
Secure Data Provenance Compression Using
Arithmetic Coding in Wireless Sensor Networks

Syed Rafiul Hussain∗, Changda Wang†, Salmin Sultana∗, and Elisa Bertino∗
∗ Department of Computer Science, Purdue University

Email: {hussain1, ssultana, bertino}@purdue.edu
†School of Computer Science and Communication Engineering, Jiangsu University

Email: changda@ujs.edu.cn

Abstract—Since data are originated and processed by multiple
agents in wireless sensor networks, data provenance plays an
important role for assuring data trustworthiness. However, the
size of the provenance tends to increase at a higher rate as
it is transmitted from the source to the base station and is
processed by many intermediate nodes. Due to bandwidth and
energy limitations of wireless sensor networks, such increasing of
provenance size slows down the network and depletes the energy
of sensor nodes. Therefore, compression of data provenance is an
essential requirement. Existing lossy compression schemes based
on Bloom filters or probabilistic packet marking approaches
have high error rates in provenance-recovery. In this paper,
we address this problem and propose a distributed and lossless
arithmetic coding based compression technique which achieves
a compression ratio higher than that of existing techniques and
also close to Shannon’s entropy bound. Unlike other provenance
schemes, the most interesting characteristic of our scheme is
that the provenance size is not directly proportional to the
number of hops, but to the occurrence probabilities of the nodes
that are on a packet’s path. We also ensure the confidentiality,
integrity, and freshness of provenance to prevent malicious nodes
from compromising the security of data provenance. Finally, the
simulation and testbed results provide a strong evidence for the
claims in the paper.

Keywords—Wireless sensor network, provenance, compression,
arithmetic coding, security.

I. INTRODUCTION

Wireless sensor networks (WSN) are the backbone of many
critical systems, such as cyber-physical systems, health and
environmental monitoring, weather forecasting, and surveil-
lance. In these application domains, data sources vary from
miniature body-worn sensors to external sensors, e.g., video
cameras, positioning devices etc. Such diversity of data sources
necessitates the assurance of data trustworthiness so that
only reliable information is provided to applications. As an
example, consider battlefield surveillance systems and mission
critical applications which need high confidence data in order
to support accurate decisions. Since provenance summarizes
the history of the ownership of data and the actions performed
on these, it is an effective tool for evaluating data trustwor-
thiness. Recent research [1] highlights the key contribution
of provenance in systems (e.g., SCADA systems for critical
infrastructure) where the use of untrustworthy data may lead
to wrong control decisions.

In a multi-hop sensor network, data provenance allows the
base station to trace the source and forwarding sensor nodes of
an individual data packet since its generation. To ensure data

quality and trustworthiness, it is crucial to record the prove-
nance of each data packet, including information about each
node in the data flow path. However, energy and bandwidth
limitations, tight storage, and resource constraints of sensor
nodes make the collection of data provenance challenging.
Hence, several lightweight data provenance schemes have been
proposed for WSN [2]–[7]. In these schemes, data provenance
is represented as a directed graph, where each vertex represents
the provenance record of a node that is on the data flow path
and each edge indicates the direction of data transmission
between two nodes. One major issue with these schemes is
that the provenance size increases with the number of nodes in
data flow path. As a result, per-packet provenance transmission
in sensor networks incurs bandwidth and energy exhaustion.
To reduce the provenance size, some approaches [5], [7]
adopt lossy compression schemes that however drop critical
information while compressing provenance record. Some of
them do not even include the edges that indicate directed
connections among sensor nodes and thus fail to provide
accurate packet path topologies. Therefore, it is necessary to
devise a lightweight provenance solution that provides loss-
less provenance without introducing any significant overhead.
Furthermore, the environments where sensor networks are
deployed are often untrusted and sensors may be subject to
attacks. Hence, it is necessary to address security requirements
such as confidentiality, integrity and freshness of provenance.
Our goal is to design an efficient provenance encoding and
decoding mechanism that is able to compress the provenance
as much as possible while assuring its security.

Current research focuses mostly on the provenance of
the workflow, its modeling, querying, curated databases [8],
[9], leaving the security issues of the path provenance un-
explored. In this paper, we propose a secure, distributed and
lossless provenance compression scheme where each node on
a packet’s data flow path encodes its provenance record using
arithmetic coding [10]. Upon receiving a packet, the base
station decodes the provenance and verifies its validity.

Existing approaches use fixed size data structures [6], [7]
or cryptographic operations [11] that result in high decoding
error rates, or in unconstrained provenance expansion or in
provenance data loss. By contrast, our scheme is lossless and
achieves a compression ratio close to Shannon’s theoretical
entropy bound for provenance. Unlike other approaches, the
provenance size in our scheme is not directly proportional
to the number of hops, but depends only on the occurrence
probabilities of nodes that appear on a packet’s path. The

978-1-4799-7575-4/14/$31.00 ©2014 IEEE

larger the probabilities are, the smaller the provenance size is.
Thus, our scheme can save more energy and bandwidth while
transmitting the provenance across the network. In addition,
we ensure provenance security, i.e., confidentiality, integrity
and freshness. Our specific contributions are:

• An arithmetic coding based, distributed, and lossless
provenance encoding mechanism for WSN. Our scheme also
supports data aggregation.

• An efficient technique for provenance decoding and
verification at the base station.

• A secure mechanism for assigning and sharing the
occurrence probabilities of a particular node that are used in
arithmetic coding. Our mechanism ensures confidentiality so
that no malicious node can decode the provenance information
of other nodes.

• A secure packet sequence number generation mechanism
to be used along with AM-FM sketch technique [12] to ensure
the integrity and freshness of the provenance.

• A detailed security analysis of our provenance scheme
and its performance evaluation through theoretical analysis,
simulation and testbed experiments.

The rest of the paper is organized as follows: Section II
introduces the system model and relevant preliminary con-
cepts. Section III gives an overview of our approach. Sec-
tion IV and V describe our proposed encoding, decoding, and
binding mechanisms for simple and aggregated provenance,
respectively. Section VI discusses implementation details and
network dynamics. Section VII analyzes the performances of
our scheme. Section VIII provides a detailed security analysis.
Section IX and X present the simulation and experimental
evaluation of our protocol, respectively. Section XI surveys
related work and Section XII concludes the paper.

II. SYSTEM MODEL AND BACKGROUND

We introduce our system model in this section, i.e, network,
data, provenance and adversary models considered in this
paper. We also provide a brief primer on arithmetic coding
based data compression mechanism.

