2 generates a random secret integer 𝛽 in the range [1, 𝑛−1]
and computes 𝐵 = 𝛽𝐺 ;

(4) 𝑑1 and 𝑑2 exchange 𝐴 and 𝐵;
(5) 𝑑1 and 𝑑2 compute 𝐿1 = 𝛼𝐵 = 𝛼𝛽𝐺 and 𝐿2 = 𝛽𝐴 = 𝛽𝛼𝐺 ,

respectively;
(6) since 𝛼 and 𝛽 are integers, 𝛼𝛽 = 𝛽𝛼 , hence, for the properties

of the elliptic curves, 𝐿1 = 𝐿2 = 𝐿. As a result, 𝑑1 and 𝑑2 now
share a secret key 𝐿.

The shared secret 𝐿 is used as the link key to secure every end-to-
end communication between two devices 𝑑1 and 𝑑2 in the network.

In Figure 4, we show the updated join procedure with ECDH.
The coordinator and the connecting device exchange the values
𝐴 = 𝛼𝐺 and 𝐵 = 𝛽𝐺 . Specifically, 𝐴 and 𝐵 can be included in

Analyzing the Attack Landscape of Zigbee-enabled IoT Systems and Reinstating Users’ Privacy WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

the association_response association response message and the
association_request, respectively so that no additional message is
required during the join procedure. Once the coordinator and the
device have the other party’s value, they can generate the shared
secret key 𝐿. At this point, the coordinator can transmit the NWK
in the transport_key message symmetrically encrypted under 𝐿.
An adversary capable of eavesdropping on the conversation has
no means to retrieve the value of the key 𝐿 and, therefore, cannot
decrypt the NWK. In our new model, the key 𝐿 is employed as link
key, thus, every device in the network (i.e., coordinator, router, or
end device) must generate a different encryption key for each of
the other devices with which it is communicating. This approach
provides the following advantages:

(1) An adversary with the TCLK cannot retrieve the NWK;
(2) An adversary with the NWK cannot compromise any device

since messages are expected to be encrypted with link keys;
(3) Devices inside the network cannot eavesdrop on the com-

munications between other devices.

Security considerations. The key exchange protocol with ECDH
successfully defends the system against A1 and A2 discussed in
Section 3. However, the updated join procedure is still vulnerable to
an adversary that can carry out a man-in-the-middle attack (MitM)
between a coordinator and a joining device. This attack would allow
the adversary to eavesdrop on all the communication between the
two devices, send forged messages, and disrupt the connection.
Given the ECDH key exchange scheme, an MitM attacker, however,
has several limitations and constraints:

• As the communication is over the air, the attacker has to
constantly jam the end device, which would otherwise detect
the presence of a different coordinator in the same network;

• Even if an attacker successfully performs MitM, he can only
compromise one single device;

• The adversary can only hope to perform the attack when
the network is in open state, and it needs to schedule the
messages accurately during the join procedure.

Nonetheless, the described scenario represents an actual vulner-
ability. Moreover, the new scheme based on ECDH does not provide
any defense against A3, which means that an adversary can still
inject fake devices into the network. Thus, we further improve our
solution by leveraging the installation code mechanism.

5.2 Installation code and ECDH key exchange
Given the discussed MitM vulnerability and the lack of an authenti-
cation scheme, we propose to modify the current installation code
mechanism and integrate a public key scheme as follows: each
Zigbee device is provided with a pair of Elliptic Curve public and
private keys, referred to as 𝑝𝑘 and 𝑠𝑘 respectively, and the installa-
tion code on its exterior encodes 𝑝𝑘 (note that with Zigbee 3.0, every
compliant device must support installation code). Hence, during the
join procedure, the coordinator can authenticate each connecting
device with the Elliptic Curve Digital Signature Algorithm (ECDSA)
through the following steps:

(1) The user scans the code on the end device’s exterior through
the smartphone application used to control the coordinator

Coordinator End Device

Open network

User

Beacon request

Beacon

Association_req ||
B || [Association_req || B]sk

Association_resp ||
A || H(A || pk)

Installation code:
verifier pk

{network_key}L

Device announcement

verifier pk
signature sk

secret β => B = βG

secret α => A = αG

Save nwk

Verify Signature

L = αB = αβG L = βA = βαG

Scan device code

Figure 5: Zigbee join procedure with ECDH key exchange protocol
and Public-Key installation code.

device. The coordinator receives the code 𝑝𝑘 from the former
and stores in its memory.

