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Abstract—Due to energy and bandwidth limitations of wireless sensor networks (WSNs), it is crucial that data provenance for these

networks be as compact as possible. Even if lossy compression techniques are used for encoding provenance information, the size of

the provenance increases with the number of nodes traversed by the network packets. To address such issues, we propose a

dictionary based provenance scheme. In our approach, each sensor node in the network stores a packet path dictionary. With the

support of this dictionary, a path index instead of the path itself is enclosed with each packet. Since the packet path index is a code

word of a dictionary, its size is independent of the number of nodes present in the packet’s path. Furthermore, as our scheme binds the

packet and its provenance through an AM-FM sketch and uses a secure packet sequence number generation technique, it can defend

against most of the known provenance attacks. Through simulation and experimental results, we show that our scheme outperforms

other compact provenance schemes with respect to provenance size, robustness, and energy consumption.

Index Terms—Provenance, dictionary based compression, sensor network

Ç

1 INTRODUCTION

LARGE-SCALE sensor networks are deployed in numerous
application domains, including medical monitoring,

environmental monitoring, surveillance, home security,
military operations, industrial machine monitoring, etc. In
these application domains, sensors vary from miniature,
body-worn sensors to external sensors such as video cam-
eras or positioning devices. The diversity of such network
environments requires to adopt techniques that can ensure
the trustworthiness of data across the network [1].

Since provenance [2] records the history of both data
acquisition and transmission, it is considered as an effective
mechanism to evaluate the trustworthiness of data. It also
provides the information about the operations performed
on data. However, reducing the size of the provenance is
crucial in large-scale sensor networks. Sensor nodes in these
networks may not be able to record and manipulate very
large provenance data due to storage and computational
resource constraints. Besides, transmission channels may
not have sufficient capacity for transmitting large prove-
nance data. Although most of the recent approaches [3], [4]
focus mainly on provenance modeling, collection, and que-
rying, a few of them [2], [5], [6], [7], [8] address the size and

trustworthiness of provenance in sensor networks. In this
paper, we investigate the problem of efficient and secure
compression of provenance information in wireless sensor
networks (WSNs). The problem imposes a set of challenges:

� The compression of provenance should be as com-
pact as possible so that for large-scale WSNs the
provenance size does not increase with the number
of nodes traversed by the network packets.

� The compression or encoding should ensure that the
system does not lose any provenance information
after decoding.

� The trustworthiness of the provenance must be
assured.

To reduce the provenance size for large-scale WSNs, ear-
lier approaches [2], [5], [9] use lossy compression techni-
ques. For example, some provenance schemes [2], [5] only
record the data processing or routing nodes, but discard the
order in which they are traversed by the network packets.
Hence, these approaches fail to provide accurate path prov-
enance of data packets. On the other hand, if a model ran-
domly generates a message, according to Shannon’s theory
the message cannot be encoded into a smaller number of
bits (on average) than the entropy of that model. Entropy is
a measure of the uncertainty in a random variable which
quantifies the expected value of the information contained
in a message [10]. So, the theorem sets a lower bound on the
size of provenance for an entropy based model.

In order to address the drawbacks of lossy compression
techniques and to address the limitation of entropy lower
bound, we propose a dictionary based approach to encode
the sensor data provenance. Our proposed technique com-
presses the packets’ paths and represents them using distinct
indexes. These indexes are stored in a dictionary.With the sup-
port of this dictionary, a fixed size path index can be used to
represent a path of arbitrary length [11], [12]. Therefore, the
use of dictionary basedmethod allows one to keep the size of
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a compressed path smaller than the path’s entropy at the cost
of additional storage space for dictionaries.

As opposed to existing approaches, our proposed mecha-
nism compresses the provenance into a much smaller size
which is smaller than the entropy. Hence, transmission
channels do not experience difficulties with handling prove-
nance data in large scale WSNs. Moreover, our compression
scheme is lossless in contrast to other lightweight mecha-
nisms which are lossy in nature. The simulation and experi-
mental results of our dictionary based lossless compression
approach show that it generates provenance of much
smaller size than that of existing lossy provenance schemes.

Our specific contributions are:

� We propose a dictionary based provenance scheme
which is the most compact and lossless scheme up to
date.

� We design an efficient, and distributed algorithm for
encoding the provenance information as well as a
centralized approach for its decoding.

� We introduce a secure packet sequence number gen-
eration mechanism and use the AM-FM sketch tech-
nique to secure the provenance.

� We perform a formal security analysis and an exten-
sive performance evaluation of our proposed prove-
nance scheme.

The rest of the paper is organized as follows: Section 2
provides an overview of our method. Section 3 introduces
the system model. Section 4 describes the provenance
encoding, binding, and decoding algorithms. Section 5 dis-
cusses a detailed case study. Section 6 presents a recursive
provenance encoding and decoding scheme. Section 7 dis-
cusses the security and performance of our approach.
Sections 8 and 9 present the simulation and experimental
results, respectively. Section 10 surveys related work, and
finally, Section 11 concludes the paper.

2 OVERVIEW OF OUR APPROACH

Before introducing the underlying concepts and formal
algorithms, we give an overview of our dictionary based
provenance scheme. Here, we discuss (i) how our scheme
works, (ii) how it ensures the security of provenance, and
(iii) what are the implementation challenges of our scheme.