A. Network Model

We consider a multi-hop sensor network, consisting of a
number of nodes and a base station (BS) that collects data
from the network. The BS has no constraints with respect to
energy, storage space, security, and computational capability.
The network is modeled as a directed graph, G(N,L), where
N = {ni|1 ≤ i ≤|N |} is the set of nodes and L = {lij |1 ≤ i,
j ≤|N |} is the set of links between nodes. |N | denotes the
cardinality of set N and lij denotes a directed edge from node
ni to nj . Sensor nodes are stationary after deployment, but
routing paths may change due to node failure, link quality
degradation, resource optimization etc. However, nodes can
also be dynamic provided that their mobility is predictable.

The BS assigns each node a unique ID, ni, a packet
counter, counti, a symmetric cryptographic key, ki, and a seed,
si, that is used for random number generation. Also, the BS
itself maintains a packet counter, count′i, for each node ni.
Initially, counti and count′i are both set to 0. When node ni

generates a packet d, it increments the value of counti by 1.
Upon receiving the packet d, the BS increments the ni specific
counter count′i by 1 in order to synchronize.

B. Data Model

Assume that some of the sensor nodes in a network
generate data periodically. We refer to these nodes as source
nodes. A node may receive data from another node and forward
it to the one that appears next on the path. We call this node
a forwarder node. If a node aggregates data received from
multiple nodes, it forwards the aggregated packet to the next
node. We refer to such a node as aggregator node. Each data
packet contains: (i) a unique sequence number, (ii) source node
information, (iii) data value, (iv) provenance, and (v) message
authentication code (MAC). Any existing routing protocol can
be used to transmit data from the source to the BS. The path
traversed by a data packet forms a tree rooted at the BS.

In our model, a packet d, generated at node ni has a
sequence number seq computed as Eki(counti || t), where
E is an encryption function, || denotes concatenation and t
is the timestamp of d’s generation. Source node information
is computed as Eki

(ni || counti). Since the BS knows
each node’s current counti, it maintains a list of such |N |
encryptions, i.e., what each node may send as the source node
information if it generates a packet. Upon receiving a packet,
the BS retrieves the source node by comparing the received
source node information with the listed items. As ki is secret,
only the BS can determine the source of the packet. Also,
no node other than the BS can tell if two packets are from
the same source because the source node information changes
with the increment of counti. The MAC included in the packet
is not used in provenance encoding or decoding, and thus is
not a part of the provenance. It is used only to ensure the
provenance’s integrity.

C. Provenance Model

The definition of provenance varies with different appli-
cation domains. In the context of WSN, provenance refers to
where a data packet is generated and how it is delivered to the
BS [6], [7]. In this paper, we consider node-level provenance
which encodes the nodes that are involved at each step of
data processing. Given a data packet d, the provenance, pd, is
modeled as a directed acyclic graph G(V,E). Each vertex vx
∈ V , where 1 ≤ x ≤ |V |, is attributed to a specific node ni

and represents the provenance record (i.e., node ID) for that
node. We refer to this relation as HOST (vx) = ni, i.e., node
ni is the host of vx. Each edge exy ∈ E represents a directed
edge from vertex vx to vy , where 1 ≤ y ≤ |V |. As in [6], [7],
we formally define data provenance as follows:

Definition 1 (Provenance): Given a data packet d, the
provenance pd is a directed acyclic graph G(V,E) satisfying
the following properties: (1) pd is a subgraph of the sensor
network G(N,L); (2) for vx, vy ∈ V, vy is a child of vx if
and only if HOST (vy) forwards d to HOST (vx); (3) U ⊂
V is a set of children of vx ∈ V if and only if for each vy ∈
U , HOST (vx) receives forwarded data from HOST (vy).

Fig. 1 shows two different kinds of provenance. In
Fig. 1(a), data are generated at leaf node n3 and are forwarded
by the internal nodes towards the BS. We call such provenance
simple provenance and represent it as a path 〈n3, n2, n1〉. In
Fig. 1(b), data are aggregated while being forwarded towards
the BS, i.e., the aggregator node n3 generates a new data
packet by aggregating data from n5 and n6, and then passes

Fig. 1: (a) Simple provenance (b) Aggregated provenance

the new packet to node n2. Here, the provenance is called ag-
gregated provenance and is represented as a tree 〈(((((n5)(n6)),
n3)(n7, n4)), n2), n1〉. A recursive representation 〈((b)(c)), a〉
is used to denote a tree topology, where a denotes the root,
(b) and (c) denote the left and right subtrees, respectively.

D. Adversary Model

During the network operations, every node but the BS may
be compromised by adversaries. An adversary can eavesdrop
in the network and collect confidential information by means
of packet sniffing, traffic analysis etc. It can compromise
legitimate nodes and extract critical information such as keys,
codes, or data. It may also use these nodes as malicious
ones to perform attacks cooperatively, e.g., providing false
route information, dropping, injecting or altering packets. The
BS cannot distinguish these compromised nodes from the
benign ones. However, the BS needs to be assured about the
confidentiality, integrity, and freshness of provenance so that it
can secure the trustworthiness of data provenance in presence
of potential attackers. Our objective is to achieve the following
security properties:
• Confidentiality: An adversary cannot learn any information
about data provenance by analyzing the contents of the packet.
• Integrity: (i) An adversary cannot inject counterfeit infor-
mation in the provenance or remove any benign node. (ii) A
malicious node cannot drop packets without being identified.
• Freshness: Packet replay attacks are detectable.

E. Arithmetic Coding

Arithmetic coding [10], [13] is a lossless data compression
technique that assigns short codewords to more probable data
symbols and longer codewords to less probable ones. Each
codeword is represented by a half-open subinterval of the half-
open unit interval [0, 1). Enough bits are used for a codeword
to distinguish the corresponding subinterval from all other
possible subintervals. For illustration, let the number of unique
symbols be M . We assume that the symbols are independent
and identically distributed with occurrence probability, opm
(�= 0), and cumulative occurrence probability, cpm.

∑M
m=1 opm = 1

cpm =
∑m

i=1 opi

where m = 1, 2, . . . ,M .

1) Encoder: For a given string of k random symbols,
S = {s1, s2, . . . , sk}, the arithmetic coding process creates
a sequence of nested intervals of the form [Lx, Hx), where
x = 1, 2, . . . , k and Lx, Hx are real numbers such that
0 ≤ Lx ≤ Lx+1, Lx ≤ Hx, and Hx+1 ≤ Hx. The intervals

are computed using the following recursive formulas:

[L0, H0) = [0, 1)

Hx = Lx−1 + cpsx × (Hx−1 − Lx−1)

Lx = Lx−1 + (cpsx − opsx)× (Hx−1 − Lx−1)

where sx is the xth symbol in S, and opsx , cpsx are its corre-
sponding occurrence and cumulative occurrence probabilities.