(2) The end device forwards a message digitally signed with 𝑠𝑘
to prove its identity.

(3) The coordinator verifies the signature with 𝑝𝑘 . If the signa-
ture is valid, the coordinator authenticates the end device and
continues with the join procedure. Otherwise, the procedure
is interrupted and the end device is rejected.

This public key-based model can prevent an adversary from inject-
ing a fake end device in the Zigbee network (A3). However, the
model itself, when combined with the current Network key-based
security scheme proposed by Zigbee Alliance, cannot guarantee
perfect forward secrecy. Moreover, an attacker who possesses the
NWK can steal sensitive user data (A1) and take control over target
devices (A2).

Therefore, we propose to combine this new installation code
scheme with our proposed ECDH key exchange procedure.

Public-key installation code and ECDH Link Key exchange. In
order to combine the two solutions, we employ the ECDSA authen-
tication procedure together with the ECDH key exchange within
the Zigbee join procedure. Specifically, we propose to leverage
the installation code to authenticate the association_request mes-
sage and the end device’s ECDH part of the key. Moreover, the
end device can verify that no one tampered with the coordinator’s
association_response message by exploiting the fact that the latter
must know the end device’s EC public key (𝑝𝑘). We present the en-
tire new join procedure in Figure 5. The two crucial steps that differ
from the current version of Zigbee are (1) the association_request
message and (2) the association_response message.
(1) Along with the association_request, the end device also sends
its part of the ECDH key (𝐵 = 𝛽𝐺). As we want the coordinator to
authenticate the device, the latter must also compute the Hash of
the entire message (𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 | |𝐵), sign it with its private

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Wang et al.

key 𝑠𝑘 , and concatenate the signature with the request. Thus, the
coordinator can verify the signature with 𝑝𝑘 and authenticate the
end device.
(2) Similar to the previous case, the coordinator forwards its part
of the ECDH key (𝐴 = 𝛼𝐺) along with the association_response
message. Since this time we want the end device to verify the
coordinator, the latter must also compute the Hash function of
𝐴 concatenated to the end device’s private key 𝑝𝑘 , and send the
result along with the rest of the message. Hence, the end device
can verify the Hash and ensure that the key 𝐴 was not altered, and
the message belongs to the coordinator that possesses 𝑝𝑘 .

Fake coordinator scenario. So far, when we consider an attacker
who is able to inject fake devices into a target network, we have as-
sumed that the injected device is an end device, and the coordinator
of the network is always under control of the user. We now con-
sider the scenario in which the attacker controls a fake coordinator
and tricks a user’s end devices into joining a network setup by it,
rather than the network of the real coordinator. We assume that
our defense has been deployed and is operative, and the adversary
knows the public key 𝑝𝑘 of the target end device. The adversary
sets up a fake coordinator and lets the target device to join in. Since
he knows 𝑝𝑘 , he can correctly perform the join procedure so that
the end device happily joins the fake coordinator. However, for this
attack, the adversary requires strong capabilities, as he needs to
set up a controller with the appropriate configuration and be close
enough for the device to detect it. Moreover, the adversary must
intercept the target device during the join procedure and hope for
the device to join the fake network rather than the legitimate one.
Given these constraints, the attacker with the needed capabilities
can potentially perform the attack. Therefore, in order to protect
end devices from such an event, we exploit the factory state. Ac-
cording to the standard, every device can get back to the original
“factory state”. Hence, we can force the end device to use the in-
stallation code only during the very first join. After the device has
performed the first join procedure, it switches to “user state” and
performs every consecutive join using the last generated link key.
If the join is not possible, the user can reset the device to factory
mode and re-perform the first installation. Such a mechanism forces
the device to use the installation code only in factory mode, that
is, an adversary who knows the public key of the target device can
take control over it only during the very first join procedure, as
every other join will be performed with the secret link key.

