
Secure Seamless Bluetooth Low Energy
Connection Migration for Unmodified IoT Devices

Syed Rafiul Hussain ,Member, IEEE, Shagufta Mehnaz,Member, IEEE,

Shahriar Nirjon,Member, IEEE, and Elisa Bertino , Fellow, IEEE

Abstract—At present, Bluetooth Low Energy (BLE) is dominantly used in commercially available Internet of Things (IoT) devices–such

as smart watches, fitness trackers, and smart appliances. Compared to classic Bluetooth, BLE has been simplified in many ways that

include its connection establishment, data exchange, and encryption processes. Unfortunately, this simplification comes at a cost. For

example, only a star topology is supported in BLE environments and a peripheral (an IoT device) can communicate with only one

gateway (e.g., a smartphone, or a BLE hub) at any given set time. When a peripheral goes out of range and thus loses connectivity to a

gateway, it cannot connect and seamlessly communicate with another gateway without user interventions. In other words, BLE

connections are not automatically migrated or handed-off to another gateway. In this paper, we propose SeamBlue1, which brings

secure seamless connectivity to BLE-capable mobile IoT devices in an environment that consists of a network of gateways. Our

framework ensures that unmodified, commercial off-the-shelf BLE devices seamlessly and securely connect to a nearby gateway

without any user intervention.

Index Terms—Bluetooth low energy (BLE), IoT, seamless connectivity, secure connection migration

Ç

1 INTRODUCTION

IOT devices and services have entered the commercial
market much faster than expected. IoT industry predicts

that the total number of ‘smart things’ will be more than
30 billion [2] by the year 2020–which will outnumber the
total number of smartphones. IoT technology is already
being adopted in many places such as factories, airports,
offices, homes, hospitals, and schools, and is being used in
applications such as asset tracking, health monitoring, pre-
dictive maintenance, environmental monitoring, energy
metering, and elder care. In a typical scenario, an IoT device
connects to a gateway (e.g., a smartphone or a smart hub)
over a low-power wireless network, and the gateway ena-
bles its access to the Internet. Because the connection pro-
cess between an IoT device and a gateway requires the
active engagement of a user, seamless connectivity of mobile
IoT devices in a network of gateways is still not happening. Ide-
ally, an IoT device should be able to seamlessly communi-
cate with a nearby gateway, without requiring an end-user
to enter pins and passwords every time it moves near a dif-
ferent gateway in the same trusted network environment.

There are a number of wireless protocols, such as
Bluetooth LE (BLE) [3], ZigBee [4], and NFC [5], that

have been used in different IoT communication scenarios.
Among these, BLE is the most popular because of its sim-
plicity, openness, and its several orders of magnitude of
energy savings. The BLE protocol allows multiple devices
(‘peripherals’) to connect to a single gateway (the ‘central’),
but it restricts the mobility of the peripherals outside and
within the range of a gateway. Carrying the gateway along
with a mobile IoT device seems like an option, but it is not
always feasible as it causes disconnections of other IoT devi-
ces that are either static or moving in a different direction
from the gateway. For instance, if a personal smartphone is
used as a gateway for the IoT devices deployed for a home
automation system, BLE-enabled IoT devices may get dis-
connected when the smartphone is taken outside of the
home. Similarly, in a hospital scenario, patients wearing
BLE enabled IoT devices may move inside and outside of
the hospitals for which simple smartphones may not be
used as a BLE gateway. Furthermore, IoT devices and gate-
ways deployed in battlefields and agricultural farms can be
mobile, and in these use cases continuous connectivity
through smartphones is not be a viable solution.

In order to ensure continuous BLE connectivity [3],
Zachariah et al. [6] proposed an architecture where an IoT
device may connect to multiple gateways located at differ-
ent places. However, establishing a distinct connection with
every gateway requires a device to reset and broadcast
advertising signals separately for all the gateways. This
behavior is observed in many BLE devices including Moto
360 [7] and Samsung Gear watches [8]. Some of the Android
Wear watches are so dependent with their proprietary
smartphone applications that these devices do not even

� S. R. Hussain, S. Mehnaz, and E. Bertino are with the Department of
Computer Science, Purdue University, West Lafayette, IN 47907.
E-mail: {hussain1, smehnaz, bertino}@purdue.edu.

� S. Nirjon is with the Department of Computer Science, University of
North Carolina Chapel Hill, Chapel Hill, NC 27599.
E-mail: nirjon@cs.unc.edu.

Manuscript received 16 Mar. 2017; revised 10 June 2017; accepted 26 July
2017. Date of publication 16 Aug. 2017; date of current version 2 Mar. 2018.
(Corresponding author: Syed Rafiul Hussain.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2017.2739742

1. A preliminary version [1] of this paper has been published in a
conference.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018 927

1536-1233� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9222-8544
https://orcid.org/0000-0001-9222-8544
https://orcid.org/0000-0001-9222-8544
https://orcid.org/0000-0001-9222-8544
https://orcid.org/0000-0001-9222-8544
https://orcid.org/0000-0002-4029-7051
https://orcid.org/0000-0002-4029-7051
https://orcid.org/0000-0002-4029-7051
https://orcid.org/0000-0002-4029-7051
https://orcid.org/0000-0002-4029-7051
mailto:
mailto:

allow themselves to pair with non-proprietary smart-
phones. In fact, the scenario is so restricted in its functional-
ity that even the smartphones model matters. For example,
the latest Gear devices only pair with Samsung S4 smart-
phones and above. In such scenarios, the possibility of a
Utopian environment where smart devices seamlessly com-
municate with each other seems a far reality.

Even if connections with multiple gateways are made pos-
sible by changes to the BLE protocol [9], it comes at the cost of
disconnecting the device from its previous gateway and then
connecting to a new one. This incurs significant CPU, mem-
ory, energy, andbandwidth overhead in resource constrained
IoT devices as even a single connection establishment
requires advertisements, discovery, pairing and bonding [10],
and severalmutual agreements in different layers of BLE pro-
tocol stack. Consequently, connection establishment with
multiple devices is neither a time efficient nor a cost effective
process. In addition, the process requires repeated manual
interventions that disrupt the ongoing communication
between a device and a remote service. Because of these prac-
tical issues, we argue that an IoT device should be able to
seamlessly communicate with different gateways [6] without
having to create a separate connectionwith each of them.

Our vision of a seamless BLE migration is illustrated in
Fig. 1, where a user at first connects (pairs) his fitness tracker
to gateway A like he does for any BLE device. When he
moves to gateway B, connection states are automatically
migrated from gatewayA to gatewayB over a different com-
munication channel, without interrupting ongoing commu-
nications between the device and any remote service it is
talking to. Finally, when the user enters into the range of B,
the fitness tracker is completely handed-off to gateway B,
without requiring the user to manually pairing the tracker
with it. While this seems similar to hand-offs [11], [12], [13]
in cellular or WiFi networks, a major distinction between
BLE migration and a cellular/WiFi connection migration is
that in the case of BLE, we are constrained by the billions of
already deployed IoT devices and many other legacy
devices that are running Bluetooth 4.0, for which we can-
not change their BLE implementation. This practical con-
straint makes it difficult even to detect the presence of a
device at the time it is in the connected state with a cen-
tral. In addition to this, migrating a connection requires
transferring a set of state variables between gateways that
define the state of a BLE connection. Finding the set of
state variables by browsing a large code base is itself a
time-consuming and error-prone process. Finally, select-
ing the next gateway among the available ones and then
securely transferring the connection states pose further
challenges to seamless BLE migration.

In this paper, we propose SeamBlue, which addresses
these challenges and enables seamless BLE connection

migration for mobile IoT devices in a network of static or
mobile BLE gateways. Several salient features combined
together make SeamBlue unique. First, we develop a system-
atic approach based on static program analysis technique
that automatically finds a set of variables and objects in the
BLE code base which define the connection state, i.e., the
internal protocol state. Second, we propose two modes of
connection state extraction: partial stack cloning and full stack
cloning in order to support connection migration for a wide
range of IoT devices. Third, we leverage existing approaches
to user movement prediction [14], and propose a mechanism
to select the best candidate gateway for a connection migra-
tion. Fourth, while transferring connection from one gate-
way to another we consider both trusted and untrusted
gateways and ensure secure connection migration. Fifth, we
have developed a testbed that consists of unmodified, BLE-
capable IoT devices (e.g., Android smartphones, and a tablet,
and a Moto 360 watch) and BLE gateways (e.g., customized
smartphones acting as central). We perform an in-depth
evaluation of SeamBlue in this testbed to quantify its effec-
tiveness as well as its overhead. In summary, the contribu-
tions of this paper are the following:

� We propose a framework that ensures secure seam-
less communication between an unmodified, BLE-
enabled mobile IoT device and a remote service in a
network of static or mobile BLE gateway environ-
ments, without requiring pairing-bonding and con-
nections to individual gateways.

� We develop a systematic approach based on static
program analysis to identify the state variables in
the BLE code base that are required for transferring
pairing-bonding and connection information from
one gateway to another gateway.

� We propose two approaches–partial stack cloning and
full stack cloning—for capturing a snapshot of connec-
tion states at the current gateway and then updating
them at the next gateway during BLE connection
migration.

� We propose a gateway selection mechanism for
transferring the connection state to the most suitable
gateway when an IoT device requires to migrate its
connection and there are multiple gateways in its
range.

� We design a secure sharing of connection informa-
tion between two gateways so that adversaries can-
not obtain the pairing-bonding keys and connection
parameters while the connection is migrating.

� We design a storage/memory management compo-
nent for our system so that adversaries cannot run the
BLE gateways intomemory exhaustion problems.

� We extensively analyze the security and privacy
issues of our proposed system.

Organization. The rest of the paper is organized as fol-
lows: Section 2 presents some use cases of the SeamBlue sys-
tem. Section 3 provides a brief primer on BLE. Section 4
discusses the challenges of building a system supporting
seamless connection migration for BLE. Section 5 provides
an overview of the workflow of SeamBlue system and dis-
cusses the adversary model. Section 6 describes the details
of SeamBlue. Section 7 presents experiment results. Section 8
analyzes the security and privacy of our proposed system.
Section 9 discusses the state-of-the-art and finally Section 10
concludes the paper by outlining future work.

Fig. 1. Seamless BLE connectivity architecture.

928 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018

2 USAGE SCENARIOS

We briefly describe some of the use cases of seamless BLE
connection migration.

1) In Hospitals: Patients wearing BLE devices in hospitals
can be localized and tracked, and their heart rate and
other physiological signals can be monitored using a
network of gateways deployed at different locations in
the hospital. Even if the patient moves, these devices
will provide continuous monitoring and uninter-
rupted services by connecting to nearby gateways.

2) In Airports:Many airports [15] use BLE enabled track-
ing devices to monitor the location and movement of
passengers and airport equipment. Upon arrival at
the airport, passengers (and baggage) which are
equipped with BLE beacons can voluntarily report
their location and status to the deployed gateways
from anywhere within the airport and, in return,
receive personalized services and notifications.

3) In Theme Parks:With the help of a BLE-enabled wrist-
band worn by children and static gateways deployed
at different locations inside a theme park, parents can
monitor and locate their children via their mobile
phone. The IoT wristband concept has already been
implemented and successfully tested at DisneyWorld
in Orlando [16], Florida. Disneys MagicBand is a cus-
tomizable wristband that functions as a passport for
just about everything in the park. These bands can
serve as digital entrance tickets for guests or even store
credit card information to facilitate transactions.