In our approach, we consider a multi-hop WSN consist-
ing of a number of sensor nodes and a base station (BS). The
BS collects data packets and also their provenance informa-
tion such as source nodes, traversed paths etc. Therefore,
provenance of data in a sensor network can be represented
as a directed graph, referred to as provenance graph, where
vertexes represent the provenance records at sensor nodes
and directed edges represent the transmissions of data
packets from one node to another.

To understand how our scheme works, consider the prov-
enance graphs in Figs. 1a and 1b having four and five nodes
respectively. Without any compression, paths in such prove-
nance graphs can be encoded as hn4; n3; n2; n1i and hn5; n4;
n3; n2; n1i where ni is the ID of ith sensor node. Clearly, the
provenance with five nodes has larger size than that with
four nodes.

However, in our approach, paths in the provenance graphs
of Figs. 1a and 1b are encoded as hn4; n1i and hn5; n1i respec-
tively which are of equal size. Here, hn4; n1i and hn5; n1i are
called indexes of the paths fn4; n3; n2; n1g and fn5; n4; n3;
n2; n1g respectively. These linear paths and their corre-
sponding indexes are stored in a dictionary as shown in
Table 1. Hence, without loss of generality, if the graph is a
linear path fnM; nM�1; . . . ; n2; n1g, it can be simply repre-
sented by the index hnM; n1i. We name such graphs as linear
topology graphs. Note that the indexes can be built in different
ways. The way it is presented in Table 1 is just one of them.

In more general graphs, as shown in Fig. 1c, multiple
paths are connected as branches in a tree. We denote such
graphs as tree topology graphs. While dealing with these
graphs, we use semicolon as a delimiter to separate the
branches of the tree. For example, we encode the graph in
Fig. 1c as hhn6; n3i; hn7; n3i; hn3; n1ii. For simplicity, we rep-
resent it as hn6; n3;n7; n3;n3; n1i.

To ensure the security of provenance, we use the AM-FM
sketch scheme [13] which binds the packet content and its
provenance together. The AM-FM sketch is a distributed,
node-level digital signature scheme. Using this scheme,
whenever a sensor node generates or forwards a data
packet, it creates the digest of the data and signs this digest
prior to sending the packet to the next node.

The most challenging issues in the design of our dictio-
nary based provenance scheme are how to build the dictio-
nary and share it across the network. Existing approaches,
such as [11] and [12], build dictionary for the substrings that
appear multiple times in a message and assign each sub-
string a unique index of shorter length. For instance, given
the message ”abcdxabcd”, the substring ”abcd” shows up two
times. Therefore, the dictionary based method builds an
index for ”abcd” at its first appearance and then uses that
index to represent all subsequent ”abcd”. Thus it compresses
a large string to a smaller one.

However, existing dictionary based compression techni-
ques [11], [12] cannot be applied directly to compress prove-
nance, because these methods build dictionary based on
recurring substrings in the same message. But in sensor net-
works, provenance graphs are acyclic. In other words, each
node appears at most once in a packet path. So, if we con-
sider the sequence of nodes’ IDs along a packet path as a
message, no recurring substrings can be found.

Fig. 1. Provenance graphs of sensor networks.

TABLE 1
Dictionary of Indexes

Linear Path Index

fn4; n3; n2; n1g hn4; n1i
fn5; n4; n3; n2; n1g hn5; n1i
fn6; n4; n3g hn6; n3i
fn7; n5; n3g hn7; n3i
fn3; n2; n1g hn3; n1i
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Hence, to build the dictionary for a packet’s path, we
propose to find the common substrings between earlier
paths and the current path. In practice, some packets’ paths
or part of them are reused with high probability due to bet-
ter channel quality or lower energy consumption. As a
result, recurring subsequences of nodes’ IDs can be found
frequently in those packets’ paths. Therefore, we can com-
press all successive packets’ paths using the indexes of these
recurring subsequences.

3 SYSTEM MODEL

In this section, we introduce the network model, and the data
model that we consider for our proposed dictionary based
provenance scheme. We also present the provenance model
along with some useful concepts that are used in our pro-
posed scheme. Finally, we describe the adversary model
which summarizes the security objectiveswe aim to achieve.

3.1 Network Model

The network is modeled as a directed graph GðN;LÞ, where
N ¼ fni|1 � i �|N|g is the set of network nodes and
L ¼ flij|1 � i; j �|N|g is the set of links. The cardinality of
set N is denoted by jN j. A directed edge from node ni to nj,
denoted as lij, indicates a one hop communication from
node ni to nj.

We consider the following details for our network model:

� The BS assigns each node a unique identifier ni, a
counter counti, and an encryption key ki that is
shared between the BS and that particular node. All
this information is embedded in a node before its
deployment. Also, the BS itself maintains a counter,
count0i, for each node ni. Initially, counti and count0i
are both set to 0. When a node ni generates a packet
p, it increments the value of counti by 1. Upon receiv-
ing the packet p, the BS increments the ni specific
counter count0i by 1.

� Routing paths may change over time due to node
failure, mobility, link quality degradation, etc.
Hence, our model supports both stationary and
dynamic natures of sensor networks.

� The BS collects data from nodes in rounds. The
round counter, rc ¼ 0; 1; . . . is known to all nodes.