The final outcome of the compression of S, denoted as
[Lf , Hf), is the kth subinterval [Lk, Hk).

Fig. 2: Example of arithmetic coding

Fig. 2 shows an example of arithmetic encoding procedure
for the simple provenance in Fig. 1(a). To conform with
arithmetic coding, each node in the network is considered as
a symbol and the node occurrence probabilities are chosen
arbitrarily. The encoding procedure starts by dividing the half-
open unit interval [0, 1) into M = 3 half-open subintervals:
[0, 0.2) for n2, [0.2, 0.6) for n1 and [0.6, 1) for n3. As n3

is the first node on the path, its interval [0.6, 1) is further
divided into M = 3 subintervals [0.6, 0.68), [0.68, 0.84), and
[0.84, 1.0). Note that the ratios of the subintervals are same
as the original cumulative occurrence probabilities. In second
iteration, the next node n2 is found within the subinterval [0.6,
0.68). So, this subinterval now gets divided into [0.6, 0.616),
[0.616, 0.648), and [0.648, 0.68). Finally, the last node n1

falls into the subinterval [0.616, 0.648) and thereby encodes
the provenance 〈n3, n2, n1〉 as [0.616, 0.648).

2) Decoder: The decoding process recovers the data sym-
bols in the same sequence as they are encoded. Any number
in the [Lf , Hf) range can be used to retrieve the first symbol
of S. We denote this number as code1. Every time a symbol
is retrieved, its effect is removed from the current code value
in order to recover the next symbol. Here, opx−1, and cpx−1

are the occurrence and cumulative occurrence probabilities of
(x− 1)th decoded symbol, respectively.

code1 =
(Lf+Hf)

2

codex =
codex−1−(cpx−1−opx−1)

opx−1

To illustrate the decoding process, we continue the ex-
ample of Section II-E1. When the BS receives the interval
[0.616, 0.648), it computes code1 as 0.632. As this value
resides in the interval [0.6, 1), the first node n3 is decoded.
From the above equation, code2 results to be 0.08 that falls
in [0, 0.2) and thus decodes node n2. Finally, the value of
code3, 0.4, reveals node n1 as the third node. As soon as
the BS retrieves n1, it stops decoding because n1 is the node
from which it has received the packet. So, the BS decodes the
provenance of the packet as 〈n3, n2, n1〉.

III. OVERVIEW OF OUR APPROACH

We develop a distributed mechanism to encode provenance
at sensor nodes and a centralized approach to decode that at the
BS. Each node on the data flow path encodes its provenance
by exploiting arithmetic coding and thus achieves a lossless
provenance compression. When the BS receives the encoded
provenance, it decompresses the code to retrieve the nodes that
are on the path.

Determining occurrence probabilities: To determine the
occurrence probabilities of sensor nodes, the BS observes the
network for a specific time period which we call training
phase. During this period, the BS counts for each node ni the
number of times it appears on the packets’ paths which we
represent as occurrence frequency, ofi, of ni. From these ofi
values, the BS also computes the total occurrence frequency,
of, and for each node ni its occurrence probability, opi.

of =
∑|N|

i=1 ofi
opi =

ofi
of

The cumulative occurrence probability, cpi, for each node
ni is calculated according to the following equations:

cp0 = 0

cpi = cpi−1 + opi

For security purpose, the BS shuffles the probability in-
tervals in order to randomize their positions in the total
probability range. The details are discussed in Section VIII.

Upon receiving each packet in the training phase, the BS
examines the packet’s path and learns which node appears after
another on the path. At the end of training phase, the BS knows
the total count of ni’s appearance following the node nj on
packets’ paths where j = 1, 2, . . . , |N | and j �= i. We refer to
this frequency as association frequency of node ni with nj and
denote it with ofij . Note that the total association frequency,
∑|N |

i=1 ofij of node nj is equal to its occurrence frequency ofj
because the number of times nj appears on packets’ paths is
equal to the number of times the other nodes receive packets
from it. Using these ofij values, the BS computes for each
node ni its association probability, opij , where nj is a child
of node ni.

opij =
ofij
ofj

The cumulative association probability, cpij , for each node
ni is calculated according to the following equations:

cp0j = 0

cpij = cp(i−1)j + opij

After computing the probabilities as discussed above, the
BS informs node ni of its opi, cpi, and for each of its children
nj , the probabilities opij , and cpij .

Encoding at sensor nodes: In our proposed scheme, the
provenance encoding procedures in source node and forwarder
node are different.

• Source node: If node ni generates a packet, it uses its
opi, and cpi to compute the interval [L1, H1) according to the
equations in Section II-E.

[L0, H0) = [0, 1)

H1 = L0 + cpi × (H0 − L0)

L1 = L0 + (cpi − opi)× (H0 − L0)

• Forwarder node: If node ni is the xth node on a packet’s
path, and receives the provenance [Lx−1, Hx−1) from the (x−
1)th node nj , it uses opij , and cpij to compress the provenance
into the range [Lx, Hx) according to the following equations:

Hx = Lx−1 + cpij × (Hx−1 − Lx−1)

Lx = Lx−1 + (cpij − opij)× (Hx−1 − Lx−1)

Decoding at the BS: When the BS receives a packet, it
gets the final encoded interval [Lf , Hf). The BS then decodes
the provenance in a similar way discussed in Section II-E by
using the probability values saved in its storage. The details
of the decoding process are discussed in Section IV-B.

IV. SCHEME FOR SIMPLE PROVENANCE

In this section, we discuss in detail the encoding, decoding
and binding schemes for simple provenance.

A. Provenance Encoding

Upon generating or receiving a data packet, each node
ni adds a vertex to the provenance tree of that packet. Our

Fig. 3: Network topology

provenance compression scheme based on arithmetic coding is
presented in Algorithm 1. Here, input [Lx−1, Hx−1) represents
the encoded provenance from the source node to (x−1)th node
on the packet’s path. For the source node, the input [L0, H0)
is [0, 1). Output [Lx, Hx) denotes the encoded provenance
from the source node to the current encoding node ni.