3 BACKGROUND

3.1 Roles of BLE Device
A BLE device assumes either a peripheral or a central role. A
peripheral, typically an IoT device, such as a heart rate moni-
tor, a blood pressure monitor, a smart lock, or a smart watch,
has limited capabilities and contains advertisement informa-
tion. A central device, such as an access point, a personal
computer, or a smartphone, scans for BLE advertisements,
receives an advertisement, and initiates a connection.

3.2 BLE Protocol Stack
Similar to classic Bluetooth [17], the BLE protocol stack [18]
is composed of two main parts: a controller and a host as
shown in Fig. 2.

Physical Layer: BLE operates in the 2.4 GHz Industrial Sci-
entific Medical (ISM) band and defines 40 Radio Frequency
(RF) channels with 2 MHz channel spacing. There are two
types of BLE RF channels: (1) three advertising channels

used for device discovery, connection establishment and
broadcast transmission, and (2) thirty-seven data channels
used for bidirectional communication between connected
devices. In order to avoid interference, an adaptive fre-
quency hopping pattern consisting of 37 frequencies is used
for data channels.

Link Layer: BLE defines two device roles at the Link Layer
for a connection: the master and the slave. Once a connection
between a master and a slave is created, the physical chan-
nel is divided into non-overlapping time units called con-
nection events. In order to detect bit error, all data units
include a 24-bit Cyclic Redundancy Check (CRCInit) code.
For a new connection event, master and slave use a new
data channel frequency, which is computed using the fre-
quency hopping algorithm. Access Address (AA),
embedded in a Link Layer packet, is used to identify com-
munications on a physical link, and to exclude or ignore
packets on different physical links that are using the same
physical channels in physical proximity.

L2CAP: It works as a logical link layer and multiplexes
the data of higher layers on top of a Link Layer connection.

ATT: The ATT defines the communication between two
devices playing the roles of server and client, respectively.
The server maintains a set of attributes. An attribute is a data
structure that stores the informationmanaged by the GATT.

GATT: A framework defined by GATT uses the ATT for
the discovery of services that includes characteristics. A
characteristic is a set of data which includes a value and a set
of properties. The data related to services and characteristics
are stored in attributes. For example, a server that runs a
heart rate monitoring service may account with a heart rate
characteristic that uses an attribute for describing the sensor,
another attribute for storing heart rate measurement values
and a further attribute for specifying themeasurement units.

GAP and Application Profiles: GAP specifies device roles,
modes, and procedures for the discovery of devices and
services, the management of connection establishment and
security. A device may support various roles, but only one
role can be adopted at a given time. Application profiles
specify general behaviors that Bluetooth-enabled devices
use to communicate with other Bluetooth devices. For
example, a heart-rate monitor is able to send its sensor val-
ues to a gateway only if the corresponding gateway imple-
ments a heart-rate profile.

3.3 Modes of Communication
Two modes of communication are available: broadcast and
connectedmodes. The broadcast mode enables a peripheral to
send data to any other device listening for transmissions. If
two devices need to exchange data they can use the connected
mode. In this mode, a peripheral device broadcasts its pres-
ence by sending advertisement packets. The central can initi-
ate a connection following a received broadcast. Once a
connection is established the devices can exchange data.

3.4 BLE Security and Privacy
Pairing: In connected mode, if two devices (one acting as
peripheral and another as central) want to exchange data
securely, they perform a pairing process where as a first
step, the parties involved in the communication exchange
their identity information to set up the trust and then estab-
lish the encryption keys for future data exchange. The Secu-
rity Manager Protocol (SMP) used for the pairing procedure

Fig. 2. The Bluetooth LE protocol stack.

HUSSAIN ETAL.: SECURE SEAMLESS BLUETOOTH LOW ENERGYCONNECTION MIGRATION FOR UNMODIFIED IOT DEVICES 929

results in the following keys that are shared between the
peripheral and the central.

� Identity Resolving key (IRK): 128-bit key used to gener-
ate and resolve a random address.

� Connection Signature Resolving Key (CSRK): 128-bit
key used to sign data and verify signatures on the
receiving device.

� Long Term Key (LTK): 128-bit key used to generate the
session key for an encrypted connection.

� Encrypted Diversifier (EDIV): 16-bit stored value used
to identify the LTK. A new EDIV is generated each
time a new LTK is distributed.

� Random Number (RAND): 64-bit stored value used to
identify the LTK. A new RAND is generated each
time a new LTK is distributed. Note that both the
EDIV and RAND are used to identify a bonded
device’s LTK in the look-up table that stores the
LTKs for all the bonded devices.

Bonding: Bonding is the process of storing the keys cre-
ated during pairing for use in subsequent connections in
order to form a trusted device pair.

Privacy: BLE can use Random Device Addressing to help
increase the privacy [19], [20] of connections and prevent
‘tracking’ based on the assumption that eavesdropping did
not occur during the pairing process.

If the advertising device has been previously discovered
and has returned to an advertising state, the device must be
identifiable by trusted devices in future connections without
going through the discovery procedure again. The IRK
stored in the trusted device is used to identify the advertiser
as a trusted device.

4 CHALLENGES TO BLE CONNECTION MIGRATION

Although BLE connection migration for IoT devices seems
similar to that of traditional networks, e.g., WiFi or TCP con-
nection migration, it poses some unique challenges specific
to IoT.

1) Unmodified IoT Devices: Since billions of IoT devices
are already in use, it is not feasible to demand
changes to their BLE implementation. Hence, we are
constrained to only change the BLE implementation
of the gateways for seamless connection migration.

2) Identifying State Variables: We need to identify the set
of variables that uniquely define the state of a BLE

connection. Manually browsing a large code base
(up to 100K lines of code) to find state variables is an
impractical, error-prone, and time-consuming pro-
cess. Hence, automatically finding state variables for
connection is essential.

3) Gateway Selection for Connection Transfer: While trans-
ferring the pairing-bonding information, not all the
gateways in a network should be a receiver of this
information. For example, syncing all the gateways for
every pairing between a gateway and an IoT device
would require a substantial amount of time and band-
width and incur significant communication overhead.
Hence, it is necessary to select a subset of gateways for
sharing the pairing-bonding information.

4) Secure and Fast Connection Transfer: IoT gateways
need to distribute the pairing-bonding and connec-
tion state information to the candidate gateways (or
to a central authority) in a secure manner so that an
adversary cannot obtain this information and imper-
sonate a legitimate gateway. The connection transfer
should be fast enough so that the services are not dis-
rupted. In addition, if a gateway is not part of the
trusted cluster of IoT devices, the current gateway
may need to establish a trust relationship with that
untrusted gateway2 before seamless connection
migration begins.

5 SEAMBLUE OVERVIEW

This section provides an overview of SeamBlue by briefly
describing the sequence of steps for connection migration,
which comprises of identifying bonding/connection related
state variables, establishing a connection with a gateway,
transferring the bonding/connection information, and
establishing a connection with a subsequent gateway.

5.1 Basic Workflow
SeamBlue ensures that an IoT device is always connected to a
gateway, as long as it is within the range of any gateway.
Fig. 3 depicts the basic workflow of the connection migra-
tion process which we describe next.

Fig. 3. Basic workflow of SeamBlue.

2. We use the terms ‘untrusted gateways’ as ‘the gateways that do
not belong to a group of already trusted gateways’ interchangeably.
Trusted gateways are of two types: (1) gateways sharing the same
group key, (2) previously untrusted gateways whose public key certifi-
cates have been validated

930 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018

1) In an off-line, one-time step,we analyze the BLE source
code statically to identify the set of variables required
for both pairing-bonding and connection information
transfers. The BLE Static Analysis (BSA) module first
performs this static analysis on the BLE source code;
and then the identified set of variables (that are
required for connection transfers) are stored in each of
the gateways. This step is described in Section 6.1.

2) An IoT device advertises its information and a
nearby gateway establishes a connection by pairing-
bonding. We name the gateway to which the IoT
device is currently connected the current gateway.
The current gateway extracts a set of pairing-bond-
ing information from the connection in order to
share it with other nearby gateways. Section 6.2
describes this information extraction step.

3) The current gateway disseminates the pairing-bond-
ing information to a set of gateways that are candi-
dates for the subsequent gateway (the next gateway
to which the IoT device may connect). This pairing-
bonding information consists of both the bonded
device’s information as well as a subset of state vari-
ables. Section 6.3 describes this step in details.

4) Upon reception of this information, the set of candi-
date gateways add the IoT device as a bonded
device, and initialize the subset of state variables for
bonding, but do not initiate a connection.

5) Perceiving the fact that the IoT device is moving out
of its range, according to the movement pattern of
the IoT device the current gateway selects one of the
candidate gateways (found from step 3) as the subse-
quent gateway to which the connection is going to
migrate. This step is described in Section 6.4.

6) The current gateway identifies the current state (or
snapshot) of the connection and transfers the required
state variables to the subsequent gateway so that the
subsequent gateway can reconstruct the connection
state with the same peripheral. Section 6.2 describes
the extraction of these variables, and Section 6.5
describes how these transfers are done securely.

7) Upon reception of the connection state information,
the subsequent gateway creates required objects
related to connection, updates the connection state
variables, and stores the connection information into
gateway’s non-volatile memory (NVRAM). As a
result, the peripheral gets seamlessly connected to
the subsequent gateway, without interrupting ongo-
ing services.

5.2 BLE Stack Cloning
Depending on the accessibility of the state variables at the
controller part (e.g., link layer) of BLE stack (shown in Fig. 2),
SeamBlue provides two modes for connection state extraction:
full stack cloning, and partial stack cloning. Full stack cloning
refers to cloning states of all the layers of Bluetooth stack start-
ing from the application layer down to the link layer whereas
partial stack cloning refers to the cloning of Bluetooth stack
starting from the application layer down to the L2CAP layer.
Details of thesemodes are presented in Section 6.7.

5.3 Information Dissemination
SeamBlue supports two different strategies for the dissemi-
nation of both pairing-bonding and connection state

information. The the initial gateway either (1) pushes this
information to the cloud from where the candidate gateway
(s) can sync this information periodically, or - (2) transfers
this information directly to the selected subsequent gate-
way(s). Independently of the dissemination strategy, the
current gateway transfers pairing-bonding and connection
state information in a secure manner.

5.4 Adversary Model
We consider a strong adversary model where the adversary
has the capability of injecting unauthenticated packets, or
modifying legitimate packets, or sniffing end-to-end mes-
sages. We also assume that the adversary may compromise
the IoT gateways and IoT devices at any point of the opera-
tion of SeamBlue system.We assume that SeamBlue can detect
such compromised devices and gateways by leveraging
existing anomaly detection mechanisms [21], [22] in the con-
text of IoT. Finally, in this paper, we do not consider the
denial-of-service attacks through jamming the BLE channels.

6 SEAMBLUE DESIGN DETAILS

This section describes how SeamBlue addresses the chal-
lenges in BLE connection migration by adding new func-
tionalities to the BLE stack of only the IoT gateways.

6.1 BLE Static Analysis Module
Like other network protocols (e.g., TCP), the BLE imple-
mentation follows an event-driven programming paradigm
that is centered on executing appropriate protocol logic
(known as event handlers) in response to the occurred net-
work events. Such implementation usually contains an ini-
tialization part, packet receiving or event loop, and a packet
processing part. The initialization code bootstraps the
BLE module of the device by loading the configuration files.
The packet receiving loop receives a packet from the
kernel space, identifies the type of network events (e.g.,
PAIRING_COMPLETE), and forwards the packet to the cor-
responding event handler, i.e., packet processing part.