� The BS has no constraints with respect to energy, stor-
age space, security, and computational capability.

3.2 Data Model

We assume that the sensor nodes in a network generate data
periodically. We name these nodes as data source nodes. A
node may also receive data from another node in order to
forward such data towards the BS. We call this node a for-
warder node. While being routed towards the BS, packets
that fulfil the aggregation requirements are aggregated
according to some hierarchical dissemination scheme [14].
So, if a node receives such packets from multiple nodes, it
forwards the aggregated packet to the next node. We refer
to such a node as aggregator node.

Fig. 1c shows a provenance graph where nodes n6 and n7

generate data. So, these nodes are data source nodes. The gen-
erated data are then received by nodes n4 and n5

respectively. Both these nodes forward the respective data
to node n3. Hence, n4 and n5 are forwarder nodes. As node n3

aggregates data received simultaneously from multiple
nodes, it is called an aggregator node.

Each packet contains: (i) packet’s sequence number, (ii)
its source node’s ID i.e., the ID of the node that generates
the packet, (iii) data value, (iv) provenance record, and (v)
message authentication code (MAC).

In our model, a packet p generated at node ni has a
sequence number seq computed as EkiðcountijjrcÞ, where

E is an encryption function, and jj denotes concatenation.
The other parameters ki, counti, and rc are as defined in
Section 3.1.

3.3 Provenance Model

Our proposed dictionary based scheme encodes provenance
records at nodes that are involved at each step of data proc-
essing and transmission. In this section, we introduce the
following concepts that are used in our provenance scheme.

Network data provenance. The provenance of a data packet
p is represented as a graph T ðVp; EpÞ, referred to as prove-
nance graph. Each vertex vi 2 Vp represented as ðni; seq; agrÞ
is a provenance record of p at node ni. Here, ni is the host
node of vi, i.e., HostðviÞ ¼ ni, seq is the sequence number of
p, and agr is the aggregation record of packets fseqi1; . . . ;
seqiMg at node ni. If no packets are aggregated at node ni,
agr is set to ; and the sequence number is the same as that
of p. But, if agr is not empty, i.e., ni is an aggregator node, it
generates a new packet with aggregated data value and
gives it a new sequence number. An edge e 2 Ep represents
one hop connection between two vertices in Vp.

A provenance graph T ðVp; EpÞ satisfies the following
properties:

� T ðHostðVpÞ; EpÞ � GðN;LÞ is a tree rooted at the BS.
� If node ni is on the path of a packet p, there is a v 2 Vp

for whichHostðvÞ ¼ ni.
We illustrate data provenance with the following exam-

ples. If node n4 (in Fig. 1a) generates a packet p with
sequence number seqp, the provenance graph of p is repre-
sented as T ðVp; EpÞ where Vp ¼ fv4; v3; v2; v1g. As there is no

aggregation at node n4, v4 is ðn4; seqp; ;Þ. Again if nodes n6

and n7 (in Fig. 1c) generate packets q and r separately with
sequence numbers seqq and seqr, the provenance graphs of q
and r are represented as T ðVq; EqÞ and T ðVr; ErÞ respec-
tively. Here, Vq ¼ fv6; v4; v3; v2; v1g and Vr ¼ fv7; v5; v3;
v2; v1g. If node n3 aggregates data packets q and r,
v3 ¼ ðn3; seqt; fseqq; seqrgÞ where seqt is the sequence num-
ber of the aggregated packet.

Dictionary index. Dictionary index (dicIndex) is used to
represent the compression of a linear path. We define
dicIndex as hnb; nei, where nb and ne respectively represents
the beginning and ending nodes on a linear path fnb; :::; neg.
For example, the dicIndex of path fn4; n3; n2; n1g in Fig. 1a is
represented as hn4; n1i.

Packet path index. Assume that a packet p traverses the
path fnM; nM�1; . . . ; n1g to reach the BS. If there is no
dicIndex that can compress the path, the path index of p
includes the entire path hnM; nM�1; . . . ; n1i. Now, if such
dicIndex exists, it replaces the corresponding path snippet
that it compresses in the path and thus the pathIndex of
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packet p is formed. In the case of aggregated packets, we
separate the paths in pathIndex by using semicolons as
delimiter.

For example, in Fig. 1a, if the dicIndex ¼ hn4; n1i is built
before a packet p traverses the path fn4; n3; n2; n1g, the
pathIndex of p at node n1 is formed as hn4; n1i. And in
Fig. 1c, assuming that the dicIndexes hn6; n3i, and hn7; n3i
are previously built, the pathIndex of the aggregated packet
at node n3 is hn6; n3;n7; n3i. Here, the semicolons are used
to separate the branches of the tree.

Packet Path Dictionary. Packet path dictionary (PPD) at
some node ni is a database that keeps provenance informa-
tion of the packets generated, forwarded or aggregated by
node ni. When a packet p traverses a path from node nk to
ni ðk 6¼ iÞ, the PPD at ni stores information regarding this
path. It also keeps packets’ sequence numbers, dictionary
indexes of their paths, and aggregation records at node ni.

Provenance index. Provenance index, denoted as
prIndex ¼ ðv; pathIndexÞ, represents the provenance encod-
ing at vertex v of the provenance graph.