We use floating point numbers in our algorithm to represent
probability values and intervals. From the given example in
Section II-E1, it can be seen that the [low, high) intervals
shrink at each iteration and require the precision to increase.
Since floating point number supports a limited number of
bits to represent the digits after its decimal point, it cannot
accommodate this increasing precision. To avoid this situation,
we use a buffer. Whenever the most significant digits of low
and high match, we shift out those from both of the variables
to make space for future precisions. The shifted out digits are
then saved in the buffer. For example, if low and high values
are respectively 0.616 and 0.648 at some point, we shift out 6
and save it in the buffer which results the new low and high

Algorithm 1 Provenance encoding

1: Input: [Lx−1, Hx−1)
2: Output: [Lx, Hx)
3: low = Lx−1, high = Hx−1

4: range = high− low
5: buffer = ∅
6: if ni is a source node then
7: high = low + cpi × range
8: low = low + (cpi − opi)× range
9: else if ni is a forwarder node receiving packet from nj then

10: high = low + cpij × range
11: low = low + (cpij − opij)× range
12: end if
13: while MSD(low) = MSD(high) do
14: /*MSD(x) returns the most significant digit of x*/
15: buffer = buffer

⋃
MSD(low)

16: low = ShiftL(low, 1)
17: high = ShiftL(high, 1)
18: /*ShiftL(x, y) function returns x shifted by y digits in the left*/
19: end while
20: Lx = low
21: Hx = high

TABLE I: Occurrence and cumulative occurrence probabilities

Nodes opi cpi Range

n1 0.35 0.35 [0, 0.35)
n2 0.25 0.6 [0.35, 0.6)
n3 0.15 0.75 [0.6, 0.75)
n4 0.12 0.87 [0.75, 0.87)
n5 0.08 0.95 [0.87, 0.95)
n6 0.05 1 [0.95, 1)

to be 0.16 and 0.48, respectively. This part of the algorithm is
presented from line 13 to 19 in Algorithm 1.

Here, we explain our provenance encoding procedure with
a detailed example. To demonstrate how the algorithm works,
we introduce some new nodes in the simple provenance shown
in Fig. 1(a). The modified topology along with some new nodes
n4, n5 and n6 is shown in Fig. 3. After the training phase,
let the occurrence probabilities and cumulative occurrence
probabilities of nodes n1 through n6 be as shown in Table I.

In Table II, we present the association probabilities with
respect to the nodes n1, n2 and n3 only, because the packet we
consider for the example traverses the path 〈n3, n2, n1〉. From
the table, for instance, we can say that if node n1 transmits a
packet, the probability that the packet is received by node n2

is 0.1. The cumulative association probabilities according to
Table II are shown in Table III.

In our example, we assume that n3 is the source node.
Since the occurrence probability range of n3 is [0.6, 0.75)
(see Table I), n3 sends these values as [L1, H1) to the next
node. When node n2 receives this provenance, it uses its
association probability and cumulative association probability
with respect to n3 to compute [L2, H2). According to our
algorithm, n2 transmits [0.6, 0.72) as provenance to n1. Upon
receiving this, n1 similarly uses its association probability
and cumulative association probability with respect to n2 and
computes [L3, H3) as [0.6, 0.696). This is the first time the
most significant digits in low and high are same. So ‘6’ is

TABLE II: Association probabilities

Nodes n1 n2 n3 n4 n5 n6 BS
n1 − 0.1 0 0.2 0 0 0.7
n2 0.8 − 0.1 0 0.1 0 0
n3 0 0.8 − 0 0.2 0 0

TABLE III: Cumulative association probabilities

Nodes n1 n2 n3 n4 n5 n6 BS
n1 − .1 .1 .3 .3 .3 1
n2 .8 − .9 .9 1 1 1
n3 0 .8 − .8 1 1 1

shifted out to buffer and the updated [L3, H3) is [0, 0.96). The
BS then receives [0, 0.96) as the final interval and {6} in the
buffer.

Note that, arithmetic coding as described in Section II-E1
uses only occurrence probabilities to encode provenance at
each node along the path and thus increases the size of the
buffer at a higher rate. This is because it considers all possible
nodes in the network at each step and, as a result, shrinks
the [low, high) interval faster. For example, in the above
scenario, if node n2 uses its op2 and cp2 values to encode its
provenance after receiving [0.6, 0.75) from n3, the new interval
is [0.6525, 0.69) which immediately shifts out ‘6’ to the buffer.
But in this case, our proposed approach stores the value in
buffer one step later and thus reduces the buffer overhead. For
this significant advantage, we introduce association probability
while encoding provenance at forwarder nodes.

Algorithm 2 Provenance decoding

1: Input: [Lf , Hf), buffer
2: Output: Provenance P
3: low = Lf

4: high = Hf

5: if buffer = ∅ then
6: code =

(low+high)
2

7: else
8: code = ShiftR(buffer + (low+high)

2
, |buffer|)

9: /*ShiftR(x, y) function returns x shifted by y digits in the
right*/

10: end if
11: for i = 1 to |N | do
12: if (cpi − opi) ≤ code < cpi then
13: source = ni

14: break
15: end if
16: end for
17: dc = source /*source decoded*/
18: P = P

⋃
dc

19: Rdc = op(dc) /*probability range of decoded*/
20: Ldc = cp(dc) - op(dc) /*lower end of probability range*/
21: while dc �= the node from which BS received packet do
22: /*remove effect of decoded node*/
23: code =

(code−Ldc)
Rdc

24: for i = 1 to |N | do
25: if (cpi(dc) − opi(dc)) ≤ code < cpi(dc)) then
26: P = P

⋃
ni

27: Ldc = cpi(dc) - opi(dc)
28: Rdc = opi(dc)
29: dc = ni

30: break
31: end if
32: end for
33: end while

B. Provenance Decoding

When the BS receives a packet, it decompresses the prove-
nance using the encoded interval [Lf , Hf) and buffer.

According to the example in Section IV-A, the BS receives
[0.0, 0.96) as the final interval [Lf , Hf) and {6} in buffer.
At first, it decodes the source node information as described
in Section II-B. So, it learns that n3 is the source node. The
BS then computes code1 as 0.648 by taking the sum of 6 and
mid of [0.0, 0.96) and shifting the sum |buffer| times right,
where |buffer| denotes the number of digits shifted into buffer.
As node n3’s probability interval is [0.6, 0.75), it verifies the
source node to be n3.

Every time the BS decodes a node, that node’s effect is
removed from code value. So, after removing n3’s effect, code2
is computed as 0.32. In Table III, it can be seen that n2’s
probability interval in terms of receiving packet from n3 is [0,
0.8). So, n2 is decoded. Removing n2’s effect results code3
to be 0.4. As the association probability interval of n1 with
n2 is [0, 0.8), n1 is also decoded. At this point, the BS ends
decoding because it receives packet from n1.