State variables:While processing a packet, some of the vari-
ablesmay get updated depending on the content of the packet
and the current state of the protocol. Therefore, we define the
variables of a program as state variables whose values are dif-
ferent in different connection states, get updated as the state
changes during processing of an incoming packet, andwhose
scope lasts throughout the lifetime of a connection.

Why do we require systematic analysis?: Fig. 4 shows the sim-
ple skeleton of an abstract BLE implementation. However,
through our manual analysis we found that the open source
BLE implementations [23], [24] are fairly complex. We also
observed that the internal states of the BLE protocol consist
of many different program variables and objects that are
spread over different layers of the BLE stack. This manual
analysis required more than 80 man-hours. However, the
resulting set of connection state variables obtained by the
manual analysis was not complete since a number of varia-
bles were left unrecognized. As a result, connection migra-
tion was not successful. Therefore, finding internal states
(i.e., variables and objects that define the connection state)
through manual analysis is not a viable solution. Further-
more, variants of a BLE implementation adopted for different
IoT devices may have different sets of variables and objects
for defining protocols’ internal states. In order to address

HUSSAIN ETAL.: SECURE SEAMLESS BLUETOOTH LOW ENERGYCONNECTION MIGRATION FOR UNMODIFIED IOT DEVICES 931

these challenges, we develop a systematic approach to find
theminimal state information for BLE connectionmigration.

Why static analysis?: Dynamic taint analysis [25], [26] may
be used to find the state variables while processing the
input. However, processing input may not cover all the exe-
cution paths where state variables may get updated. There-
fore, dynamic taint analysis is not the ideal candidate for
systematically finding the state variables. Symbolic execu-
tion [27], [28] addresses this challenge by representing the
packet content and the runtime state as the symbolic input
for exploring all possible execution paths along which state

variables may get updated. However, symbolic execution
quickly falls into state explosion problem because of loops (if
symbolic input is used in loop termination conditions) and
pointers. To address the state explosion problem, we adopt
static analysis using control flow and data flow analysis that
precisely captures the state variables. Static analysis [29],
[30] have also been used to find states for virtual machine
(VM) migration in network function virtualization (NFV)
[31]. However, our proposed mechanism differs from those
techniques due to the resource constrained nature of IoT and
also results in amore precise set of state variables.

Pre-processing: To support static analysis, we perform the
following pre-processing of the BLE source code: (1) we first
convert the BLE source code into intermediate representa-
tion (IR) using the LLVM compiler [32]; (2) we then build
the control flow graph (CFG) [33] from the IR [34]. Each
node in the control flow graph represents a basic block
which is a straight-line piece of code with no branching
except at the end of sequence, i.e., without any jumps or
jump targets. Jump targets start a block, and jumps end a
block. Edges represent possible flow of control from the end
of one block to the beginning of the other. There may be
multiple incoming/outgoing edges for each block.

Finding the slice of code that handles state variables: BLE
implementations contain code for handling nitty gritty
details of all the aspects of BLE protocol. Since our focus is
only on the packet processing logic in which the variables
that are the members of the global variable list may get
updated during the packet processing, we need to filter out
the other portions of the code that handles other aspect of the
BLE protocol and also update the global variables. We solve
this problem using a forward control-flow slicing tech-
nique [35] and thus find the required portion of the source
code that processes the incoming packets. To find that slice
of code,we use the control flow graphs (CFGs) of all the func-
tions of the program. By analyzing all the direct and indirect
calls found in those CFGs, we find the flow of the protocol
execution starting from receiving of the packet to the func-
tions that implements the packet processing logic.

Call graph construction: To find all possible flows of the
execution, we find all possible chains/sequences of func-
tions that process the packets. Hence, we need to construct
the call graph [36] of the program that represents the caller-
callee relationships in which a node represents a function/
procedure and an edge denoted with ðx; yÞ represents the
calling of function y from function x. We build such a call
graph for the BLE implementation starting from the entry
point of the BLE stack. Since the event driven BLE imple-
mentations rely on indirect calls, the resulting call graph
should include both the direct calls and the indirect calls.
The direct function calls can be easily identified from the
CFG. However, identifying indirect calls poses additional
challenges because the values of the function pointers used
for indirect calls are decided at runtime depending on the
program input. For example, in the listing in Fig. 4, the func-
tion pointer event_handler at runtime may take one of
the four possible target values, i.e., pair_device, bond_
device, connect_device, or disconnect_device.
Depending on the runtime value of the event_handler,
the corresponding event handler will be executed.

Points to (alias) analysis: To address the challenge of indi-
rect calls, we use a context, flow, and field sensitive points-
to analysis [37] that finds the all possible targets of the indi-
rect calls in the program. For the listing in Fig. 4, the points-

Fig. 4. Skeleton of a simplified BLE stack implementation.

932 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018

to analysis identifies the possible targets of event_

handler function pointer. Apart from function pointers,
points-to analysis is also used for resolving the pointer alias
problem. Pointer alias is frequently used in BLE implemen-
tations when updating the state variables.

Using the result of points-to analysis, we complete the
construction of the call graph by incorporating the indirect
edges. Fig. 5 shows the call graph of the listing in Fig. 4 gen-
erated using our technique. The direct calls are represented
with direct arrow lines whereas the indirect calls are repre-
sented with the indirect arrow lines. Since the event_

handler function pointer may point to four possible target
functions (i.e., pair_device, bond_device, connect_
device, disconnect_device) based on the type of an
event, we add these targets in the call graph and add indi-
rect arrows from the handle_receive_packet function
to those target functions. Note that, we use a bottom-up
approach for constructing the call graph that represents the
interprocedural control flow of the program.

Extracting the slice: Once we have the call graph of the
program, we extract the slice of the call graph sub-rooted
at the handle_receive_packet function. This slice
includes all the successor functions that implement the log-
ics of accepting an incoming packet and then processing the
packet based on the packet content and the protocol state.
Fig. 6 shows an example of an abstract slice extracted from
the BLE source code.

Identifying connection state variables: Once a packet is
accepted after running the checks on the packet contents,
the gateway starts processing the packet and takes actions
(i.e., generates events) depending on the type and content
of the packet. The gateway initializes and updates some of

the program variables and objects specific to that connec-
tion. We need to identify those program variables whose
liveness lasts throughout a BLE connection. In order to find
those variables and objects, we traverse each statement of
the functions found in the sliced call graph and identify the
variables that are defined (i.e., assigned to some values)
within that functions. This includes both local and global
variables which are considered as possible connection state
variables. Generally the scope of a local variable is only
within the function unless it is an alias of a global variable
and, therefore, it should not be considered as a connection
state variable. However, if a local variable is an alias of a
global variable, we consider that local variable as one of the
state variables. We compare the points-to set (the list of tar-
get values of a pointer obtained through the points to analy-
sis) of the local variables defined in a function with the
points-to set of the global variables. If the points-to sets are
identical, we infer that the local variable is an alias of the
corresponding global variable.

Identifying the connection state variables is done offline
and it is a one-time cost operation. SeamBlue does not need to
compute the state variables every time it needs tomigrate the
connection. We present an excerpt of the resulting set of con-
nection state variables for the BLE implementation in Table 1.

6.2 Extracting Pairing-Bonding/Connection State
Variables

We instrument the BLE implementation so that we obtain
the runtime values of the pairing-bonding/connection state
variables for a connected IoT device (as shown in steps (2)
and (6) in Fig. 3). The current gateway stores the extracted
information into memory and sends it to subsequent gate-
ways. The runtime for this extraction module is distributed
across different layers of BLE protocol stack. For the run-
time implementation, we add SeamBlue APIs so that the dif-
ferent layers can interact among themselves. Note that this
instrumentation is performed only at the BLE gateways.
Thus our proposed system does not modify the BLE imple-
mentation of IoT devices which allows the already deployed
billions of IoT devices to integrate to the SeamBlue system
without further modification.

Fig. 5. Call graph for the program in Fig. 4.

Fig. 6. Slice of the BLE source code that handles packet processing logic.

TABLE 1
An Excerpt of the Set of Connection State

Variables of the BLE Stack

Items Layers where used

Device Type All layers
Device Address Type All layers
Bluetooth device pseudo address All layers
Long-Term Key (LTK) SMP
Identity resolving key (IRK) SMP
Connection Signature Resolving
Key (CSRK)

SMP

EDiv SMP
RAND SMP
Access Address Link Layer
Hop Interval L2CAP
Hop Increment L2CAP
CRCInit Link Layer
Slave Latency L2CAP, Link Layer
WinOffset Link Layer
Channel Map Link Layer
UUID GAP, GATT
Characteristics Info GAP, GATT

HUSSAIN ETAL.: SECURE SEAMLESS BLUETOOTH LOW ENERGYCONNECTION MIGRATION FOR UNMODIFIED IOT DEVICES 933

6.3 Sharing Pairing-Bonding Information with
Candidate Gateways

BLE central serves as a gateway and scans for peripheral
devices so that it can connect with them and receive the
desired GATT services. In order to ensure secure data trans-
fer to the server through gateways, the current gateway ini-
tiates pairing and bonding procedures as shown with (1) in
Fig. 7. After creating a connection through pairing and
bonding, the current gateway extracts the pairing-bonding
related information for transferring to the possible subse-
quent gateways. In Fig. 7, the gateway A finds B, C, D, and E

as the candidate gateways because of their proximity to A

and sends the pairing-bonding information to them.
Upon receiving the pairing-bonding information, the

candidate gateways B, C, D, and E store this information
mapped with the Bluetooth device address of that IoT
device so that whenever that device needs service from
these gateways, they do not have to execute the pairing-
bonding procedures. Note that the candidate gateways do
not initiate connection at this stage since they do not have
connection state information.

6.4 Selecting Subsequent Gateway for Connection
Transfer

If an IoT device moves during or after connection establish-
ment, the current gateway or the IoT service providing cloud
system is able to estimate the device’s moving direction [14].
SeamBlue uses this mechanism and examines a device’s loca-
tions at recent timestamps to infer the moving direction.
Location information of IoT devices can also be obtained
using existing indoor and outdoor localization techni-
ques [38]. By analyzing themovement direction and speed of
the IoT devices, the current gateway or the service provider
selects the subsequent gateway among the candidate gate-
ways to whom the connection information will be trans-
ferred. As shown in Fig. 8a, the current gateway A transfers
connection information to the subsequent gateway D.

Ping-Pong Effect: An IoT device may move back and
forth in a region shared by multiple gateways. As shown
in Fig. 8b, the gateways A and D share a common region
which is partitioned using a line. The bronze markers
denote the area where the signal strength (RSSI) of gate-
way A is greater than that of gateway D. Conversely, the
blue markers denote the opposite case. According to
SeamBlue, the current gateway A initiates a connection
transfer as soon as the IoT device moves out of the A domi-
nant area. However, if an IoT device moves back and forth

in a shared region, the BLE connection might also switch
between the corresponding gateways. To reduce this
effect, SeamBlue uses a motion prediction mechanism [14]
that leverages statistical data (i.e., previous movement pat-
terns) of the IoT device’s movements. If the device pre-
dominantly moves back and forth, SeamBlue gateways do
not transfer the connection as soon as it goes beyond the
half of the shared region. SeamBlue uses a delay tolerant
approach to see if the device moves in the direction of the
current gateway. If not, the current gateway transfers con-
nection to the subsequent gateway.