6 Formal Security Analysis
In order to verify the correctness of our proposed protocol, we use
ProVerif [6], the state-of-the-art tool for automatic cryptographic
protocol verification. First, we assume that the cryptographic primi-
tives that we leverage are inherently robust. Specifically, we assume
the correctness of four primitives:

• Elliptic curve asymmetric cryptography;
• ECDSA signature-verifier scheme;
• AES-CCM* symmetric encryption;
• Hash function (i.e., pre-image resistance and collision resis-
tance properties).

Given such assumptions, we evaluate our defense with ProVerif
under two scenarios: an adversary that does not possess the target
device’s installation code, and an adversary that possess the target
device’s installation code. The attacker model provided by ProVerif
is compliant with the Dolev-Yao model [10], that is, the attacker
can read, modify, delete, and inject messages on the communication
channel. Therefore, the attacker can obtain all the public values,
such as 𝐴 and 𝐵 (i.e., the partial key of the coordinator and the end
device) and the hash values that are sent in clear. We model all the
messages involved in the new protocol, and we run ProVerif. In both
the scenarios, the attacker can correctly retrieve 𝐴 and 𝐵 but has
no means to access either the link key 𝐿 or the NWK. On the other
hand, the end device receives the NWK correctly. In conclusion, we
formally prove that the protocol we propose is robust against both
a passive or an active adversary that aims at obtaining either the
link key or the NWK.

For comparison, we alsomodel the current Zigbee protocol under
the assumption that the attacker knows the TCLK. As expected,
ProVerif output shows that the attacker can retrieve the NWK and,
subsequently, any link key.

7 Evaluation
In this section, we discuss the implementation and evaluation of
the new Zigbee protocol.

7.1 Environment setup
Beyond computers, we use four devices to experiment with send-
ing, receiving, and capturing Zigbee packets. We use two Universal
Software Radio Peripheral 210 (USRP210) [25] devices. One de-
vice acts as the coordinator, and the other as an end device. The
USRP210 platform provides an AD9361 RFIC direct-conversion
transceiver with up to 56MHz of real-time bandwidth and an open
and re-programmable Spartan6 FPGA. This device is capable of
radio communication with frequency coverage from 70 MHz to 6
GHz, which covers the frequencies used by Zigbee protocols. We
also use an ApiMote v4 Beta [26] device (which is less powerful than
USRP210) as a sniffer to capture the Zigbee packets for further anal-
ysis. Last, we use a Raspberry Pi 3B to simulate the performance of
Zigbee devices. It has Quad-Core 1.2GHz Broadcom BCM2837 64bit
CPU and 1GB RAM. We use this device instead of a PC or laptop to
measure the time it takes for cryptography-related operations, such
as Elliptic curve point multiplication, ECDSA signature verification,
and hash function calculation. This device is 10 times slower than a
PC with an i7-3770 CPU and 16GiB memory for Elliptic curve point
multiplication. All the devices are shown in Figure 6.

The USRP devices are connected to a computer via USB and
controlled by Z3Sec [27], which is a penetration testing software
framework designed by Philipp Morgner of Friedrich–Alexander
University Erlangen–Nürnberg in 2017. Z3sec uses the capabilities
of GnuRadio to send and receive ZigBee packets via the USRP.
Z3Sec was initially designed for analyzing the Zigbee light link
protocol, which is similar to Zigbee Home automation but is only
suitable for Smart Light join procedure. We leverage the physical
layer and MAC layer designs provided by Z3Sec, whereas for the
network and application layers, we implement the new Zigbee
protocol thoroughly. Z3Sec invokes GNU radio to provide signal
processing blocks for USRP to send and receive packets.

Analyzing the Attack Landscape of Zigbee-enabled IoT Systems and Reinstating Users’ Privacy WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Figure 6: Devices used to perform the evaluation.