C. Provenance Binding

In order to defend attacks by adversaries, any unauthorized
modification of packet content or its associated provenance
record needs to be detected. Simply encrypting the packet
content or its provenance is not feasible due to the high
cost of encryption. Another approach is to bind together the
packet and its provenance by MAC and then encrypt the
MAC with the private key of each node on the packet’s path.
Traditional MAC schemes, e.g., MD5 or SHA-1, are designed
for centralized scenarios. In such cases, each node in the
packet’s path generates an independent MD5 or SHA-1. If we
chain all the MACs together, the combined size of the resultant
MAC increases in proportion to the number of nodes on the
path. Such a MAC chain incurs extra requirements of energy
and channel bandwidth.

To address this issue, we adopt a provenance binding
technique, a direct application of AM-FM proof sketch [12],
which constructs a verifiable random sample of size k over the
sensor’s data values and ensures that the result computed by the
aggregators is verifiably unbiased. With such distributed mes-
sage digest mechanism, we bind a packet and its provenance
together at each node along its path. This approach restrains the
MAC size from growing beyond a range [(1− ε)k, (1+ ε)2k],
where ε (ε < 1) is the false positive rate related to k. When
AM-FM sketch digests infinite number of messages into a
finite data set, collisions may occur which result in false
positives. However, any unauthorized modification of packet
content or provenance can be detected with a certain statistical
confidence by using AM-FM sketch if the false positive rate
is insignificant.

V. SCHEME FOR AGGREGATED PROVENANCE

For aggregated provenance as shown in Fig. 1(b), node
n3 needs to combine its own provenance record with the
provenance intervals received from nodes n5 and n6. Assume
that the intervals received from two branches are [Lb1 , Hb1)
and [Lb2 , Hb2), respectively. The solution that we propose for
aggregated provenance is as follows:

Provenance encoding: Node n3 encodes itself into both
[Lb1 , Hb1) and [Lb2 , Hb2) to create the new ranges [L′

b1
, H ′

b1
)

and [L′
b2
, H ′

b2
), respectively. It then chooses real numbers r1 ∈

[L′
b1
, H ′

b1
) and r2 ∈ [L′

b2
, H ′

b2
), and sends (r1)(r2) along with

the interval [L′
b1
, H ′

b1
) to the next hop. The encoding procedure

is presented in Algorithm 3 where A is the number of branches
of an aggregator node ni.

Algorithm 3 Aggregated provenance encoding

1: Input: [Lb1 , Hb1), [Lb2 , Hb2),. . . , [LbA , HbA)
2: Output: (r1)(r2) . . . (rA)[Lb, Hb)
3: for x=1 to A do
4: ni encodes itself with [Lbx , Hbx) using Algorithm 1 and

results [L′bx , H
′
bx)

5: ni chooses a real number rx ∈ [L′bx , H
′
bx)

6: end for
7: [Lb, Hb) = [L′b1 , H

′
b1
)

8: prepend r1, r2, . . . rA to [Lb, Hb)

Provenance decoding: When the BS receives the aggre-
gated packet, it first decodes the interval [Lb, Hb) according
to Algorithm 2. The (r1) and (r2) values are then decoded
until they reach a node on the path retrieved from [Lb, Hb),
i.e., until they reach the aggregator node n3. The BS then
builds a subtree rooted at n3 along with the paths decoded
from (r1), (r2) and thus retrieves the aggregated provenance.

Algorithm 4 Aggregated provenance decoding

1: Input: (r1)(r2) . . . (rA)[Lb, Hb)
2: Output: Aggregated provenance AP
3: P = decode [Lb, Hb) using Algorithm 2
4: AP = AP

⋃
P

5: for i=1 to A do
6: let code = ri
7: P = decode code using Algorithm 2 until it reaches a node

on the path retrieved from [Lb, Hb)
8: AP = AP

⋃
P

9: end for

Provenance binding for aggregated scenario is similar to
that of simple provenance.

VI. IMPLEMENTATION DETAILS

For the purpose of simplicity, we use floating point num-
bers to explain our algorithms. But in our actual implemen-
tation, we use integer arithmetic coding [10] which is the
most practical and efficient solution to manage the buffer and
precision requirements. The main idea remains same, but we
scale the initial [L0, H0) range from [0, 1) to [0, 216−1) as we
use 2-byte integers. Also, we consider occurrence frequencies
instead of occurrence probabilities for provenance encoding
and decoding.

Two exceptional conditions, overflow and underflow still
may arise while doing integer arithmetic coding. Overflow oc-
curs when [low, high) values become greater than the capacity
of integer variables. And underflow occurs when scaling of the
current range causes several nodes to be mapped into the same
range due to the closeness of high and low values. To prevent
underflow, we cannot use more than 14 bits to represent
cumulative occurrence frequencies [10]. And overflow can be
prevented by using a 4-byte size long variable as code.

Handling network update: As mentioned in Section II-A,
we assume that sensor nodes are stationary after deployment.

But the routing paths may change over time due to node failure,
link quality degradation, resource optimization etc. To handle
such changes of routing paths as well as the topology, after
a certain amount of network operations (e.g., after receiving
every 1000 packets), the BS informs all the sensor nodes in
the network about their updated occurrence probabilities and
association probabilities. So, the model we use for arithmetic
coding in our proposed provenance scheme is semi-adaptive.

VII. PERFORMANCE ANALYSIS

In this section, we analyze the performance of our scheme
by computing the entropy of provenance records. We also
present the time and space complexities for provenance en-
coding and decoding.

Entropy of simple provenance: To encode the provenance,
the number of bits required in our scheme by a source node
nj is Hj = �− log opj	, and by a forwarder node ni is Hij =
�− log opij	, where nj is the child of ni. Hence, the entropy
of the arithmetic coding can be derived from the number of
bits required to represent an interval r, i.e., Hr = �− log r	.
Note that the size of the final interval is equal to the product of
the source node’s occurrence probability and forwarder nodes’
corresponding association probabilities:

r = opj × ∏
lji∈E

opji

So, Hr can be computed as follows:

Hr =

⌈
− log(opj × ∏

lji∈E
opji)

⌉
=

⌈
−log opj − ∑

lji∈E
log opji

⌉

Thus, the provenance size of a packet is directly propor-
tional to r. In other words, it depends on the occurrence
probabilities of the nodes that are on a packet’s path, but not
on the number of nodes.

Entropy of aggregated provenance: Aggregator nodes
incur overhead by prepending a real number for each of their
branches. Assume that there are R aggregator nodes and each
aggregator node n�

r has br (br > 1) merged-in branches, where
1 ≤ r ≤ R. So, the number of extra bits required for all
aggregator nodes are:

−
R∑

r=1

br−1∑
q=1

⌈
log opn�

rj

⌉

where opn�
rj

is the association probability of node n�
r with

respect to its child node nj at the branch q.