6.5 Secure Sharing of Pairing-Bonding/Connection
Information

The gateway with which the peripheral is currently con-
nected needs to distribute the bonding and connection infor-
mation to candidate gateways and the subsequent gateway,
respectively. Such sharing can be obtained either by pushing
the bonding and connection information to the cloud from
where all other gateways can fetch this information or by
directly disseminating the bonding and connection informa-
tion to the appropriate set of gateways. With respect to shar-
ing of this information, the receiver gateways can be
categorized into two groups: trusted and untrusted gateways.

6.5.1 Trusted Gateway

If the receiver gateways belong to the same cluster of gate-
ways as the current gateway, they already share a secret
group key. Using this group key they first authenticate
themselves and then derive a new session keys (CK and
IK) as shown in Fig. 9. The current gateway then shares the
data (i.e., pairing-bonding and connection information
(PCI)) with the subsequent gateways in encrypted form
using the derived session keys. The secret group key can be
shared between gateways through WiFi or 4G LTE commu-
nication network and thus no change is required in the
existing Bluetooth protocol.

The current gateway appends a nonce to the PCI so that
the resultant ciphertext of the pairing-bonding and con-
nection information is different for the same plaintext data
and thus prevents against the replay attacks. The subse-
quent gateway obtains the PCI by decrypting the cipher-
text and then verifies the MAC of the received message.
The current gateway invalidates the session keys and
nonce when they are used once for sharing PCI with the
subsequent gateway securely. The current gateway estab-
lishes new session keys and nonce if it requires to transfer
the PCI again.

Fig. 7. (1) Pairing and bonding with gateway A, (2) gateway A shares
pairing-bonding information with the gateways B, C, D, and E.

Fig. 8. (a) Subsequent gateway selection and connection transfer as the
user with IoT device moves from gateway A to gateway D. (b) Gateways
selection and ping-pong effect.

934 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018

6.5.2 Untrusted Gateway

If the subsequent gateway to which the BLE connection is
going to be migrated is not already trusted, e.g., in the case
of wide area networks (WANs) when a user moves from
one organization (e.g., hospital) to another, the current gate-
way needs to verify the public key certificate [39] of the sub-
sequent gateway. Upon certificate validation, the current
gateway may establish a shared secret key with the receiver
gateway using the Diffie-Hellman key exchange proto-
col [40] or a public key cryptography protocol [41] to share
the bonding and connection information securely. Thus
SeamBlue allows the BLE connection to migrate to a gateway
that may be in a different LAN or WANwhere the gateways
are initially untrusted. Since the Diffie-Hellman protocol
requires multiple message exchanges for establishing a
shared secret key between two gateways, it might not be
energy and time efficient for such scenarios. Therefore,
SeamBlue adopts public key cryptography which requires
less amount of time for mutual authentication. An example
of data transfer with public key cryptography is following:

c EPKrcvðPCIjjnonceÞ (1)

PCIjjnonce DSKrcvðcÞ (2)

where PCI is the data to transfer, and PKrcv is the public
key of the receiver gateway. In Eqn. (1), the current gateway
encrypts the data using receiver’s public key, PKrcv and
transfers c to the receiver gateway. The receiver gateway
has knowledge of the corresponding secret key, SKrcv, and
thus decrypts c to PCIjjnonce as shown in Eqn. (2). We use
nonce to create different ciphertexts for the same plaintext
and also to prevent the replay attacks.

Though public key cryptography may require less
amount of time for transferring pairing-bonding/connec-
tion information, it does not ensure the perfect forward
secrecy. In other words, if the adversary learns the private
key of a compromised BLE gateway, it can decrypt the traf-
fic of past and future sessions. Therefore, in order to protect

the encrypted communications and sessions recorded in the
past, SeamBluemay configure the system to adopt the Diffie-
Hellman key exchange protocol for creating a shared secret
key. This session key is then used by the current gateway to
encrypt the pairing-bonding/connection information for
transfer securely to the subsequent gateway. More efficient
approaches, e.g., the pairing-free certificateless hybrid sign-
cryption (pCL-HSC) [42] scheme, can also be used in the
case of untrusted gateways which combines pCLSC-TKEM
with a data encryption mechanism (DEM).

6.6 Protecting Previous and Future BLE Packets
from Untrusted Gateways

If an untrusted gateway obtains the same pairing-bonding/
connection information (e.g., LTK, CSRK, etc.) used by the
trusted gateway, the untrusted gateway may decrypt the
previously exchanged BLE packets between a peripheral
device and the trusted gateways. Besides, if the same pair-
ing/bonding and connection information is still used after
the device moves from an untrusted gateway to a trusted
gateway, the untrusted gateway may sniff the BLE packets
and decrypt them using the keys obtained earlier. Therefore,
in order to protect the previous and future BLE packets from
untrusted gateways, the trusted gateway changes the keys
(i.e., LTK, IRK, CSRK) and parameters (resulted from the ini-
tial pairing-bonding procedure and connection setup) when
a connection is transferred from a trusted gateway to an
untrusted gateway. Similarly, the trusted gateway changes
the keys and connection parameters when a connection is
migrated from an untrusted gateway to a trusted gateway.

6.7 Cloning Connection Information to
Subsequent Gateways

Upon reception of the connection information, the subse-
quent gateway does not initiate the pairing-bonding proce-
dure, since the IoT device is already added as a bonded
device into the subsequent gateway’sNVRAM. The SeamBlue
module running on the gateway updates the connection
related parameters for communicatingwith the IoT device.

Since the subsequent gateway does not scan, discover, or
create a new pairing and bonding with the IoT device, the
BLE peripheral does not add the subsequent gateway as a
bonded central device. Therefore, the IoT device does not
need to replace the current gateway’s device address with
that of the next gateway in its memory. As a result, to send/
receive packets to/from the peripheral, the subsequent
gateway impersonates the current gateway using the device
address. We instrument the BLE implementation on the
gateway only so that the communication between the subse-
quent gateway and the IoT device is executed with the cur-
rent gateway’s device address. Along with the device
address, the subsequent gateway uses other connection
related information which are already shared with the IoT
device. The connection related information is spread across
both the host and controller parts of the BLE stack (shown
in Fig. 2). Since some gateway devices, e.g., Android smart-
phones, use proprietary Bluetooth device drivers, they do
not allow one to change any variables located at the Link
Layer in the controller part. Due to this limitation, we pro-
pose two approaches for cloning connection information to
the subsequent gateway: partial and full stack cloning.

Partial Stack Cloning: In partial stack cloning, the subsequent
gateway impersonates the current gateway using the shared

Fig. 9. Authentication, and securely sharing pairing-bonding and connec-
tion information with trusted subsequent gateway.

HUSSAIN ETAL.: SECURE SEAMLESS BLUETOOTH LOW ENERGYCONNECTION MIGRATION FOR UNMODIFIED IOT DEVICES 935

connection information that are spread across the application
layer to L2CAP layer of the BLE stack. The subsequent gate-
way adds the peripheral as a bonded device and impersonates
the current gateway’s device address. However, due to the
proprietary nature of some Bluetooth device drivers, the sub-
sequent gateway cannot change the values of Access

Address, connectioninterval, slavelatency, chan-
nel map, and CRCInit in the link layer of the BLE stack for
completely impersonating the current gateway. We address
this challenge by using an additional connection request from
the subsequent gateway to the IoT device. In this procedure,
the current gateway disconnects the connection with the IoT
device and provides a control signal to the next gateway for
sending connection request(s) to the peripheral. Since the sub-
sequent gateway is already stored as the bonded device in IoT
device’s NVRAM, according to the BLE protocol, upon recep-
tion of the connection request the IoT device just updates the
connection related parameters (i.e., Access Address, con-
nection interval, slave latency, channel map, and
CRCInit) for that bonded device. Hence, partial stack cloning
requires an extra connection request for connection migration
to the next gatewaywithoutmodifying the IoT devices.

Full Stack Cloning: The full stack cloning approach allows
the subsequent gateway to impersonate the current gateway
using the shared connection information that spread from
the application layer to the link layer of the BLE stack (i.e., it
requires the controller part of the BLE stack to be
open source). Therefore, the current gateway’s Access

Address, connection interval, slave latency,
channel map, CRCInit values of the link layer are used
by the subsequent gateway to impersonate the current gate-
way. Note that channel maps can be updated to handle col-
lisions. Since the current and the next gateways use the
same AA for sending and receiving packets, the full stack
cloning does not require any new connection request mes-
sage from the next gateway to the peripheral device.

6.8 Managing Storage Requirements
In order to make sure that memory exhaustion does not
occur as a result of storing pairing-bonding information
from neighboring gateways, we design a technique that ena-
bles gateways to remove the unnecessary device data from
the bonded devices’ list. This technique comprises of the fol-
lowing two principles that define the conditions for a BLE
gateway to receive information regarding adding/remov-
ing devices to/from its bonded devices’ list, respectively:

� Adding a device to the bonded devices’ list: A BLE gate-
way shares the pairing-bonding information of a BLE
device with a neighboring gateway only if the neigh-
boring gateway is not also a neighbor of the anteced-
ent gateway with which the BLE device was
previously connected. In the case that a neighbor is
common to both the current and antecedent gate-
ways, that particular neighboring gateway already
has the pairing-bonding information for the BLE
device stored in list (since the information has already
been shared with this gateway by the antecedent
gateway). Therefore, given the set of neighbors of cur-
rent and antecedent gateways, i.e., NCur and NAnt,
respectively, the pairing-bonding information is
sharedwith a set of gatewaysNadd 2 NCur where-

Nadd ¼ NCur �NAnt � fAntg (3)

� Removing a device from the bonded devices’ list: Once a
BLE device moves to the subsequent gateway
(‘current’ at this moment), the antecedent gateway
notifies a subset of its neighbors regarding this
event. This subset comprises those gateways that
are neighbor of this antecedent gateway but are not
neighbors of the current gateway. In the case that a
neighbor is common to both the antecedent and cur-
rent gateways, the particular neighboring gateway
may establish a connection with that BLE device in
future for which it should keep the pairing-bonding
information (i.e., no action necessary). However, in
the case that a neighbor is not also a neighbor of the
device’s current gateway, the antecedent gateway
requests that particular neighbor to safely remove
the pairing-bonding information from its bonded
devices’ list. Therefore, given the set of neighbors of
current and antecedent gateways, i.e., NCur and
NAnt, respectively, the antecedent gateway requests
a set of its neighbors Nrem 2 NAnt for pairing-bond-
ing information removal where

Nrem ¼ NAnt �NCur � fCurg (4)

Consider the arrangement of gateways shown in Fig. 10.
The movement of the user is shown with a dotted line
which crosses over the range of gateways A, B, C, and D,
i.e., the user’s BLE device gets service from these gateways
in order while moving through the area.

The following describes how we optimize the memory
consumption for pairing-bonding information using the
above principles. At the time the BLE device gets connected
with gateway A, gateway A shares the device’s pairing
bonding information with its neighbor gateways E, B, and H

(shown with green arrows). With the device’s movement,
when the connection is migrated from gateway A to gate-
way B, gateway B shares the pairing-bonding information
with only the gateways F, C, and I (shown with green
arrows). Here, the antecedent gateway is A, the current gate-
way is B, NAnt = fE;B;Hg, and NCur = fE;A;H; F;C; Ig.
Therefore, Nadd = NCur �NAnt - fAntg = fF;C; Ig. Similarly,
with the device’s movement, when the connection is
migrated from gateway B to gateway C, gateway C shares
the pairing-bonding information with only gateways G, D,
and J (shown with green arrows). Additionally, since the
device’s connection has been migrated to gateway C, the
gateway B sends a request to gateways E, A, and H to
remove the pairing-bonding information of the device.