3.4 Adversary Model

During the network operations, any node but the BS may be
compromised by adversaries, i.e., only the BS is assumed to
be trusted. An adversary can eavesdrop in the network and
collect confidential information by means of packet sniffing,
traffic analysis etc. It can compromise legitimate nodes and
extract critical information such as keys, codes, or data. It
may also use these nodes to perform attacks cooperatively,
e.g., providing false route information, dropping, injecting
or altering packets. The BS cannot distinguish these com-
promised nodes from the benign ones. However, the BS
needs to verify the integrity, authenticity, and availability of
provenance which we consider to be the most important
security objectives in our scheme. Therefore, we do not
emphasize the encryption of provenance data. If confidenti-
ality is required, we can simply encrypt the provenance
by the secret keys of the respective nodes. The security
properties that we aim to achieve in our scheme are summa-
rized below:

� Any unauthorized change in packet content or prov-
enance information is detected.

� An adversary cannot inject counterfeit information
in the provenance or remove benign nodes from it.

� Amalicious node cannot drop packets without being
identified.

� Packet replay attacks are detectable.

4 PROVENANCE SCHEME

We develop a distributed mechanism to encode provenance
at sensor nodes and a centralized approach to decode prov-
enance at the BS. With the support of the PPD at each node,
our proposed approach includes a pathIndex in the prove-
nance record instead of the path itself and thus compresses
provenance to a much smaller size than that of the original
one. Also, to ensure the protection against any unauthorized
modification, the packet and its provenance are bound
together by a secure message authentication code. While
decoding, the BS verifies the MAC and then extracts the
provenance graph for the packet it receives.

Before going into the details of our encoding and decod-
ing mechanism, we present the structure of a PPD. Let a
node ni has a dictionary as shown in Fig. 2. ni keeps a table
for each node nk ðk 6¼ iÞ which appears before ni along a
packet’s path towards the BS. Each row in such a table has
four fields seq, pp, agr, dicIndex, where seq is the packet
sequence number, pp is the packet’s path fnk; . . . ; nig from
node nk to ni, agr is the aggregation record at node ni, and
dicIndex is hnk; nii is described in Section 3.3. Querying
dicIndex ¼ hnk; nii from the PPD retrieves the packet path
fnk; . . . ; nig if such a pp exists in the PPD. Node ni also stores
the information about the packets it generates in its PPD.

4.1 Provenance Encoding

For a data packet, provenance encoding refers to the crea-
tion of compressed provenance at each node on the packet’s
path. Our proposed mechanism uses the PPDs of those
nodes to efficiently encode provenance records.

During the process of provenance encoding, each node
along a packet’s path is assumed to be one of these three:
data source node, forwarder node, and aggregator node. The
functionalities of these nodes are to generate, forward, and
aggregate packets, respectively. We start encoding the prov-
enance from data source node and then update it in subse-
quent nodes along the packets’ paths. We now describe
how we encode provenance at different types of nodes. Ini-
tially, each node’s PPD is set to ;.

Encoding at a data source node. When a data source node ni

generates a packet p, it creates a row in its own table located
in its PPD. The seq field of that row is set as the sequence
number of the generated packet. Since the newly generated
packet has not yet traversed any other nodes in the network,
pp, agr, and dicIndex are set as fnig, ;, and hni; ;i, respec-
tively. The data source node then forwards the packet to the
next node towards the BS. For instance, in Fig. 1c, if node n6

generates a packet with sequence number seq1, a row is cre-
ated in its own table as shown in Table 2. Then this packet is
sent to the next node n4 with provenance record prIndex ¼
ðv6; hn6; ;iÞ, where v6 2 Vseq1 is ðn6; seq1; ;Þ.

Fig. 2. Packet path dictionary (PPD).

TABLE 2
Table for Node n6 in the PPD of n6

Sequence Number Packet Path Aggregation Dictionary Index

(seq) (pp) (agr) (dicIndex)

seq1 fn6g ; hn6; ;i
..
. ..

. ..
. ..

.
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Encoding at a forwarder node. When a node ni receives a
packet from some node nk, it creates a new row in the table
for nk in its PPD. It appends its ID to the current path of the
received packet and sets this as pp of that new row. If the
packet is simply forwarded without any aggregation, agr is
;. Finally, the dicIndex is set as hnk; nii. The provenance
record of the received packet is then updated accordingly
and forwarded to the next node.

Fig. 1c shows that a packet generated by n6 is received by
node n4 and then forwarded to the next node n3. Upon
receiving the packet, n4 creates a row in the table for n6 in
its PPD as shown in Table 3. Then the provenance record
ðv4; hn6; n4iÞ is sent to n3 where v4 2 Vseq1 is ðn4; seq1; ;Þ.

When n3 receives the packet from n4, it updates its PPD
according to Table 4. It then simply forwards the packet to
n2 with provenance record ðv3; hn6; n4; n3iÞ where v3 is
ðn3; seq1; ;Þ.