7.2 Performance of the new features
We have three new features for the improved Zigbee protocol,
which are responsible for key exchange, device authentication and
device verification. We explain the details of the performances of
these new features below and the results are in Table 1.

Implementation of the ECDH. We employ the Elliptic Curve
Diffie-Hellman algorithm (ECDH) to generate a secret, which is
used as a link key in the newZigbee protocol.We pre-store the curve
information (𝑔, 𝑝, 𝑛), the private values (𝛼 and 𝛽), and the public
point (𝐴 and 𝐵) for further use. Hence, during the join procedure,
both the coordinator and the end device only have to perform the
point multiplication after receiving the other party’s public point.
The length of the ECDH point is decided by the curve. In Table 1,
we show the performances of the main operations involved in the
new protocol. We implemented the feature with Python based on
TinyEC library. We evaluated the performances on five curves, and
chose the brainpoolIP256 curve, which has the lowest overhead
and can produce 128-bit long secret.

Implementation of Hash function. The new protocol requires
Hash functions to check the ECDH public point against manip-
ulation. In our new protocol, the association_response message
requires the Hash function to bind the sender information with
the public key. We select the hashlib library and evaluate the per-
formances of three hash functions implemented with Python. The
three functions are SHA224, SHA256,and SHA384 [11]. In Table 1,
we can see that the SHA hash function takes quite a short time of
computation compared to the time required for ECDH and ECDSA.
We select SHA256 for our experiments, because it can produce the
suitable Hash length (32 Bytes).

Implementation of ECDSA. In our new protocol, we change the
value of the installation code from the pre-configured secret to the
verifier of the device. The signature and verifier pair is generated
by the Elliptic Curve Digital Signature Algorithm (ECDSA) [17]. In
the implementation, we select Warner’s ECDSA library and test
six curves implemented in Python. We test the time cost for both
signing and verifying. In Table 1, we notice that the verifying time
is longer than the signature. Since ECDSA and ECDH are both
using Elliptic Curve, and if we select the same curve, we do not
need to store multiple constants. In our experiments, we select
brainpoolIP256 curve.

7.3 New protocol overhead
We evaluate computational, memory, and communication over-
head of our new Zigbee protocol. We consider both the case with
installation code and the case without installation code. We run
our evaluation employing the brainpool256r1 curve for ECDH and
ECDSA, and SHA256 for the hash function.

Function Parameters Time
(ms)

memory
(code)

memory
(const) communication energy

overhead

ECDH

brainpool160r1 111.5

10.1 KB

120 Bytes 11 Bytes

around
0.57mW

brainpool192r1 154.4 144 Bytes 13 Bytes
brainpool224r1 215.7 168 Bytes 15 Bytes
brainpool256r1 279.4 192 Bytes 17 Bytes

secp256r1 283.2 192 Bytes 17 Bytes

SHA
SHA224 0.009

7.8 KB
288 Bytes 24 Bytes

N/ASHA256 0.009 288 Bytes 32 Bytes
SHA384 0.009 288 Bytes 48 Bytes

ECDSA

brainpool160r1 4.32+17.25

23.2 KB

120 Bytes 20 Bytes

around
0.8mW

brainpool192r1 5.81+23.55 144 Bytes 48 Bytes
brainpool224r1 7.67+31.75 168 Bytes 56 Bytes
brainpool256r1 9.98+42.50 192 Bytes 64 Bytes

secp256k1 9.51+39.15 192 Bytes 64 Bytes
NIST256P 9.97+40.41 192 Bytes 64 Bytes

Table 1: The performance of three functions in the new protocol.
The key components contain time of operation, code and constant
memories, communication overhead, and energy overhead.