Fig. 10. Memory optimization for pairing-bonding information.

936 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018

Here, the antecedent gateway is B, the current gateway is C,
NAnt = fE;A;H; F;C; Ig, and NCur = fF;B; I;G;D; Jg.
Therefore, Nrem = NAnt �NCur - fCurg = fE;A;Hg. Simi-
larly, when the connection is migrated from gateway C to
gateway D, gateway C sends a request to gateways F, B, and
I to remove the pairing-bonding information of the device.

6.9 Handling Compromised Gateways
If an initially trusted gateway gets compromised, the
pairing-bonding information about the bonded devices in
that gateway should no longer be used by other gateways.We
call these devices to be removed/unpaired devices. The bonded
devices’ pairing-bonding keys stored in the compromised
gateway are also shared with other gateways. As a result,
other gateways use the same pairing-bonding keys for their
communication with the to be removed devices and thus the
compromised gateway may listen to those BLE communica-
tion channels. In order to prevent this situation, SeamBlue
allows the compromised gateway’s neighbors (i.e., the one-
hop neighboring gateways) to remove the to be removed
devices from their memory. The neighboring gateways then
propagate this removal event to their neighbors (i.e., the
two-hop neighbors of the compromised gateway) so that
those bonded devices are also removed from the two-hop
neighboring gateways. Note that the removal event is
propagated up to only two-hop neighbors because the to be
removed devices are not stored as bonded devices in the
gateways beyond this region (according to Section 6.8).
The trusted gateways have to execute the pairing-bonding
procedure again to connect with those devices.

6.10 Handling Compromised Devices
If an initially trusted BLE device gets compromised, the
gateway with which the device is connected disconnects
and unpairs/removes that compromised device from its
memory. This removal event is then propagated up to only
the one-hop neighboring gateways so that the compromised
device is removed. In this way, SeamBlue ensures that no
compromised BLE devices are present in the system.
SeamBlue also enlists the compromised devices in the black-
list of every trusted gateway so that the compromised devi-
ces cannot connect with any of the gateways in the system.

6.11 Implementation Notes
We briefly discuss some of the key implementation issues.

6.11.1 Static Analysis

We implemented the static analysis for finding state varia-
bles using the LLVM 3.8 compiler infrastructure [32] by
directly following the design from Section 6.1. The LLVM
passes operate on the LLVM intermediate representation,
which is a low level strongly typed language-independent
program representation tailored for static analyses and opti-
mization purposes. The LLVM IR is generated from the C
source code by clang. We used Bluedroid [24] for Android
smartphones and BlueZ [23], an open source implementa-
tion, for many other BLE devices as the BLE protocol
implementation.

6.11.2 Runtime Value Extraction

We instrument the Bluedroid (Android 4.2 and later)
and BlueZ (Android 4.1 and before) for extracting the

runtime values of the bonding and connection related
state variables.

6.11.3 SeamBlue App

Our custom written SeamBlue application with Java (J2SE)
implements the gateway selection algorithm and uses
OpenSSL libraries [43] for performing the cryptographic
operations. The SeamBlue application running on the gate-
ways uses TCP connections to transfer bonding and connec-
tion related information and to exchange the control signals.

7 EVALUATION

This section starts with the experimental setup followed by
two sets of evaluations. First, the success rate of BLE con-
nection migration is measured and the ping-pong effect is
evaluated. Second, the overhead of SeamBlue is measured
with the test bed we build.

7.1 Experimental Setup

7.1.1 Devices

We use five Nexus 5 phones as gateways (i.e., BLE centrals),
one Nexus 6 phone, one Alcatel Onetouch tablet, and one
Moto 360 watch (1st generation) as IoT devices. The Nexus
5 phones have only the BLE central feature whereas the
Nexus 6 and the Alcatel Onetouch tablet have both the BLE
central and the BLE peripheral capabilities. The configura-
tion of Nexus 5, Nexus 6, Alcatel Onetouch Pixi tablet, and
Moto 360 watch is summarized in Table 2.

7.1.2 Testbed

We have built a testbed (as shown in Fig. 11) by hanging the
Nexus 5 smartphones as IoT gateways on the walls along the
hallways of our department. To evaluate the amount of time
required and the number of data packets lost for a connection
migration, we first organize the gateways in a linear topol-
ogy (where any physical space is shared by at most two gate-
ways) andmove a BLE device (e.g., Nexus 6 phone or Alcatel
Onetouch Tablet or Moto 360 smartwatch) along the hallway
from the first gateway to the fifth. Our testbed setup resem-
bles the SeamBlue system that can be deployed in hospitals,
airports, and modern theme parks as discussed in Section 2.
To evaluate the ping-pong effect, we make changes to the
topology and arrange the gateways in a manner so that some
areas fall within the ranges of more than two gateways.

TABLE 2
Configurations of Nexus 5 and Nexus 6 Smartphones

and Alcatel Onetouch Pixi Tablet

Features Nexus 5 Nexus 6 Alcatel Moto 360

Onetouch (1st Gen.)

Processor Qaud-core Quad-core Quad-Core TI OMAP 3

Krait CPU Krait 450 CPU CPU Single-Core

Processor Speed 2.3 GHz 2.7 GHz 1.2 GHz 1GHz

RAM 2 GB RAM 3 GB RAM 1 GB RAM 512 RAM

WiFi Yes Yes Yes Yes

Celullar 4G/LTE 4G/LTE 4G/LTE No

BLE Central Yes Yes Yes No

BLE Peripheral No Yes Yes Yes

OS Android Android Android Android

OS Lollipop Marshmallow Lollipop Wear

HUSSAIN ETAL.: SECURE SEAMLESS BLUETOOTH LOW ENERGYCONNECTION MIGRATION FOR UNMODIFIED IOT DEVICES 937

7.1.3 Applications

We use the nRF Connect application [44] downloaded from
the Google Play store for BLE peripherals. For the gateways,
we have developed a custom application. We use the heart
rate monitoring service that periodically sends heart rate
measurement in a single BLE packet of size 20-bytes every
second from a BLE peripheral device to the BLE gateway.
The heart rate monitoring service is one of the representa-
tive applications of SeamBlue where patients wearing BLE-
enabled heart rate monitoring devices may move indoor or
outdoor and may require to migrate the BLE connection
from one gateway to another for continuous connectivity.
Each data point reported in the experiment is obtained by
taking the average of at least five runs.

7.2 BLE Static Analysis
Fig. 12 shows the number of state variables found through
manual analysis and using static analysis on both BlueZ [23]
and Bluedroid [24] open source BLE implementations. Our
manual analysis resulted in some missing state variables
because of which we could not successfully migrate the BLE
connection from one gateway to other.

7.3 BLE Connection Migration Success Rate
A connection gets migrated from the current gateway to
subsequent gateways based on the location and movement
direction of the user carrying the BLE peripheral enabled
IoT devices/smartphones. We found that every connection
migration request was successful both in case of static IoT
devices and in the case of IoT devices moving at different
speeds. Hence, the success rate we observe for SeamBlue in
our testbed is 100 percent.

7.3.1 Ping-Pong Effect

To evaluate the ping-pong effect we arrange the gateways in
a formation so that the ranges of more than two gateways
overlap. Users equippedwith IoT devices pass through those
shared regionswhile moving from one gateway to another.

Fig. 13 shows that if users move randomly every after two
seconds, the number of times the connection is switched
among gateways increases almost at 2X ratewith the number
of gateways sharing common regions. With the SeamBlue’s
motion prediction mechanism, the number of connection
switches among gateways reduces almost half times than the
number without using motion prediction. In the case of four
overlapping gateways, the users random movement direc-
tion causes a higher number of connection migrations using
our simple motion prediction mechanism. This can be
improved by using sophisticated motion prediction techni-
ques that leverage additional information about users previ-
ousmovements, geographical map, and applications.

7.4 BLE Connection Migration Cost

7.4.1 Extra Bytes Required for Connection Migration

In both partial stack cloning and full stack cloning, the current
gateway sends a 512-bytes blob containing the bonding
related information to each of its neighbors. However, for full
stack cloning, the current gateways sends a 2048-bytes blob
containing values of all the connection related variables to the
next gatewaywhere the connection is going to bemigrated.

7.4.2 Time Required for Adding a Peripheral as a

Bonded Device

As part of the connection migration procedure, the current
gateway sends bonding related information to its neighbor-
ing gateways. Upon reception of this information they add
the BLE peripheral as a bonded device into their NVRAM
when they receive the bonding related information from the
current gateway. Adding the peripheral as a bonded device
requires the IoT gateway to load the device information,
e.g., device address, device type, address type, and keys
from the main memory, and then store this information into
the gateway’s NVRAM for use in future communications.
Table 3 shows the mean time required by IoT gateways of
different device types to load a peripheral.

Table 3 shows that the Nexus 6 smartphone requires the
least amount of time to add a peripheral as a bonded device
due to its higher CPU speed and memory capacity com-
pared to the other devices as listed in Table 2.

7.4.3 Time Required for Transferring State Variables

Fig. 14 shows that the time required to transfer the state vari-
ables to a trusted and an untrusted gateway over WiFi for

Fig. 11. A part of the testbed showing smartphones (hanging near the
fire alarms) that served as gateways.

Fig. 12. Number of connection state variables found through manual and
static analysis.

Fig. 13. SeamBlue handles ping-pong effect by performing motion
prediction during connection migration.

938 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018

both partial stack cloning and full stack cloning approaches.
Because of the proprietary drivers of the BLE gateways used
in our testbed, we could not use a open source controller
implementation (we could used only the host part) of the
BLE stack. Therefore, the results of the full stack cloning are
obtained by simulating the access of the link layer state varia-
bles and using the results of partial stack cloning. We assume
that the symmetric group keys of trusted gateways and pub-
lic keys of untrusted gateways are already known by the
respective gateways beforehand. Fig. 14 shows that the time
required for transferring the state variables for untrusted
gateways is almost 2X of the time required for the trusted
gateways for different speeds of the user. This is because the
current gateway first establishes a session key by performing
the Diffie-Hellman key exchange algorithm (which is a time
consuming operation) using public keys and then shares the
state variables securely with the untrusted gateway whereas
for the trusted subsequent gateway the current gateway
derives the session key from the shared group key in a much
faster way using one-way cryptographic hash function.

Note that the partial stack cloning sends only the bonding
related information and requires the next gateway to send
connection request to the IoT devices for connection migra-
tion. Therefore, the partial stack cloning always requires less
time for transferring state variables than full stack cloning.
Also, since the control plane packet losses increase with
users mobility, the time required for all the scenarios
(shown in Fig. 14) increases slightly with the increase of the
users moving speed.

7.4.4 Time Required for Connection Migration

The time required for connection migration in full stack clon-
ing is computed by considering the time required to (1)
extract the values of connection related variables, (2) send
this information to the next gateways securely, (3) decrypt
the received information, and (4) update the connection
related state variables. On the contrary, the time required
for connection migration in partial stack cloning is only the
time to establish a new connection without further creating
any pairing and bonding between the subsequent gateways
and the IoT devices.

Fig. 15 shows that the connection migration time
increases with the increase of users speed as there are more
packet losses associated with increased mobility of users.
Also, the connection migration time for the partial stack clon-
ing is smaller than that of the full stack cloning because creat-
ing a new connection between the subsequent gateway and
the IoT device does not require any cryptographic operation
in the case of the partial stack cloning. However, we observed
that establishing a BLE connection between a device and a
gateway sometimes require multiple connection attempts
because of a known implementation issue [45] of the
Android Lollipop OS used by the Nexus 5 phones (i.e., the
BLE gateways). Due to this reason, a few times, the partial
stack cloning required multiple connection requests for a sin-
gle connection migration.