Encoding at an aggregator node. If an aggregator node ni

simultaneously receives M packets seqi1; seqi2; . . . ; seqiM , it
aggregates them into a single packet seqi. It then creates a
new row in its own table located in its PPD. It sets seq, pp,
agr, and dicIndex for the new entry as seqi, fnig,
fseqi1; seqi2; . . . ; seqiMg and hni; ;i respectively. If the
received packets seqi1; seqi2; . . . ; seqiM are generated or
aggregated at nodes nb1; nb2; . . . ; nbM respectively, the
pathIndex that is sent to the next node is hnb1; ni; . . . ; nbM; nii.

To illustrate the above scenario, we assume that node n3

in Fig. 1c receives two packets with sequence numbers seq1
and seq2 generated by nodes n6 and n7 respectively. It then
aggregates these packets into a new one with sequence
number seq3. The entry of a new row in the table of n3 in its
PPD is presented in Table 5. Finally, the packet with prove-
nance record ðv3; hn6; n3;n7; n3iÞ is sent to node n2 where v3
is ðn3; seq3; fseq1; seq2gÞ.

Upon receiving the packet, node n2 stores the path infor-
mation from n6, n4, and n3 in its PPD. The tables for these

nodes are shown in Table 6. In thisway, the PPDs at all nodes
along the packet’s path are updated. If this path is reused by
other subsequent packets, these PPDs are used to compress
the provenance records to a much smaller size. For example,
if node n3 receives another packet from n6 with sequence
number seq4, it does not send the entire path fn6; n4; n3g to
n2. It is sufficient to send only the dicIndex hn6; n3i that is
stored in the PPD of node n3 for the path fn6; n4; n3g.

When node n2 receives the packet with pathIndex ¼
hn6; n3i, it replaces n3 with its own ID and looks up the
dicIndex hn6; n2i in the table it created for node n6. It then
retrieves the entire path fn6; n4; n3; n2g which is stored for
hn6; n2i. In the next step, n2 forwards the packet to n1 with
pathIndex ¼ hn6; n2i instead of the entire path traversed by
the packet. Thus, the size of the provenance is compressed
using the dictionaries stored at nodes. The steps of the prov-
enance encoding are presented in Algorithm 1.

Algorithm 1. Provenance Encoding

Input: ðni; seqiÞ
Output: prIndex ¼ ðv; pathIndexÞ
if ni is a data source node then
prIndex:v ¼ vi
pp ¼ ni

agr ¼ ;
prIndex:pathIndex ¼ hni; ;i

end if
if ni is a forwarder node then
prIndex:v ¼ vi
pp ¼ pp

S
ni

agr ¼ ;
prIndex:pathIndex ¼ hnk; nii

end if
if ni is an aggregator node then
prIndex:v ¼ vi
pp ¼ ni

agr ¼ fseqi1; seqi2; . . . ; seqiMg
prIndex:pathIndex ¼ hnb1; ni; . . . ;nbM; nii

end if

Note that each row in the PPD contains the path informa-
tion and hence the corresponding dictionary index can be
built accordingly whenever it is required. However, pre-
computing and storing dictionary index speed up the
retrieval process of path information and incur less delay in
packet transmission.

4.2 Provenance Binding

We enclose only the prIndex as provenance record along
with the data packet to save energy and bandwidth. In
order to protect against attacks, any unauthorized modifica-
tion of packet content or its associated prIndex needs to be

TABLE 3
Table for Node n6 in the PPD of n4

Sequence Number Packet Path Aggregation Dictionary Index

(seq) (pp) (agr) (dicIndex)

seq1 fn6; n4g ; hn6; n4i
..
. ..

. ..
. ..

.

TABLE 4
Table for Nodes n4 and n6 in the PPD of n3

Table for node n4 in the PPD of n3

Sequence Number Packet Path Aggregation Dictionary Index
(seq) (pp) (agr) (dicIndex)
seq1 fn4; n3g ; hn4; n3i
..
. ..

. ..
. ..

.

Table for node n6 in the PPD of n3

Sequence Number Packet Path Aggregation Dictionary Index
(seq) (pp) (agr) (dicIndex)
seq1 fn6; n4; n3g ; hn6; n3i
..
. ..

. ..
. ..

.

TABLE 5
Table for Node n3 in the PPD of n3

Sequence Number Packet Path Aggregation Dictionary Index

(seq) (pp) (agr) (dicIndex)
seq3 fn3g fseq1; seq2g hn3; ;i
..
. ..

. ..
. ..

.
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detected. Simply encrypting the packet content or its prove-
nance is not feasible due to the high cost of encryption.
Another approach is to bind together the packet and its
prIndex by MAC and then encrypt the MAC with the pri-
vate key of each node along the packet’s path.

Traditional MAC schemes, e.g., MD5 or SHA-1, are
designed for centralized scenarios. In such cases, each node
in the packet’s path generates an independent MD5 or
SHA-1. If we chain all the MACs together, the combined
size of the resulting MAC increases in proportion to the
number of nodes on the path. Such a MAC chain incurs
additional energy and channel bandwidth.

To address this issue, we adopt a provenance binding
technique which is a direct application of the AM-FM sketch
mechanism [13]. It is a distributed message digest mecha-
nism through which we bind a packet and its provenance
together at each node along its path. Generally, this
approach can restrain the MAC size from growing beyond a
range ½ð1� "Þk; ð1þ "Þ2k� with probability ð1� dÞ where k is
the sample size of the provenance record, 0 < d < 1 and "
ð" < 1Þ is the false positive and false negative rates related

to k, if k � Oðlogð2=dÞ
"2

Þ. However, with a certain statistical con-

fidence we assume that any unauthorized packet content or
provenance modification can be detected by using the AM-
FM sketch if the false positive and false negative rates are
insignificant and controllable.