Time complexity: While encoding at node ni, the [low,
high) values can be computed in O(1) time. However, shifting
out similar most significant bits of low and high requires
O(B) operations in the worst case where B is the maximum
number of bits used to represent low and high. To decode the
provenance, the BS successively removes the effect of the last
retrieved symbol from code value. It also needs to locate the
current code value in the probability ranges of |N | nodes. So, if
there are k nodes on a packet’s path, the BS requires O(k ·|N |)
operations. However, if we use an efficient data structure, e.g.,
hash table at the BS which takes O(1) operation to locate the
code value, the time complexity can be reduced to O(k).

Space complexity: A node ni has to store its occurrence
frequencies and for each of its child nj , the association
frequencies. Therefore, if ni has a number C of children, its
space complexity is O(C). The BS requires O(|N |2) space to
store occurrence frequencies and association frequencies for
all the nodes in the network.

VIII. SECURITY ANALYSIS

We justify the following security properties of our scheme:

Claim 1: An adversary cannot learn any information about
the provenance from an encoded interval.

Justification: In our approach, provenance is an encoded
interval defined by two real numbers. Now, assume that an
adversary learns an encoded interval associated with a packet
by eavesdropping in the network. Without knowing the source
node and its probabilities and also the association probabilities
of all forwarder nodes of that packet, the adversary is unable
to decode the provenance. However, if the adversary once
becomes successful in guessing a packet’s actual path, it may
decode the provenance of all subsequent packets that follow
the same path since using the fixed probability ranges of source
nodes results in identical encoded intervals. We prevent such
leak of information by introducing randomness in the nodes’
occurrence probability ranges. As mentioned in Section II-A,
the BS shares with each node ni a seed si (encrypted by
symmetric key ki) that generates a series of random numbers.
When node ni generates its pth packet, it computes the pth
random number rp (0 < rp < 1) from the shared seed
and uses this rp as its cpi value. Since opi remains same,
the change in cpi does not affect the subsequent encoding
other than generating different intervals even for the same
paths. Hence, if an attacker eavesdrops in the network and
gets encoded intervals of two packets that traverse same path,
it cannot identify their paths’ similarity. And on the BS side,
when the BS receives the pth packet generated from node ni,
it produces the same random number rp using the seed si
and replaces the current cpi value with that one. In this way,
without any communication overhead, the BS and node ni

synchronize every time ni generates a packet and leave cpi
unpredictable for any adversary. Thus, it is not possible for an
adversary to extract useful information about the provenance
by just seeing the encoded interval.

Claim 2: A malicious node cannot inject counterfeit infor-
mation in the provenance or remove any benign node.

Justification: An attacker may attempt to generate fake
provenance including some innocent nodes to make them
responsible for malicious data. However, adding an innocent
node into the provenance requires the attacker to know the
target node’s association probabilities and cumulative associ-
ation probabilities. But the BS shares these information with
each node in the network secretly using its corresponding
key. Also, due to the confidentiality of encoded intervals, a
malicious node cannot learn these probabilities for any target
node. Hence, it is not possible to inject a benign node in
the provenance. Removal of a benign node is more difficult
because it requires decoding up to the target node and encoding
again excluding the target node.

Claim 3: A malicious node cannot selectively drop packets
generated by benign nodes without being detected.

Justification: According to our packet sequence number
generation technique as in Section II-B, counti and count′i are
both set to 0 initially. When node ni generates a new packet,
counti is incremented by 1 and when the packet arrives at the
BS, count′i is also incremented by 1. Assume that at some
point the values of both counti and count′i are c. Node ni

generates a new packet d at time t for which the sequence
number is Eki(c || t). As a result, the value of counti is
increased to c+ 1. Until the packet arrives at the BS, count′i
holds the value c. Now, assume that this packet is dropped by
a malicious node on its way to the BS. If node ni generates
another packet d′ at time t′, and assigns it the sequence number
Eki((c+1) || t′), and this d′ successfully arrives at the BS, the
decrypted counti, i.e., (c + 1) does not match with c. Thus,
the BS detects that the packet d is dropped.

Claim 4: Packet replay attacks are detectable.
Justification: Assume that the timestamp when node ni

generates a packet d is t. So, the sequence number of d is
Eki(c || t) where c is the current value of counti. Once the
BS receives the packet, it can detect any repeated arrival of
d by examining the counti value c. And to prevent delayed
attacks, if the packet d arrives at the BS at timestamp t′, it
is accepted only if (t′ − t) is within a reasonable tolerance.
Otherwise, it is considered as a replay packet. The BS can set
the tolerance range for each source node according to network
conditions.

IX. SIMULATION

We have evaluated the performance of our arithmetic
coding based provenance scheme (ACP) through simulation.
We have used TinyOS 2.1.2 TOSSIM simulator [14] and
POWERTOSSIMZ micaz as energy model for the implemen-
tation of our scheme. In our simulation, we consider a sensor
network of 100 stationary nodes with IDs 0 through 99 and
vary the network diameter from 2 to 14 hops. The node with
ID 99 is assumed to be the BS. Some nodes are randomly
selected as source nodes. During the training phase, we let
each node in the network to send 10 ∼ 100 packets to the BS.
Upon receiving these packets, the BS computes the occurrence
frequencies for each node in the network. Note that each data
point of the simulation results are obtained by taking the
average of 5 simulation runs.

We compare our approach with the following schemes:
Bloom filter based provenance scheme (BFP): This

scheme [6], [7] uses a fixed size Bloom filter (BF) to encode
the provenance of a packet. It embeds all the nodes on a
packet’s path in the BF using a set of hash functions.

Generic secure provenance scheme (SPS): For com-
parison purpose, we adapt the generic secure provenance
scheme [11] for use in WSN. Here, we simplify the provenance
record of a node ni as Pi = 〈 ni, hash(Di), Ci 〉, where
hash(Di) is a cryptographic hash of the updated data Di, and
Ci contains integrity checksum computed as Sign(hash(ni,
hash(Di) || Ci−1)). As each node ni on the packet’s path
appends its Pi with the received provenance, the size of
the provenance increases linearly. To implement SPS, we use
SHA-1 (160 bit) for cryptographic hash operations and the
TinyECC library [15] to generate 160-bit digital signatures.
The node ID is 2 bytes in size and thus the increase in the
size of the provenance at each hop is 42 bytes.

MAC based provenance scheme (MP): We also consider
a MAC-based provenance scheme [6], [7] where a node
transmits its node ID and a MAC computed on it as the
provenance record. We use TinySec library [16] to compute
a 4-byte CBC-MAC. Hence, the provenance size increases by
6 bytes at each hop.