Computational overhead. In the new protocol without install
code, we only require to add an ECDH secret key in the association
request message for the end device and a ECDH secret key in the
association response message for the coordinator. The computation
time for the ECDH point multiplication is about 279.4𝑚𝑠 . Note that
the coordinator and the end device can compute the ECDH point
multiplication in parallel, that is, we consider the time overhead
for ECDH only once. In the new protocol with install code, we
need two more hash calculations and a signing & verifying for two
nodes. The end device requires to sign the public secret, and the
coordinator verifies it. For the hash function, we select the SHA256
function, which costs about less than 0.2𝑚𝑠 for two operations. We
need approximately 52.5𝑚𝑠 for signature and verifier, and a total
331.9𝑚𝑠 for the whole join procedure. To provide a comparison, in
the original Zigbee protocol, the entire join procedure consists of
the user opening the network, the coordinator scanning the chan-
nels, two devices establishing the communication, and, finally, the
coordinator sending the NWK. By the standard joining procedure,
the coordinator first scans the total sixteen channels, each takes 1/3
to 1 seconds [13]. Then it will cost around 0.5156 seconds for the
secured key exchange [7]. The total joining time for the standard
protocol is around 5.89-16.51 seconds. Our protocol overhead is
between 1.69% - 5.62%, and 3.8% on average.

Memory overhead. In the new protocol without installation code,
we need to save the constants and the codes for ECDH only. The
constants are 192 Bytes and the codes are 10.1 KB (Table 1). With
the installation code, we store the extra codes for the hash function
and the ECDSA (23.2 KB), and constants for the hash functions (7.8
KB). The constants for ECDSA are the same as those for ECDH and
we do not need to save them twice. We notice that the size of the
current stack varies due to the implementation. As a reference, the
total size of Texas Instrument Z-stack is larger than 4MB, and our
memory overhead is very small.

Communication overhead. In the new protocol without instal-
lation code, we send ECDH public keys in the association request
and association response messages. The total overhead for the com-
munication is 17 Bytes. When we add the installation code, we
have 81 Bytes communication overhead for the association request,
including one ECDH public key and one ECDSA signature, whereas
we have 49 Bytes overhead for the association response, including
one public key and one hash result. In total, the communication
overhead for the new protocol is within the maximum limit of 127

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Wang et al.

w/o install code w/ install code

total operation overhead 1 ECDH 1 ECDH + 2 Hash
+ 1 ECDSA

total time overhead 279.4ms 331.9ms
memory overhead(code) 10.1 KB 41.1 KB
memory overhead(consts) 192 Bytes 480 Bytes
communication overhead 17 + 17 Bytes 81 + 49 Bytes

Table 2: The overall performance of the new protocol. We com-
pare operation overhead, total overhead, code and constantmemory
overhead, and communication overhead with and without install
(or installation) code.

Properties This paper
w/o install code

This paper
w/ install code [29] [8] [24]

Extra messages 0 0 4 3 New protocols
CA / DA required Neither Neither DA Neither CA

A3 defense No Yes No No Yes

Operation
overhead 2 ECDH

2 ECDH +
2 Hash +
1 ECDSA

3 ECDH+
5 Hash +
2 ECDSA

2 ECDH PKI online
verificationMemory overhead

(Code + Constants)
10.1 KB +
192 Bytes

41.1 KB +
480 Bytes

42KB +
13.594 KB

10.2 KB +
192 Bytes

Communication
overhead 17 + 17 Bytes 81 + 49 Bytes 400 Bytes 300 Bytes

Table 3: The comparison among the new protocol presented in this
paper and the state of art schemes of Zigbee protocol.

Bytes supported by Zigbee. Therefore, the increased size packet re-
sults to be a much more suitable solution compared to introducing
additional messages. As the standard data rate for Zigbee is 250
Kbit/sec and the whole join process will send out more than 517
Bytes, the communication overhead is rather small.

Energy overhead. The standard Zigbee joining procedure con-
tains beacon scanning and key exchanging. With a standard Zigbee
device using a 5 voltage battery, the average energy consumption
for the joining procedure is around 60mW [31]. In the new protocol
without installation code, we need to calculate two more ECDH
multiplications, which cost 0.57mW [9, 14]. The overhead is less
than 1%. For the protocol with install code, the ECDSA operation
will take about 0.8mW for the signature generator and verifier [1].
The total energy overhead is less than 2.5%, thus, it is negligible
when compared to the Lithium CR2477 Battery with 850-1000mAh
used in Zigbee devices, which usually runs for 3-7 years [4].