4.3 Provenance Decoding

When the BS receives a packet, it verifies the integrity of the
protected data through the AM-FM evaluation process. If
the verification confirms that the protected data are trust-
worthy, the BS accepts the packet, otherwise, the packet is
dropped. For an accepted packet p, the provenance graph rep-
resented as T ðVp; EpÞ is retrieved by looking up its
pathIndex in the PPD of the BS.

To explain the decoding process, we again make refer-
ence to Fig. 1c. We assume that node n1 is the BS in the

network and it previously received a packet with sequence
number seq1 generated by node n6. Hence, it has all the
information of the path from n6 to itself stored in its PPD as
shown in Table 7. Now assume that node n6 generates
another packet p with sequence number seq4 and the BS
receives that from n2. While forwarding the packet to the
BS, n2 embeds the provenance record prIndex ¼ ðv2; hn6;
n2iÞ in the packet as described in Section 4.1. Here,
v2 ¼ ðn2; seq4; ;Þ. The BS then decodes the provenance of p
using the PPD stored in it.

So, when the BS receives prIndex ¼ ðv2; hn6; n2iÞ from
node n2, it forms hn6; n1i by replacing n2 with its own ID
and looks up in the table it has for node n6 in its PPD. The
pp it retrieves from its PPD is fn6; n4; n3; n2; n1g. Thus the BS
decodes the provenance information and retrieves the path
of the received packet using the dictionary PPD stored in it.

If the BS receives a packet with a non-empty aggregation
record ðagrÞ, i.e., the pathIndex of the packet’s provenance
record has semicolon(s), the BS finds the aggregator node(s)
by locating the semicolons in the pathIndex. Then each path
separated by the semicolon(s) is considered individually
and looked up in the PPD in order to decode.

The steps of provenance decoding are presented in
Algorithm 2.

5 CASE STUDIES

In this section, we discuss how our provenance scheme
works for different topologies. To illustrate our examples
we assume that the BS in Fig. 3a previously received two
data packets generated by nodes I and J respectively. Thus
the paths fJ;H; F;D;B;BSg and fI;G; C;A;BSg are
already built and the PPDs of the nodes on these paths are
updated accordingly.

5.1 Dictionary Initialization

Without loss of generality, we analyze one of these two
paths, i.e., fJ;H; F;D;B;BSg. At the beginning, node J

TABLE 6
Table for Nodes n3; n4 and n6 in the PPD of n2

Table for node n3 in the PPD of n2

Sequence Number Packet Path Aggregation Dictionary Index
(seq) (pp) (agr) (dicIndex)

seq1 fn3; n2g ; hn3; n2i
..
. ..

. ..
. ..

.

Table for node n4 in the PPD of n2

Sequence Number Packet Path Aggregation Dictionary Index
(seq) (pp) (agr) (dicIndex)

seq1 fn4; n3; n2g ; hn4; n2i
..
. ..

. ..
. ..

.

Table for node n6 in the PPD of n2

Sequence Number Packet Path Aggregation Dictionary Index
(seq) (pp) (agr) (dicIndex)

seq1 fn6; n4; n3; n2g ; hn6; n2i
..
. ..

. ..
. ..

.
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generates a packet with sequence number seqJ1 . It creates

vJ ¼ hJ; seqJ1 ; ;i according to the provenance encoding

algorithm and then transmits prIndex ¼ ðvJ ; hJ; ;iÞ to the
next node.

Algorithm 2. Provenance Decoding

Input: prIndex ¼ ðv; pathIndexÞ
Output: T ðVp; EpÞ
if the AM-FM verification fails then
drop the received packet

else
if v:agr ¼ ; then
T ðVp; EpÞ = Query pathIndex to PPD.

else
c = number of ’;’ in pathIndex +1
for i = 1 to c do
pathi= Query branchi of pathIndex to PPD.

end for
T ðVp; EpÞ ¼ ðpath1; . . . ; pathcÞ

end if
end if

Initially, PPD is set to ; for nodes J;H; F;D;B and BS.
So, when the packet with sequence number seqJ1 arrives at

the BS, the pathIndex for that packet contains the entire
path, i.e., hJ;H; F;D;Bi. By parsing hJ;H; F;D;Bi, the BS
retrieves the packet’s provenance graph. Table 8 lists the
changes in the PPDs after the BS receives the packets from
both nodes I and J .

5.2 Path Index Generation

To illustrate how path indexes are generated, we consider
the following three scenarios:

1) Linear path reuse. Now consider the case in which node
J generates a new packet with sequence number seqJ2 and

transmits it along the same path as that of seqJ1 . Since the

Fig. 3. Network topology for case studies.

TABLE 7
Table for Nodes n2; n3; n4 and n6 in the PPD of n1

Table for node n2 in the PPD of n1

Sequence Number Packet Path Aggregation Dictionary Index
(seq) (pp) (agr) (dicIndex)

seq1 fn2; n1g ; hn2; n1i
..
. ..

. ..
. ..

.