There is a trade-off between the full stack cloning and the
partial stack cloning. The SeamBlue’s connection migration
mechanism with full stack cloning does not require a new
connection request from the target/next BLE gateway as
opposed to the partial stack cloning. Thus full stack cloning
requires a smaller number of message transmissions than
the partial stack cloning. As a result, seamless migration with
full stack cloning has lower power consumption compared to
the partial stack cloning. However, since the full stack cloning
requires a higher number of instrumented instructions as it
needs to extract a higher number of connection state varia-
bles, it results in higher delays than the partial stack cloning
for transferring connection. Since the partial stack cloning
requires further connection request(s) from the subsequent
gateway to an IoT device for connection migration, it incurs
higher power consumption for sending/receiving more
number of messages than the full stack cloning.

7.4.5 Data Packet Loss

Fig. 16 shows the number of data packets lost as an impact
of BLE connection migration when the heart rate monitor-
ing application running on an IoT device sends data to the

TABLE 3
Time Required for Adding a Peripheral as a Bonded Device

Gateway Loading Time
(ms)

Storing Time
(ms)

Total Time
(ms)

Nexus 5 40.5 19.1 60.4
Nexus 6 36.7 17.4 54.1
Alcatel OneTouch 43.2 20.3 63.5

Fig. 14. Time required for transferring the state variables.

Fig. 15. Time required for connection migration.

Fig. 16. Number of packets lost when data packets are sent with 1 sec-
ond time interval.

HUSSAIN ETAL.: SECURE SEAMLESS BLUETOOTH LOW ENERGYCONNECTION MIGRATION FOR UNMODIFIED IOT DEVICES 939

gateway after every 1 second. Full stack cloning with
untrusted gateway causes a loss of at most 2 packets which
are about 2X of the other scenarios. With our implementa-
tion of the SeamBlue system, the number of heart-rate moni-
toring packets lost has a direct relationship with the
connection migration time. This is because the packets from
a BLE device are not processed by either the current gate-
way or the subsequent gateway during a connection migra-
tion. The current gateway stops processing the BLE packets
at the start of a connection migration, and the subsequent
gateway resumes processing the BLE packets once the con-
nection is transferred. As a result, packets sent during the
connection migration time are not processed and and thus
are lost. Therefore, the trend for the packet losses is similar
to the connection migration time as shown in Fig. 16. How-
ever, the number of packet losses can be further minimized
if the current gateway disconnects the BLE connection with
the peripheral device after transferring the pairing-bonding
and connection information and immediately establishes a
new connection with the subsequent gateway.

Fig. 17 shows a stress testing of packet losses when the
heart rate data is sent every after 20 ms intervals which is
the minimum connection interval for BLE devices. For full
stack cloning, around 160 data packets were lost during con-
nection migration which span the user’s heart rate informa-
tion for only about 1.5 minutes.

7.4.6 Storage Requirements

Fig. 18 shows the number of bytes required to store a BLE
peripheral device in our system where five BLE gateways
are arranged in a linear topology. We move the peripheral
device from the one end to the other end of the system
and repeat this movement a number of times. As the
peripheral device visits the subsequent gateways, soon
the device is stored as a bonded device in all the five
gateways of the system if we do not remove the device

from any of the gateways. However, with our enhanced
storage management component we limit the number of
gateways storing the peripheral device to three at any
point of the operation. Note that, the number of such
gateways varies between two and three as the peripheral
device moves from one end to the other.

Fig. 19 shows the maximum number of bytes required to
store all the peripheral devices in a system. The system is
assumed to have G ¼ 50 BLE gateways where each gateway
has maximum N ¼ 6 neighboring gateways. Let M be the
total number of BLE peripheral devices currently present in
the system. If no bonded device is ever removed from any
gateway of the system, the maximum number of cloned/
duplicate instances of the M peripheral devices is M �G
(stored at G gateways). However, if we remove the BLE
peripheral device according to our storage management
strategy, the maximum number of cloned/duplicate instan-
ces of theM devices isM �N (stored at G gateways). As the
number of peripheral devices increases in the system,
Fig. 19 shows that the number of bytes required to store the
peripheral devices without our storage management com-
ponent increases with a much higher rate than that of with
our storage management component.

7.4.7 Energy Consumption

If a BLE device (in the absence of SeamBlue system) wants to
connect to a new gateway, the device has to disconnect the
existing BLE connection with the current gateway, broad-
cast the advertisement packets to the surrounding gate-
ways, perform the pairing-bonding procedure with the
subsequent (i.e., the new) gateway, and then establish the
BLE connection. However, in SeamBlue, a BLE device does
not require to create a new pairing-bonding while the con-
nection is migrated from the current gateway to the subse-
quent gateway. With partial stack cloning, the BLE device
only disconnects the existing BLE connection with the cur-
rent gateway and connects immediately with the subse-
quent gateway without sending any BLE advertisement
packets. Thus SeamBlue enables the BLE devices to save the
energy required for the paring-bonding procedure, and also
for the advertisement packets. We leverage BLE’s energy
consumption models proposed by Treurniet et al. [46] and
Siekkinen et al. [47], and find 4.96 mJ energy consumed by a
BLE device for the pairing-bonding procedure and 0.1 mJ
energy for sending an advertisement packet in a BLE
channel. Note that the BLE device may send more than one
advertisement packets until it is connected with the subse-
quent gateway. Therefore, the BLE devices in SeamBlue

Fig. 17. Number of packets lost when data packets are sent with 20 ms
time interval (minimum connection interval for BLE connection).

Fig. 18. Memory required to store a BLE peripheral device to the five
Nexus 5 gateways arranged in a linear topology.

Fig. 19. Memory required to store different number of BLE devices at the
SeamBlue system consisting of fifty BLE gateways where each gateway
has maximum six neighboring gateways.

940 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018

system save at least 5.06 mJ amount of energy compared to
that of the non-SeamBlue system.

We use the energy models proposed by Castiglione
et al. [48], [49] and Potlapally et al. [50] to compute
the energy required (as shown in Table 4) by the current
gateway in the SeamBlue system for encrypting the paring-
bonding and connection information. For an untrusted sub-
sequent gateway, the current gateway requires to generate a
shared session key using Diffie-Hellman key exchange pro-
tocol which results in higher energy consumption than that
for a trusted subsequent gateway. SeamBlue uses AES-128-
CBC for symmetric key encryption and SHA1 for signature
generation. By using the Android phone’s energy model for
wireless communications proposed by Nika et al. [51], we
find the energy consumed for transferring the encrypted
pairing-bonding and connection information over WiFi to
be 152 mJ.

8 SECURITY ANALYSIS

In this section, we analyze the security and privacy of our
SeamBlue system with respect to the adversary model dis-
cussed in Section 5.4. We show that the adversary with the
given capability cannot compromise the secure communica-
tion in SeamBlue.

� The adversary cannot inject or modify or replay BLE pack-
ets. SeamBlue ensures that the gateways always per-
form secure communication with BLE peripheral
devices using the keys established through pairing-
bonding procedure and later on shared securely
with the subsequent gateways during connection
migration. SeamBlue uses the LTK (long term key)
along with AES-128 encryption mechanism, which is
already proven to be secure, for encrypting the pro-
tocol data unit (PDU). For signing the PDU, SeamBlue
uses the CSRK (Connection Signature Resolving
Key) and generates the signature which is placed
after the PDU. Upon reception of a BLE packet, the
receiving device verifies the signature using the
CSRK. If the signature is correct, the PDU is assumed
to come from the trusted device. The signature is
composed of a message authentication code (MAC)
generated by the signing algorithm and a counter.
The counter is used to protect against replay attacks
and is incremented on each signed data PDU sent.
Thus SeamBlue ensures that every packet sent or
received by client and server is encrypted, authenti-
cated, and integrity-protected. Thus maliciously
injected or modified or replayed packets by adver-
saries are always identified.

We also use a cryptographic protocol verification
tool, ProVerif [52], to formally verify the authentic-
ity and secrecy of the messages exchanged between
the BLE device and the gateway. ProVerif assumes
that the adversary has complete control over the

network, i.e., it can overhear, intercept, and synthe-
size any message and is only limited by the con-
straints of the cryptographic methods used. Using
applied pi calculus, we first model the communica-
tion protocol between the BLE device and the gate-
way using the LTK for encryption and CSRK for
signature generation. We then formally verify that
the messages are authenticated, i.e., messages are
issued from a legitimate endpoint. In addition, we
verify that the adversary cannot learn the BLE mes-
sages sent over the public communication channel.
The model and the corresponding verification code
are given in Fig. 20.

� Untrusted gateways cannot learn the previous and future
BLE packets. When a BLE connection is required to
transfer from a trusted gateway to a not-already
trusted gateway, the trusted gateway first changes
the pairing-bonding keys (e.g., LTK and CSRK) and
connection parameters, and then provides the new
set of connection information to the not-already

TABLE 4
Energy Required by a BLE Gateway to Transfer the Pairing-Bonding and Connection Information

Scenario Key
Generation

Key
Exchange

Encryption Signature
Generation

Data
Exchange

Total

Trusted 5.318 mJ 150.89 mJ 0.62739 mJ 0.38912 mJ 152 mJ 309.22451 mJ
Untrusted 875.96 mJ 1046.5 mJ 0.82944 mJ 0.38912 mJ 152 mJ 2075.67856 mJ

Fig. 20. Proof of authentication, secrecy, and replay protection of the
BLE data packets.

HUSSAIN ETAL.: SECURE SEAMLESS BLUETOOTH LOW ENERGYCONNECTION MIGRATION FOR UNMODIFIED IOT DEVICES 941

trusted gateway. As a result, the not-already trusted
gateway cannot obtain the previous set of keys used
for exchanging BLE packets securely between the
trusted gateways and BLE peripheral devices. Simi-
larly, when the connection is transferred from the
untrusted zone to trusted zone, the trusted current
gateway changes the connection information so that
the untrusted gateway cannot learn the future BLE
packets.

� The Adversary cannot derive pairing-bonding and connec-
tion information. While migrating a BLE connection,
the current gateway first generates a session key
either using the shared group key (in the case of
trusted gateways scenario) or the Diffie-Hellman key
exchange protocol (in the case of untrusted gateway
scenario). The current gateway also appends a new
nonce to the pairing-bonding/connection informa-
tion (in both the trusted and untrusted gateway sce-
narios) every time it sends the information to the
subsequent gateway. Thus, use of different session
keys and nonces result in different ciphertexts for the
same pairing-bonding/connection information sent
by a gateway. As a result, the adversary cannot infer
or derive any correlation in the pairing-bonding/
connection information from ciphertexts.

� The adversary cannot impersonate legitimate gateways.
During connection migration the adversary may try
to impersonate a trusted subsequent gateway with
the subsequent gateway’s Bluetooth device address.
If the spoofed gateway is already trusted, the imper-
sonating gateway is short of the secret group key
which is shared only after mutual authentication. If
the spoofed gateway is not already trusted, SeamBlue
allows both the current and the subsequent gateways
to authenticate themselves through certificate valida-
tion. After that the subsequent gateway can obtain
the pairing-bonding keys and connection parameters
secretly through the public key cryptography or
through establishing a shared session key using the
Diffie-Hellman key exchange protocol. Since, a mali-
cious gateway impersonating a legitimate one will
not be validated during mutual authentication,
the malicious gateway cannot obtain the sensitive
pairing-bonding and connection information. Even if
the malicious gateway impersonates an already
trusted gateway, the adversary cannot decrypt the
pairing-bonding or connection related information
since it does not have the secret group key. In the
case of impersonating a legitimate (i.e., authenti-
cated) subsequent gateway for which the public key
certificate is already validated, the adversary cannot
decrypt the pairing-bonding or connection related
information since it does not know the private key of
the legitimate gateway.