7.4 Comparison with existing proposals
In the following, we compare our new protocol with the proposals
discussed in Section 4. We consider the following properties: the
number of extra messages required for the new protocol; whether it
requires a CA or DA; whether A3 can be prevented by the new pro-
tocol; operation overhead; memory overhead; and communication
overhead. The details of the result are in Table 3.

Extra messages. Our new protocol does not require extra mes-
sages compared to the original protocol. As such, our new protocol
has less communication overhead than other existing solutions.
Indeed, some other approaches require extra messages, which intro-
duce heavier communication overhead, and require many changes
to existing protocol. For instance, [29] and [8] have 4 and 3 extra
messages correspondingly compared with the current protocol.

CA/DA requirement. [29] and [24] require a centralized CA or
DA,whereas our new protocol does not, as it is based on a certificate-
less model. A CA/DA-based protocol would substantially slow down
the join procedure, and would not prevent an unauthorized device

from joining the network. If an adversary can compromise a device
or the CA/DA, it can join the network and obtain the NWK. Finally, a
centralized CA/DA for Zigbee networks with devices from different
vendors is hard to establish, as it requires mutual trust among all
the vendors.

DefenseA3. To preventA3, the coordinator has to distinguish be-
tween the real devices trying to join the network and other devices
near the environments. The devices can be attackers’ compromised
devices or other unintended free devices. Based on the limitations
of Zigbee devices, Zigbee join procedure is totally automatic and
the user has no control over which device can join the network.
As a result, only improving the encryption scheme [8, 24, 29] can-
not solve A3, and it is necessary to introduce an authentication
mechanism that leverages user interaction.

8 Related Work
Authenticating and verifying a new device when it tries to join a
network and securely delivering the network key from the coor-
dinator to the new device are challenging tasks. In the following,
we discuss some of the most relevant solutions proposed in prior
literature.

Cryptographic solutions. Previous researchers proposed to im-
prove the security of the join procedure by implementing a more
secure key exchange algorithm. [16, 24, 28–30] designed new key
exchange protocols that involve either certificate-less public key
cryptography models or certificate-based key exchange models. Al-
though they can defend against a passive adversary sniffing private
information, the encryption scheme they propose cannot distin-
guish between real and fake devices, which means that an active
adversary can impersonate an end device or a coordinator.

Password-based solutions. In order to solve the problem of mali-
cious device injection, previous work introduced password-based
schemes to authorize the devices in the network [19–21]. Such
schemes require the device to provide a user interface for enter-
ing the password. However, due to their limitations, many Zigbee
devices lack such an interface.

9 Conclusion and Future Work
In this paper, we introduce two cryptographic enhancements to
Zigbee security protocols. We have implemented the proposed
protocols, and evaluated them. Our evaluations provide substantial
evidence that these enhancements are feasible, and are effective in
defending against passive and active attackers.

In the future, we plan to deploy the enhanced protocol in the
wild and evaluate its performances in complex environments. Also,
we will extend our solution to provide effective defenses against
the attacks that we left out of the scope of this work.

Acknowledgement
We thank the anonymous reviewers for their suggestions. This
work was supported by NSA’s Science of Security Lablet program
through North Carolina State University.

Analyzing the Attack Landscape of Zigbee-enabled IoT Systems and Reinstating Users’ Privacy WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

References
[1] Mishall Al-Zubaidie, Zhongwei Zhang, and Ji Zhang. 2019. Efficient and Secure

ECDSA Algorithm and its Applications: A Survey. arXiv preprint arXiv:1902.10313
(2019).

[2] ZigBee Alliance. 2015. ZigBee Document 05-3474-21. Technical Report. ZigBee
Alliance.