Table for node n3 in the PPD of n1

Sequence Number Packet Path Aggregation Dictionary Index
(seq) (pp) (agr) (dicIndex)

seq1 fn3; n2; n1g ; hn3; n1i
..
. ..

. ..
. ..

.

Table for node n4 in the PPD of n1

Sequence Number Packet Path Aggregation Dictionary Index
(seq) (pp) (agr) (dicIndex)
seq1 fn4; n3; n2; n1g ; hn4; n1i
..
. ..

. ..
. ..

.

Table for node n6 in the PPD of n1

Sequence Number Packet Path Aggregation Dictionary Index
(seq) (pp) (agr) (dicIndex)

seq1 fn6; n4; n3; n2; n1g ; hn6; n1i
..
. ..

. ..
. ..

.

TABLE 8
Entries in the PPDs at Different Nodes

Node ID Sequence
number

pp dicIndex

J seqJ1 {J} hJ; ;i
H seqJ1 {J;H} hJ;Hi
F seqJ1 {J;H; Fg hJ; F i
D seqJ1 {J;H; F;D} hJ;Di
B seqJ1 {J;H; F;D;B} hJ;Bi
E ; ; ;
I seqI1 {I} hI; ;i
G seqI1 {I;G} hI;Gi
C seqI1 {I;G; C} hI; Ci
A seqI1 {I;G; C;A} hI;Ai
BS seqJ1 {J;H; F;D;B;BS} hJ;BSi

seqI1 {I;G; C;A;BS} hI;BSi
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PPDs of nodes along this path have been updated in the
earlier round, the pathIndex is hJ;Bi instead of hJ;H;
F;D;Biwhen the packet arrives at the BS.

2) Linear path combination. Next, consider the case in
which the node J generates the third packet with sequence
number seqJ3 which traverses a different path fJ;H; F;E;

G;C;Ag due to some change in the network topology (e.g.,
link quality degradation or mobility). Each node in this
modified path updates its PPD according to Algorithm 1
while forwarding the packet seqJ3 towards the BS. As

shown in Fig. 3a, this new path can be decomposed into
three linear path snippets which are fJ;H; Fg, fF;E;Gg,
and fG;C;Ag. Here, fJ;H; Fg and fG;C;Ag are linear path
snippets that are traversed by previous packets. So, these
path snippets are encoded as hJ; F i and hG;Ai and thus
the path fJ;H; F;E;G;C;Ag can be compressed as hJ;
F;E;G;Ai.

To decode pathIndex ¼ hJ; F;E;G;Ai, the BS first parses
it to see if there is any semicolon. Since there is no semico-
lon, the BS learns that J is the only data source node. Then the
BS looks up hG;Ai, hE;Gi, hF;Ei and hJ; F i in the tables of
nodes A, G, E, and F in its PPD. While the BS looks up A’s
table, hG;Ai returns fG;C;Ag. Then the BS looks up hE;Gi
in G’s table. As this path snippet is not traversed by previ-
ous packets, the index is not found. So, the BS prepends E
to fG;C;Ag that results in fE;G;C;Ag. The BS continues
to look up hF;Ei in E’s table. As the PPD of E is ; at that
time, the BS prepends F to fE;G;C;Ag and thus gets
fF;E;G;C;Ag. Finally, the BS looks up hJ; F i in F ’s table
that returns fJ;H; Fg. The BS then prepends it to the previ-
ously decoded path fF;E;G;C;Ag and obtains the complete
path fJ;H; F;E;G;C;Ag.

Now if a new packet with sequence number seqJ4 is gen-
erated and sent along the same path as that of seqJ3 , the

pathIndex will be compressed as hJ;Ai. Hence, only two
node IDs are enclosed in the provenance of the packet for
each one hop transmission.

3) Tree Composition. We consider the tree topology in
Fig. 3b, which is a subgraph of Fig. 3a. If node G simulta-
neously receives two packets that are generated by nodes I
and J , it aggregates them into a single packet and sends this
packet to the BS. Using the PPDs, the path snippets
fJ;H; F;E;Gg and fG;C;Ag can be compressed as hJ;Gi
and hG;Ai respectively. Hence, the pathIndex of the packet
received by the BS is hI;G; J;G;G;Ai.

6 RECURSIVE PROVENANCE SCHEME

To mitigate the provenance expansion caused by the aggre-
gator nodes, we propose a recursive provenance scheme. For
instance, as semicolons are used to represent tree topolo-
gies, the pathIndex hn6; n3;n7; n3;n3; n1i for the provenance
graph shown in Fig. 1c contains node n3 for three times.

Note that a vertex vi is defined as ðni; seq; agrÞ, where agr
is the data aggregation history at node ni. Now, we define
recursive provenance index as prIndexr ¼ ðvi; pathIndex;
flagÞ, where flag is a binary variable to distinguish whether
the first node in pathIndex is a data source node or an aggrega-
tor node. When an aggregator node ni receives M packets
seqi1; seqi2; . . . ; seqiM , it sets the sequence number, agr,
pathIndex, and flag as seqi, fseqi1; seqi2; . . . ; seqiMg, hni; ;i,

and TRUE, respectively. Note that, in the recursive prove-
nance scheme the aggregator nodes do not include the detailed
aggregation record in the pathIndex. Hence, if the subsequent
packets reuse the earlier paths, prIndexr can be compressed
to a smaller size. The aggregator node then sets the pp, and
dicIndex as fnig and hni; ;i respectively in its PPD.