� The adversary cannot retrieve pairing-bonding/connection
information even if a gateway is compromised. SeamBlue
ensures perfect forward secrecy for sharing the
pairing-bonding/connection information using Dif-
fie-Hellman key exchange protocol. Therefore, if a
gateway is compromised, there is no key material on
the gateway to help the adversary decrypt previously
exchanged ciphertext. Since the adversary cannot
decrypt the ciphertexts, it cannot extract the pairing-
bonding keys and connection parameters used earlier.

� The adversary cannot identify the gateway to which an
IoT device is connected. For an IoT device, each subse-
quent gateway impersonates the initial gateway
(which the IoT device initially connects to). There-
fore, every BLE data packet received/sent from/to
the IoT device includes the same Bluetooth device
address for all the subsequent BLE gateways. Since
the adversary observes the same Bluetooth device
address for different BLE gateways for an IoT device,
it cannot locate the particular BLE gateway to which
the IoT device is currently connected.

9 RELATED WORK

Despite the heavy use of BLE for numerous smart applica-
tions, few research efforts [20], [53], [54] have been devoted
to enable seamless connectivity for IoT devices. Zachariah
et al. [6] address the problem of running different applica-
tions on a single gateway for different IoT services (e.g.,
heart rate monitoring, activity monitoring, smart home
appliance monitoring, etc.) and envision an application-
agnostic connectivity for worldwide deployment of IoT
gateways. In contrast, SeamBlue addresses the existing limi-
tation of seamless connectivity and proposes a framework
for seamless connection migration for unmodified IoT devi-
ces. Kodeswaran et al. [55] identify timely maintenance of
failed sensors as a critical task to ensure minimal disruption
to monitoring services, and propose an approach to opti-
mize maintenance scheduling. However, their approach
does not consider the case when sensor devices move out of
the communication range of gateways or when the gate-
ways suddenly fail.

Michalevsky et al. [10] have developed a mobile applica-
tion that enables members of a secret community to dis-
cover other affiliates that are in proximity to their mobile
devices. Das et al. [20] have carried out a measurement-
driven study of privacy leakage from communication
between wearable fitness trackers and smart phones. These
fitness trackers mostly use BLE for communicating and
syncing the data with the user’s smart phone. Albazrqaoe
et al. [54] propose a Bluetooth traffic sniffer, BlueEar, by
which two Bluetooth-compliant radios can coordinate to
learn the hopping sequence of indiscoverable Bluetooth net-
work, to predict adaptive hopping behavior, and mitigate
the impacts of RF interference.

As opposed to the cellular-handovers [11], [12], [13],
SeamBlue does not require modifications to the IoT devices
for BLE connection migration. Like cellular-handovers,
SeamBlue reallocates BLE channels in the partial stack cloning
through new connection establishment. However, in the full
stack cloning, SeamBlue transfers the BLE channels without
creating a new connection.

Compared to our previous paper [1], the current paper has
the following novel contributions.We have extended the BLE
static analysis that obviates the necessity of finding the state
variables in the path constraints and thus the analysis results
in amore precise set of state variables.We have also enhanced
the security features of connection migration by ensuring the
perfect forward secrecywhile sharing connection information
with a not-already trusted gateway. Our proposed enhance
solution prevents—(i) not an already trusted gateway from
learning the previous and future BLE packets (ii) the already
compromised gateways and the compromised BLE devices
from connecting with the benign gateways/BLE devices. We

942 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018

have also designed a memory/storage management solution
that allows BLE gateways to better manage the storing and
removing of bonded BLE devices. Finally, we have provided
a detailed security analysis of our SeamBlue system with a
cryptographic protocol verifier,ProVerif.

10 CONCLUSION AND FUTURE WORK

In this paper, we focus on the problem of IoT devices being
unable to connect to multiple gateways seamlessly and thus
propose a framework that ensures seamless communication
between a mobile IoT device and a remote service in a net-
work of BLE gateway environments. Our framework con-
sists of a static analysis module for the automatic extraction
of the state variables required during connection transfer.
Moreover, we design a gateway selection mechanism that
transfers connection related information to an optimal set of
gateways and thus reduces both communication overhead
and latency. In future, we would like to evaluate our testbed
in a real environment, e.g., airports or shopping malls with
a large number of BLE gateways and IoT devices. Also, we
would like to investigate if the same connection migration
technique can be applied to other communication protocols,
e.g., ZigBee [4], used by the IoT devices.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive comments which helped us to
improve the quality and the presentation of this paper. The
second author has been partially supported for this work by
the Schlumberger Foundation under the Faculty For the
Future (FFTF) Fellowship.

REFERENCES

[1] S. R. Hussain, S. Mehnaz, S. Nirjon, and S. Bertino, “Seamblue:
Seamless bluetooth low energy connection migration for unmodi-
fied iot devices,” in Proc. Int. Conf. Embedded Wireless Syst. Netw.,
2017, pp. 132–143.

[2] How far is the hype surrounding claims of up to 50B IoT and machine-
to-machine devices by 2020 away from reality?. [Online]. Available:
http://www.rcrwireless.com/20160628/opinion/reality-check-
50b-iot-devices-connected-2020-beyond-hype-reality-tag10

[3] Bluetooth Low Energy. [Online]. Available: https://www.bluetooth.
com/what-is-bluetooth-technology/bluetooth-technology-basics/
low-energy

[4] Zigbee. [Online]. Available: http://www.zigbee.org/what-is-
zigbee/

[5] Near Field Communication. [Online]. Available: http://
nearfieldcommunication.org/

[6] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson,
and P. Dutta, “The internet of things has a gateway problem,” in
Proc. 16th Int. Workshop Mobile Comput. Syst. Appl. 2015, pp. 27–32.
[Online]. Available: http://doi.acm.org/10.1145/2699343.2699344

[7] Moto 360 1st Generation [Online]. Available: https://www.motorola.
ca/products/moto-360-gen-1

[8] Samsung Gear [Online]. Available: http://www.samsung.com/
us/explore/gear-s3/?cid=ppc-

[9] A. A. Levy, J. Hong, L. Riliskis, P. Levis, and K. Winstein, “Beetle:
Flexible communication for bluetooth low energy,” in Proc. 14th
Annu. Int. Conf. Mobile Syst. Appl. Services., 2016, pp. 111–122.
[Online]. Available: http://doi.acm.org/10.1145/2906388.2906414

[10] Y. Michalevsky, S. Nath, and J. Liu, “Mashable: Mobile applica-
tions of secret handshakes over bluetooth low energy,” in Proc.
22nd Annu. Int. Conf. Mobile Comput. Netw., Jul. 2016. [Online].
Available: https://www.microsoft.com/en-us/research/
publication/mashable-mobile-applications-of-secret-handshakes-
over-bluetooth-le/

[11] A. Sgora and D. D. Vergados, “Handoff prioritization and deci-
sion schemes in wireless cellular networks: A survey,” IEEE Com-
mun. Surveys Tut., vol. 11, no. 4, pp. 57–77, Oct.–Dec. 2009.

[12] A. Rath and S. Panwar, “Fast handover in cellular networks with
femtocells,” in Proc. IEEE Int. Conf. Commun., Jun. 2012, pp. 2752–
2757.

[13] D. Wong and T. J. Lim, “Soft handoffs in CDMAmobile systems,”
IEEE Personal Commun., vol. 4, no. 6, pp. 6–17, Dec. 1997.

[14] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu, “Prediction and
indexing of moving objects with unknown motion patterns,” in
Proc. ACM SIGMOD Int. Conf. Manag. Data., 2004, pp. 611–622.
[Online]. Available: http://doi.acm.org/10.1145/1007568.1007637

[15] The future of IoT in airports Lessons from London City Airport
[Online]. Available: http://www.totalbluesky.com/2015/03/10/
future-iot-airports-lessons-london-city-airport/

[16] Disneys $1 Billion Bet on a Magical Wristband [Online]. Available:
https://www.wired.com/2015/03/disney-magicband/

[17] Bluetooth 4.2 Core Specification [Online]. Available: https://www.
bluetooth.com/specifications/bluetooth-core-specification/
technical-considerations

[18] Bluetooth Low Energy [Online]. Available: http://groups.inf.ed.ac.
uk/teaching/slipb13–14/Ewan/

[19] K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting privacy of BLE
device users,” in Proc. 25th USENIX Security Symp. Aug. 2016,
pp. 1205–1221. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/
fawaz

[20] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra,
“Uncovering privacy leakage in BLE network traffic of wearable
fitness trackers,” in Proc. 17th Int. Workshop Mobile Comput. Syst.
Appl., 2016, pp. 99–104. [Online]. Available: http://doi.acm.org/
10.1145/2873587.2873594

[21] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, “Kalis - a system
for knowledge-driven adaptable intrusion detection for the inter-
net of things,” in Proc. 37th IEEE Int. Conf. Distrib. Comput. Syst.,
2017, pp. 656–666.

[22] Rogue Device Detection [Online]. Available: https://www.
pwnieexpress.com/solutions/rogue-device-detection

[23] Official Linux Bluetooth Protocol Stack [Online]. Available: http://
www.bluez.org/

[24] Bluetooth - Android Open Source Project [Online]. Available: http://
llvm.org/

[25] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward sym-
bolic execution (but might have been afraid to ask),” in Proc. IEEE
Symp. Security Privacy, May 2010, pp. 317–331.

[26] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software,” Internet Society, 2005.