[3] Zigbee Alliance. 2020. WHY Leading companies choose Zigbee. https://
zigbeealliance.org/

[4] batteryequivalents.com. 2020. Lithium CR2477 Battery - Equivalents and
Replacements. https://www.batteryequivalents.com/lithium-cr2477-battery-
equivalents-and-replacements.html

[5] Ana Bera. 2019. 80 IoT Statistics (Infographic). https://safeatlast.co/blog/iot-
statistics/

[6] Bruno Blanchet. 2001. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In 14th IEEE Computer Security Foundations Workshop (CSFW-14).
IEEE Computer Society, Cape Breton, Nova Scotia, Canada, 82–96.

[7] Kyung Choi, Mihui Kim, and Kijoon Chae. 2013. Secure and Lightweight Key
Distribution with ZigBee Pro for Ubiquitous Sensor Networks. International
Journal of Distributed Sensor Networks 9, 7 (2013), 608380.

[8] Kyung Choi, Minjung Yun, Kijoon Chae, and Mihui Kim. 2012. An enhanced key
management using ZigBee Pro for wireless sensor networks. In The International
Conference on Information Network 2012. IEEE, 399–403.

[9] Nilanjan Dey, Parikshit N Mahalle, Pathan Mohd Shafi, Vinod V Kimabahune,
and Aboul Ella Hassanien. [n.d.]. Internet of Things, Smart Computing and
Technology: A Roadmap Ahead. ([n. d.]).

[10] D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE
Transactions on Information Theory 29, 2 (March 1983), 198–208. https://doi.org/
10.1109/TIT.1983.1056650

[11] Donald Eastlake and Paul Jones. 2001. US secure hash algorithm 1 (SHA1).
[12] GE. 2017. ZigbeeFAQ. https://products.gecurrent.com/sites/products.currentbyge.

com/files/documents/document_file/DT302-daintree-zigbee-security.pdf
[13] DrewGislason. 2008. Commissioning ZigBee Networks. https://www.sciencedirect.

com/science/article/pii/B9780750685979000082
[14] Tarun Kumar Goyal and Vineet Sahula. 2016. Lightweight security algorithm for

low power IoT devices. In 2016 International Conference on Advances in Computing,
Communications and Informatics (ICACCI). IEEE, 1725–1729.

[15] Nabaa A Hassan and Alaa K Farhan. 2019. Security Improve in ZigBee Protocol
Based on RSA Public Algorithm in WSN. Engineering and Technology Journal 37,
3 B (2019), 67–73.

[16] Debiao He, Sahadeo Padhye, and Jianhua Chen. 2012. An efficient certificateless
two-party authenticated key agreement protocol. Computers & Mathematics with
Applications 64, 6 (2012), 1914–1926.

[17] Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The elliptic curve digital
signature algorithm (ECDSA). International journal of information security 1, 1
(2001), 36–63.

[18] Silicon Labs. 2019. AN1089: Using Installation Codes with Zigbee Devices. Avail-
able at https://www.silabs.com/documents/public/application-notes/an1089-
using-installation-codes-with-zigbee-devices.pdf.

[19] Leslie Lamport. 1981. Password authentication with insecure communication.
Commun. ACM 24, 11 (1981), 770–772.

[20] Albert Levi, Erhan Çetintaş, Murat Aydos, Çetin Kaya Koç, and M Ufuk Çağlayan.
2004. Relay attacks on bluetooth authentication and solutions. In International
Symposium on Computer and Information Sciences. Springer, 278–288.

[21] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. 2014. The emperor’s
new password manager: Security analysis of web-based password managers. In
23rd {USENIX} Security Symposium ({USENIX} Security 14). 465–479.

[22] @MayaZigBee. 2015. https://twitter.com/mayazigbee?lang=en Twitter.
[23] Victor S. Miller. 1986. Use of Elliptic Curves in Cryptography. In Advances in

Cryptology — CRYPTO ’85 Proceedings, Hugh C. Williams (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 417–426.

[24] Sudip Misra, Sumit Goswami, Chaynika Taneja, and Anandarup Mukherjee.
2016. Design and implementation analysis of a public key infrastructure-enabled
security framework for ZigBee sensor networks. International Journal of Com-
munication Systems 29, 13 (2016), 1992–2014.