A. Performance Metrics

We analyze the performance of our proposed provenance
scheme using the following performance metrics:

(a) Average provenance size (APS): Along with the packet,
the BS receives [Lf , Hf) and buffer as the encoded data prove-
nance. Assume that the sizes of these elements are denoted by
SLf

, SHf
, and Sbuffer, respectively. In our scheme, we consider

the size of the provenance to be (SLf
+ SHf

+ Sbuffer). We
have used 16 bits to represent each of Lf and Hf . The size
of the buffer varies with different packets’ paths and so is the
provenance size. For BFP, the size of the provenance [6], [7]
is equal to the size of the Bloom filter (SBF).

We compute APS for m packets p1, p2, . . . , pm as follows:

APS =

m∑

i=1
PSi

m

where PSi denotes the provenance size for packet pi.

(b) Total energy consumption (TEC): If there are
n1, n2, n3, . . . , n|N | nodes in the network, TEC is computed
as follows:

TEC =
|N|∑
i=1

ECi

where ECi represents the energy consumed by node ni and
|N | is the total number of nodes in the network.

(c) Decoding error rate (DER): It is defined as the per-
centage of packets for which the BS decodes the provenance
incorrectly. If the BS receives m packets and among them d
packets are incorrectly decoded, DER is computed as d

m .

B. Simulation Results

Fig. 4(a) presents the provenance size for the ACP, BFP,
MP and SPS schemes with respect to the number of hops a
packet traverses. In both SPS and MP, each node appends its
encoded provenance to the received one. As a result, the prove-
nance size increases linearly with the path length. However, the
SPS approach appends 42 bytes at each hop and thus results
the provenance size to increase at a much higher rate than
that of MP. Also in BFP, the size of the provenance increases
with the number of nodes traversed, but not as fast as in MP.
As shown in Fig. 4(a), to correctly decode the provenance of
a packet that traverses 12 hops, a 30-byte size Bloom filter
is required. The provenance size in our scheme is 2 bytes
larger than BFP for a 2-hop network. However, our scheme
demonstrates better performance than BFP in reducing the
provenance size as the number of hops increases. We see that
ACP requires only 12-byte provenance for a 14-hop network
which is almost one-third of the provenance size in BFP. We
achieve such compression because the provenance size in our
scheme is determined by the occurrence probabilities of the
nodes on a path. If a path is frequently used, the provenance
size of subsequent packets using that path becomes smaller.

 0
 15
 30
 45
 60
 75
 90

 105
 120
 135
 150
 165

 0 2 4 6 8 10 12 14

A
ve

ra
g
e
 p

ro
ve

n
a
n
ce

 s
iz

e

(b
yt

e
)

Number of Hops

SPS
MP

BFP
ACP

(a)

5.000e+05

1.000e+06

1.500e+06

2.000e+06

2.500e+06

3.000e+06

3.500e+06

4.000e+06

 0 2 4 6 8 10 12

T
o
ta

l e
n
e
rg

y
co

n
su

m
p
tio

n
 (

m
J)

Number of Hops

MP
BFP
ACP

(b)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 2 4 6 8 10 12 14

D
e
co

d
in

g
 e

rr
o
r

ra
te

Number of Hops

BFP (BF size=16 byte)
BFP (BF size=20 byte)

ACP

(c)

Fig. 4: (a) Average provenance size, (b) Total energy consumption, (c) Decoding error rate

(a) (b) (c)

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

A
ve

ra
ge

 p
ro

ve
na

nc
e

si
ze

(b

yt
e)

Number of Hops

ACP (w-shaped topology, max 12 hops)
ACP (grid topology, max 8 hops)

(d)

Fig. 5: (a) Test-bed implemented in a classroom, (b) Placement of nodes in w-shaped topology, (c) Placement of nodes in grid topology, (d)
Average provenance size

Fig. 4(b) illustrates the total energy consumption in ACP ,
BFP , and MP for different hop counts over 100 packet
transmissions. We see that the energy consumption in MP and
BFP increases at a higher rate than that of our ACP scheme due
to their larger provenance size. Hence, the results in Fig. 4(b)
shows that ACP is more energy efficient than BFP and MP.

Fig. 4(c) compares decoding error rates of ACP and BFP.
Due to collisions in hash functions, bloom filter of smaller size
causes more decoding errors than larger one in BFP. On the
contrary, our scheme does not introduce any decoding error.

X. EXPERIMENTS

To further assess our scheme, we deployed it in a testbed
containing 25 sensor motes. In this section, we evaluate the
performance with respect to the average provenance size as
mentioned in Section IX-A.

A. Experimental Setup

We have used TelosB sensor motes to port the implemen-
tation. TelosB has a 8MHz TI MSP430 micro-controller, 2.4
GHz radio, 10 KB RAM, and 1 MB external flash for data
logging. We placed TelosB motes in an indoor environment
(Fig. 5(a)) in a w-shaped topology (Fig. 5(b)) and a grid
topology (Fig. 5(c)) with network areas of 20x20 ft2 and
16x16 ft2, respectively. We controlled the transmission power
of the motes (i.e., set at power level 2) to ensure multi-
hop communication in the network. All motes were battery
powered and a special mote was used as the BS to collect
statistical information. We connected the BS to a laptop
through USB port in order to collect the statistical data from
the network. In the training phase, each node sent 100 packets

to the BS. Upon receiving the packets, the BS computed the
occurrence frequencies of respective nodes.

B. Experimental Results

Fig. 5(d) presents the average provenance size results in
the testbed experiments. Since the number of nodes to which
a particular node may forward packets is less in w-shaped
topology, the association probabilities of forwarder nodes
result to be higher compared to grid topology. Hence, the
average provenance size for w-shaped topology is slightly
smaller than that of the grid topology.

These results reflect the trends observed in the simulation
results shown in Fig. 4(a) and also confirm the claim that the
provenance size does not increase with hop counts, but depends
on the occurrence probabilities of the nodes on the packets’
paths.

XI. RELATED WORK

Extensive research has been undergoing on network prove-
nance. However, due to limited computational ability, en-
ergy constraints, and low bandwidth, conventional provenance
schemes [17], [18] cannot be directly applied in WSN.