[27] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed
symbolic execution,” in Proc. 18th Int. Conf. Static Anal., 2011,
pp. 95–111. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2041552.2041563

[28] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proc. 8th USENIX Conf. Operating Syst. Des.
Implementation., 2008, pp. 209–224. [Online]. Available: http://dl.
acm.org/citation.cfm?id=1855741.1855756

[29] F. A. Teixeira, G. V. Machado, F. M. Q. Pereira, H. C. Wong,
J. M. S. Nogueira, and L. B. Oliveira, “Siot: Securing the internet of
things through distributed system analysis,” in Proc. 14th Int.
Conf. Inf. Process. Sensor Netw., 2015, pp. 310–321. [Online]. Avail-
able: http://doi.acm.org/10.1145/2737095.2737097

[30] Q. A. Chen, Z. Qian, Y. J. Jia, Y. Shao, and Z. M. Mao, “Static detec-
tion of packet injection vulnerabilities: A case for identifying
attacker-controlled implicit information leaks,” in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Security, 2015, pp. 388–400.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813643

[31] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, “Paving the way for NFV: Simplifying middlebox mod-
ifications using statealyzr,” in Proc. 13th USENIX Symp. Netw.
Syst. Des. Implementation, Mar. 2016, pp. 239–253. [Online]. Avail-
able: https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/khalid

[32] LLVM [Online]. Available: http://llvm.org/
[33] Control Flow Graph [Online]. Available: https://en.wikipedia.org/

wiki/Control_flow_graph
[34] LLVM Language Reference Manual [Online]. Available: http://llvm.

org/docs/MIRLangRef.html

HUSSAIN ETAL.: SECURE SEAMLESS BLUETOOTH LOW ENERGYCONNECTION MIGRATION FOR UNMODIFIED IOT DEVICES 943

http://www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tag10
http://www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tag10
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
http://www.zigbee.org/what-is-zigbee/
http://www.zigbee.org/what-is-zigbee/
http://nearfieldcommunication.org/
http://nearfieldcommunication.org/
http://doi.acm.org/10.1145/2699343.2699344
https://www.motorola.ca/products/moto-360-gen-1
https://www.motorola.ca/products/moto-360-gen-1
http://www.samsung.com/us/explore/gear-s3/?cid=ppc-
http://www.samsung.com/us/explore/gear-s3/?cid=ppc-
http://doi.acm.org/10.1145/2906388.2906414
https://www.microsoft.com/en-us/research/publication/mashable-mobile-applications-of-secret-handshakes-over-bluetooth-le/
https://www.microsoft.com/en-us/research/publication/mashable-mobile-applications-of-secret-handshakes-over-bluetooth-le/
https://www.microsoft.com/en-us/research/publication/mashable-mobile-applications-of-secret-handshakes-over-bluetooth-le/
http://doi.acm.org/10.1145/1007568.1007637
http://www.totalbluesky.com/2015/03/10/future-iot-airports-lessons-london-city-airport/
http://www.totalbluesky.com/2015/03/10/future-iot-airports-lessons-london-city-airport/
https://www.wired.com/2015/03/disney-magicband/
https://www.bluetooth.com/specifications/bluetooth-core-specification/technical-considerations
https://www.bluetooth.com/specifications/bluetooth-core-specification/technical-considerations
https://www.bluetooth.com/specifications/bluetooth-core-specification/technical-considerations
http://groups.inf.ed.ac.uk/teaching/slipb13--14/Ewan/
http://groups.inf.ed.ac.uk/teaching/slipb13--14/Ewan/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fawaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fawaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fawaz
http://doi.acm.org/10.1145/2873587.2873594
http://doi.acm.org/10.1145/2873587.2873594
https://www.pwnieexpress.com/solutions/rogue-device-detection
https://www.pwnieexpress.com/solutions/rogue-device-detection
http://www.bluez.org/
http://www.bluez.org/
http://llvm.org/
http://llvm.org/
http://dl.acm.org/citation.cfm?id=2041552.2041563
http://dl.acm.org/citation.cfm?id=2041552.2041563
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://doi.acm.org/10.1145/2737095.2737097
http://doi.acm.org/10.1145/2810103.2813643
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khalid
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khalid
http://llvm.org/
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Control_flow_graph
http://llvm.org/docs/MIRLangRef.html
http://llvm.org/docs/MIRLangRef.html

[35] M. Weiser, “Program slicing,” in Proc. 5th Int. Conf. Softw. Eng.,
1981, pp. 439–449. [Online]. Available: http://dl.acm.org/
citation.cfm?id=800078.802557

[36] Call Graph. [Online]. Available: https://en.wikipedia.org/wiki/
Call_graph

[37] C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive
points-to analysis with heap cloning practical for the real world,”
in Proc. 28th ACM SIGPLAN Conf. Programming Language Des.
Implementation, 2007, pp. 278–289. [Online]. Available: http://doi.
acm.org/10.1145/1250734.1250766

[38] R. Faragher and R. Harle, “An analysis of the accuracy of blue-
tooth low energy for indoor positioning applications,” in Proc.
27th Int. Tech. Meeting. Satellite Div.e Inst. Navigation, 2014,
pp. 201–210.

[39] Public Key Certificate [Online]. Available: https://en.wikipedia.
org/wiki/Public_key_certificate

[40] DiffieHellman key exchange [Online]. Available: https://en.wikipedia.
org/wiki/Diffie-Hellman_key_exchange

[41] Public Key Cryptography [Online]. Available: https://en.wikipedia.
org/wiki/Diffie-Hellman_key_exchange

[42] S.-H. Seo, M. Nabeel, X. Ding, and E. Bertino, “An efficient certifi-
cateless cryptography scheme without pairing,” in Proc. 3rd ACM
Conf. Data Appl. Security Privacy, 2013, pp. 181–184. [Online].
Available: http://doi.acm.org/10.1145/2435349.2435375

[43] Openssl Tech. Rep. [Online]. Available: https://www.openssl.
org/

[44] nRF Connect for Mobile [Online]. Available: https://play.google.
com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en

[45] Android 5.0: Connect() extremely unreliable but works fine on Android
4.4.x [Online]. Available: https://www.pwnieexpress.com/
solutions/rogue-device-detection

[46] J. J. Treurniet, C. Sarkar, R. V. Prasad, and W. d. Boer, “Energy
consumption and latency in BLE devices under mutual interfer-
ence: An experimental study,” in Proc. 3rd Int. Conf. Future Internet
Things Cloud, Aug 2015, pp. 333–340.

[47] M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen,
“How low energy is bluetooth low energy? comparative measure-
ments with zigbee/802.15.4,” in Proc. IEEE Wireless Commun.
Netw. Conf. Workshops, April 2012, pp. 232–237.

[48] A. Castiglione, F. Palmieri, U. Fiore, A. Castiglione, and A. D.
Santis, “Modeling energy-efficient secure communications in
multi-mode wireless mobile devices,” J. Comput. Syst. Sci., vol. 81,
no. 8, pp. 1464–1478, 2015. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S002200001400186X

[49] A. Castiglione, A. D. Santis, A. Castiglione, F. Palmieri, and
U. Fiore, “An energy-aware framework for reliable and secure
end-to-end ubiquitous data communications,” in Proc. 5th Int.
Conf. Intell. Netw. Collaborative Syst., Sep. 2013, pp. 157–165.

[50] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha,
“Analyzing the energy consumption of security protocols,” in
Proc. Int. Symp. Low Power Electron. Des., Aug 2003, pp. 30–35.

[51] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: A measurement study
and implications for network applications,” in Proc. 9th ACM SIG-
COMMConf. Internet Meas., 2009, pp. 280–293. [Online]. Available:
http://doi.acm.org/10.1145/1644893.1644927

[52] B. Blanchet, “An efficient cryptographic protocol verifier based on
prolog rules,” in Proc. 14th IEEE Workshop Comput. Security Foun-
dations, 2001, Art. no. 82. [Online]. Available: http://dl.acm.org/
citation.cfm?id=872752.873511

[53] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of
bluetooth low energy: An emerging low-power wireless tech-
nology,” Sensors, vol. 12, no. 9, p. 11734, 2012. [Online]. Available:
http://www.mdpi.com/1424–8220/12/9/11734

[54] W. Albazrqaoe, J. Huang, and G. Xing, “Practical bluetooth traffic
sniffing: Systems and privacy implications,” in Proc. 14th Annu.
Int. Conf. Mobile Syst. Appl. Services, 2016, pp. 333–345. [Online].
Available: http://doi.acm.org/10.1145/2906388.2906403

[55] P. A. Kodeswaran, R. Kokku, S. Sen, and M. Srivatsa, “Idea: A sys-
tem for efficient failure management in smart iot environments,”
in Proc. 14th Annu. Int. Conf. Mobile Syst. Appl. Services, 2016,
pp. 43–56. [Online]. Available: http://doi.acm.org/10.1145/
2906388.2906406

Syed Rafiul Hussain is working toward the PhD
degree in the Department of Computer Science,
Purdue University. He has worked in the Network-
ing and Mobility Lab, Hewlett-Packard Labs, in
Palo Alto, CA (2015–2017), as a research associ-
ate intern. His work on seamless secure BLE
connection migration has received a Best Paper
Nomination Award at EWSN’17. His research
interests include network and IoTsecurity. He is a
member of the ACM and the IEEE.

Shagufta Mehnaz is working toward the PhD
degree in computer science at Purdue University.
Her work has applications in the area of privacy
preserving analytics on IoT data. She won the
Best Paper Award from the 2017 ACM Confer-
ence on Data and Applications Security and
Privacy. She is a member of the Center for Edu-
cation and Research in Information Assurance
and Security (CERIAS). Her research interests
include information privacy and security. She is
also a member of the ACM and the IEEE.

Shahriar Nirjon received the PhD degree from
the University of Virginia, Charlottesville, in 2014.
He is an assistant professor in the Department
of Computer Science, the University of North
Carolina, Chapel Hill. His research challenges
that he deals with include practical issues in phys-
ical world sensing, user-contexts and mobility,
real-time issues, and resource constraints of the
embedded platform. His work has applications in
the area of remote health and wellness monitor-
ing, and mobile health. He has won a number of

awards, including two Best Paper Awards, at the Mobile Systems, Appli-
cations and Services (MOBISYS 2014), and the Real-Time and Embed-
ded Technology and Applications Symposium (RTAS 2012). He has
worked as a research scientist in the Networking and Mobility Lab, the
Hewlett-Packard Labs, Palo Alto, CA (2014-2015), and as a research
intern at Microsoft Research, Redmond, WA (Summer 2013) and at
Deutsche Telekom Lab, Los Altos, CA (Summer 2010). Several of his
work have been highlighted in the electronic and print media, including
the Economist, the New Scientist, and the BBC. He is interested in build-
ing practical cyber-physical systems that involve embedded sensors and
mobile devices, mobility and connectivity, and mobile data analytics. He
is a member of the IEEE.

Elisa Bertino is a professor of computer science
with Purdue University, and serves as director of
the CyberSpace Security Lab (Cyber2SLab). She
is also an adjunct professor of computer science
& info tech, RMIT, in Melbourne. Prior to joining
Purdue in 2004, she was a professor and depart-
ment head in the Department of Computer Sci-
ence and Communication at the University of
Milan. She has been a visiting researcher at the
IBM Research Laboratory (now Almaden) in San
Jose, CA, in the Microelectronics and Computer

Technology Corporation, at Rutgers University, and at Telcordia Technol-
ogies. Her recent research focuses on database security, digital identity
management, policy systems, and security for web services. She
received the IEEE Computer Society 2002 Technical Achievement
Award, the IEEE Computer Society 2005 Kanai Award, and the ACM
SIGSAC Outstanding Contributions Award. She is currently serving as
EiC of the IEEE Transactions on Dependable and Secure Computing.
She is a fellow of the ACM, of the IEEE, and the AAAS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

944 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018

http://dl.acm.org/citation.cfm?id=800078.802557
http://dl.acm.org/citation.cfm?id=800078.802557
https://en.wikipedia.org/wiki/Call_graph
https://en.wikipedia.org/wiki/Call_graph
http://doi.acm.org/10.1145/1250734.1250766
http://doi.acm.org/10.1145/1250734.1250766
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
http://doi.acm.org/10.1145/2435349.2435375
https://www.openssl.org/
https://www.openssl.org/
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en
https://www.pwnieexpress.com/solutions/rogue-device-detection
https://www.pwnieexpress.com/solutions/rogue-device-detection
http://www.sciencedirect.com/science/article/pii/S002200001400186X
http://www.sciencedirect.com/science/article/pii/S002200001400186X
http://doi.acm.org/10.1145/1644893.1644927
http://dl.acm.org/citation.cfm?id=872752.873511
http://dl.acm.org/citation.cfm?id=872752.873511
http://www.mdpi.com/1424--8220/12/9/11734
http://doi.acm.org/10.1145/2906388.2906403
http://doi.acm.org/10.1145/2906388.2906406
http://doi.acm.org/10.1145/2906388.2906406

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