[25] Ettus Research. 2019. USRP B210. https://www.ettus.com/all-products/UB210-
KIT/

[26] riverloopsecurity. 2019. APIMOTE. https://www.riverloopsecurity.com/projects/
apimote/

[27] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT goes
nuclear: Creating a ZigBee chain reaction. In 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 195–212.

[28] Jian Shen, Ziyuan Gui, Sai Ji, Jun Shen, Haowen Tan, and Yi Tang. 2018. Cloud-
aided lightweight certificateless authentication protocol with anonymity for
wireless body area networks. Journal of Network and Computer Applications 106
(2018), 117–123.

[29] Pietro Tedeschi, Savio Sciancalepore, Areej Eliyan, and Roberto Di Pietro. 2019.
LiKe: Lightweight Certificateless Key Agreement for Secure IoT Communications.

IEEE Internet of Things Journal (2019).
[30] Shengbao Wang, Zhenfu Cao, and Haiyong Bao. 2008. Efficient Certificateless

Authentication and Key Agreement (CL-AK) for Grid Computing. IJ Network
Security 7, 3 (2008), 342–347.

[31] Atmel MCU Wireless. 2015. AT03663: Power Consumption of ZigBee End De-
vice. https://www.digikey.nl/en/pdf/a/atmel/power-consumption-of-zigbee-
end-device

[32] Tobias Zillner and S Strobl. 2015. ZigBee exploited: The good, the bad and the ugly.
Black Hat–2015: https://www. blackhat. com/docs/us-15/materials/us-15-Zillner-
ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly. pdf (2015).

https://zigbeealliance.org/
https://zigbeealliance.org/
https://www.batteryequivalents.com/lithium-cr2477-battery-equivalents-and-replacements.html
https://www.batteryequivalents.com/lithium-cr2477-battery-equivalents-and-replacements.html
https://safeatlast.co/blog/iot-statistics/
https://safeatlast.co/blog/iot-statistics/
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://products.gecurrent.com/sites/products.currentbyge.com/files/documents/document_file/DT302-daintree-zigbee-security.pdf
https://products.gecurrent.com/sites/products.currentbyge.com/files/documents/document_file/DT302-daintree-zigbee-security.pdf
https://www.sciencedirect.com/science/article/pii/B9780750685979000082
https://www.sciencedirect.com/science/article/pii/B9780750685979000082
https://www.silabs.com/documents/public/application-notes/an1089-using-installation-codes-with-zigbee-devices.pdf
https://www.silabs.com/documents/public/application-notes/an1089-using-installation-codes-with-zigbee-devices.pdf
https://twitter.com/mayazigbee?lang=en
https://www.ettus.com/all-products/UB210-KIT/
https://www.ettus.com/all-products/UB210-KIT/
https://www.riverloopsecurity.com/projects/apimote/
https://www.riverloopsecurity.com/projects/apimote/
https://www.digikey.nl/en/pdf/a/atmel/power-consumption-of-zigbee-end-device
https://www.digikey.nl/en/pdf/a/atmel/power-consumption-of-zigbee-end-device

	Abstract
	1 Introduction
	2 Background
	2.1 Zigbee devices
	2.2 Zigbee Network Architecture
	2.3 Zigbee Security Keys
	2.4 Join Procedure

	3 Characterizing Attack Landscape of Zigbee Network
	3.1 Adversary Model
	3.2 Attackers with no NWK
	3.3 Attacker with the NWK

	4 Analyzing the Solution Space
	4.1 Security features by Zigbee Alliance
	4.2 PKI-based Proposals

	5 Proposed Defense
	5.1 ECDH Key Exchange in Zigbee
	5.2 Installation code and ECDH key exchange

	6 Formal Security Analysis
	7 Evaluation
	7.1 Environment setup
	7.2 Performance of the new features
	7.3 New protocol overhead
	7.4 Comparison with existing proposals

	8 Related Work
	9 Conclusion and Future Work
	References