Salmin et al. [6], [7] extend the work of Shebaro et al. [5]
by proposing a lightweight secure provenance scheme based
on in-packet Bloom filter. In this approach, all nodes on a
packet’s path are embedded in the BF using a set of hash
functions. Upon receiving a packet, the BS retrieves the nodes
on the path with a certain false positive rate. Such false
positive rate depends on the size of the BF. The larger the
BF size is, the lower the false positive rates are. Alam et

al. [2] propose an energy-efficient provenance transmission and
construction scheme based on probabilistic incorporation of
node identities. In this scheme, the provenance is scattered into
several packets and thus incurs high decoding error rates if data
flow path changes frequently. Moreover, this scheme does not
address any security issues. All of these approaches minimize
the size of the provenance by keeping only the nodes’ IDs,
but discard the edges’ information that refers to the packets’
transmissions. Hence, they are considered as lossy provenance
compression techniques which share the following drawbacks:
(i) only nodes’ IDs are recorded in the data provenance, (ii) the
exact path of a packet cannot be properly recovered as edges
are discarded, (iii) provenance decoding has false positive, and
(iv) the provenance size increases with the number of nodes
traversed in order to keep the false positive rate under a given
threshold.

Hasan et al. [11] propose a chain model for the prove-
nance. As discussed in Section IX, each node uses checksum,
and incremental chained signature mechanism to construct its
provenance and thus results in the increase of the provenance
size by 42 bytes. Hence, the provenance size in this scheme
increases at a much higher rate than that of our scheme.

Dynamic Markov model [19] and Bayesian network [20]
based techniques compress data in a centralized environment
by assigning a unique and finite codeword to each path. Wall
et al. [21] and Witten et al. [10] discuss stream arithmetic
coding for centralized environment that uses fixed precision
register. However, these techniques cannot be applied to the
sensor networks where the environment is distributed.

XII. CONCLUSION

In this paper, we propose an arithmetic coding based,
secure provenance scheme which compresses the provenance
in a distributed and lossless manner. The arithmetic coding
ensures the compression ratio to be close to Shannon’s entropy
bound and thus saves more energy and bandwidth compared
to other existing approaches. We ensure the confidentiality of
data provenance through a secure way of assigning and sharing
probability values of each node. We also ensure the integrity
and freshness by using MAC and a secure packet sequence
number generation mechanism, respectively. The simulation
and testbed results show that our scheme outperforms the
known compact or lightweight schemes with respect to energy
consumption and provenance size.

ACKNOWLEDGMENT

The work reported in this paper has been partially sup-
ported by the Purdue Cyber Center, by the National Science
Foundation under grant CNS-1111512, and by the Bajian
Project for Selected Researchers in Jiangsu University under
contract number 1213000013.

REFERENCES

[1] H.-S. Lim, Y.-S. Moon, and E. Bertino, “Provenance-based trustworthi-
ness assessment in sensor networks,” in Proceedings of the Seventh
International Workshop on Data Management for Sensor Networks,
2010, pp. 2–7.

[2] S. I. Alam and S. Fahmy, “A practical approach for provenance
transmission in wireless sensor networks,” Ad Hoc Networks, vol. 16,
no. 0, pp. 28 – 45, 2014.

[3] E. Dawson, D. Wong, and D. Ma, “Secure feedback service in wireless
sensor networks,” in Information Security Practice and Experience.
Springer Berlin Heidelberg, vol. 4464, pp. 116–128.

[4] S. C. Misra, I. Woungang, S. Misra, A.-H. Jallad, and T. Vladimirova,
“Data-centricity in wireless sensor networks,” in Guide to Wireless
Sensor Networks. Springer London, 2009, pp. 183–204.

[5] B. Shebaro, S. Sultana, S. R. Gopavaram, and E. Bertino, “Demon-
strating a lightweight data provenance for sensor networks,” in ACM
Conference on Computer and Communications Security, 2012, Confer-
ence Paper, pp. 1022–1024.

[6] S. Sultana, G. Ghinita, E. Bertino, and M. Shehab, “A lightweight
secure provenance scheme for wireless sensor networks,” in 2012 IEEE
18th International Conference on Parallel and Distributed Systems
(ICPADS), 2012, pp. 101–108.

[7] S. Sultana, G. Ghinita, E. Bertino, and M. Shehab, “A lightweight
secure scheme for detecting provenance forgery and packet drop attacks
in wireless sensor networks,” IEEE Transactions on Dependable and
Secure Computing, vol. 99, no. PrePrints, p. 1, 2014.

[8] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao, “Chimera: Avirtual
data system for representing, querying, and automating data derivation,”
in Proceedings of the 14th International Conference on Scientific and
Statistical Database Management, ser. SSDBM ’02, 2002, pp. 37–46.

[9] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in Proceedings of the Annual
Conference on USENIX ’06 Annual Technical Conference, ser. ATEC
’06, 2006, pp. 4–4.

[10] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987.

[11] R. Hasan, R. Sion, and M. Winslett, “The case of the fake picasso:
Preventing history forgery with secure provenance,” in Proccedings of
the 7th USENIX Conference on File and Storage Technologies, ser.
FAST, 2009, pp. 1–14.

[12] M. Garofalakis, J. M. Hellerstein, P. Maniatis, and IEEE, “Proof
sketches: Verifiable in-network aggregation,” in IEEE 23rd International
Conference on Data Engineering, pp. 971–980.

[13] J. S. Vitter, P. G. Howard, P. G. Howard, and J. S. Vitter, “Arithmetic
coding for data compression,” in Information Processing and Manage-
ment, 1994, pp. 749–763.

[14] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and
scalable simulation of entire tinyos applications,” in Proceedings of the
1st international conference on Embedded networked sensor systems,
ser. SenSys ’03, 2003, pp. 126–137.

[15] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks,” in International Conference
on Information Processing in Sensor Networks. IPSN ’08., April 2008,
pp. 245–256.

[16] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: A link layer security
architecture for wireless sensor networks,” in Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems, ser.
SenSys ’04, 2004, pp. 162–175.

[17] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao, “Efficient
querying and maintenance of network provenance at internet-scale,” in
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD, 2010, pp. 615–626.

[18] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr,
“Secure network provenance,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ser. SOSP ’11, 2011, pp.
295–310.

[19] G. V. Cormack and R. N. S. Horspool, “Data compression using
dynamic markov modelling,” Comput. J., vol. 30, no. 6, pp. 541–550,
Dec. 1987.

[20] A. M. Scott Davies, “Bayesian networks for lossless dataset com-
pression,” in Proceedings of the Fifth International Conference on
Knowledge Discovery in Databases. AAAI Press, 1999, pp. 387–391.

[21] L. Wall, K. Ferens, and W. Kinsner, “Real-time dynamic arithmetic
coding for low bit-rate channels,” in WESCANEX 93. ’Communica-
tions, Computers and Power in the Modern Environment.’ Conference
Proceedings., IEEE, Conference Proceedings, pp. 381–391.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