When the aggregated packet arrives at the BS, the BS
checks the flag to see if the first node in the pathIndex is an
aggregator node. The BS then queries the agr in the PPD of
that node to retrieve the paths which are aggregated. The
same procedure continues until all the aggregator nodes in
the packet’s path are expanded.

For instance, consider the example of encoding at an
aggregator node in Section 4.1 and assume node n1 to be the
BS. If n1 receives a packet with prIndexr ¼ ðv2; hn3;
n2i; TRUEÞ, it replaces n2 in hn3; n2i with its ID and looks
up hn3; n1i in the table for node n3 in its own PPD. Thus
path snippet fn3; n2; n1g is retrieved for hn3; n1i. Since the
flag is set as TRUE, the BS learns that n3 is an aggregator
node. Therefore, the BS queries the agr ¼ fseq1; seq2g to the
PPD of node n3 and gets two prIndexr ðv3; hn6; n3i; FALSEÞ
and ðv3; hn7; n3i; FALSEÞ. As the flags are set as FALSE, the
BS realizes that both n6 and n7 are data source nodes. Hence,
the decoding process stops. The pathIndexes hn6; n3i and
hn7; n3i represent path snippets fn6; n4; n3g and fn7; n5; n3g,
respectively. Combining all three path snippets, the BS
builds the complete provenance as ðn6; n4; n3;n7; n5; n3;
n3; n2; n1Þ.

After a packet arrives at the BS, if the AM-FM sketch
ensures that its data and provenance are consistent to each
other and the pathIndex matches with previously received
packets, the BS does not send any query to the aggregator
nodes.

7 SECURITY AND PERFORMANCE

In this section, we analyze the security properties and eval-
uate the performance of our proposed provenance scheme.

7.1 Security Claims

We justify the following security properties of our scheme:
Claim 1. Without knowing the encryption key of a node,

adversaries cannot inject counterfeit provenance at that
node. Also, it cannot pass the AM-FM sketch verification at
the BS.

Justification. Given a packet’s path fn1; n2; . . . ; nMg, its
provenance record can be represented as fpr1; pr2 . . . ; prMg.
Here, pri is the provenance of that packet at node ni. To cre-
ate the message authentication code, the AM-FM sketch
binds every digested pri with the packet using the encryp-
tion key ki. Thus, without knowing the key of ni, pri cannot
be injected. Even if pri is injected unauthentically, the AM-
FM verification fails for the corresponding data and its
provenance at the BS.

Claim 2. If ni is a benign node in a packet path
fn1; n2; . . . ; nMg, an adversary node nj (i < j) cannot remove
ni from the provenance recordwithout being detected.

Justification. Given a packet’s path fn1; n2; . . . ; nMg, the
message authentication code received by nj contains data
from the benign node ni. Since the AM-FM sketch uses a
one-way function, an adversary nj is not able to obtain the
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provenance from the digest. Thus nj cannot remove ni from
the provenance without being detected by the AM-FM
verification.

Claim 3. A malicious node cannot selectively drop pack-
ets generated by benign nodes without being detected.

Justification. According to our packet sequence number
generation technique, the sequence number is computed as
EkiðcountijjrcÞ as discussed in Section 3.2. Initially, counti
and count0i are both set to 0. When a node ni generates a
new packet p, counti is incremented by 1 at ni and when p
arrives at the BS, count0i is also incremented by 1.

Now assume that at some point the values of both counti
and count0i are equal toK. Node ni generates a new packet p
with sequence number EkiðKjjrcÞ which results in counti to

increase to K þ 1. Until the packet arrives at the BS, count0i
holds the value K. Assume that the packet is dropped by a
malicious node on its way to the BS. In the following round,
ni generates another packet p0 and assigns it the sequence
number EkiððK þ 1ÞjjrcÞ. If p0 successfully arrives at the BS,

its sequence number does not match with the BS’s expected
sequence number EkiðKjjrcÞ. Thus the BS detects that the

packet p has been dropped by some malicious node. Hence,
we can infer that if there is more than one path from a node
ni to the BS and at least one of them is trustable, the drop-
ping of any packet generated or aggregated at node ni is
detectable.

It is important to note that the BS can query the PPD of
each node on the packet’s path to find out the last node that
observes the packet with sequence number EkiðKjjrcÞ. In
this way, it can locate the malicious node at the next hop.

Claim 4. Packet replay attacks are detectable.
Justification. Assume that the current round count is set as

rc and the node ni generates a packet p with sequence num-
ber EkiðcountijjrcÞ. In the following round, rc is incremented

to rcþ 1. Now, if the BS receives the packet p in this round,
it detects a replay attack because the round count value in
p’s sequence number is already expired.

7.2 Security Overhead

Our dictionary based provenance compression technique
has some security overheads due to: (1) the generation of
the packet sequence number EkiðcountijjrcÞ by a data source
node for each packet generation; (2) the binding of the prove-
nance with its packet through the AM-FM sketch.

Different encryption techniques result in different
degrees of security, e.g., AES provides better security than
that of DES by incurring higher computational cost. For
secure packet sequence number generation, we can use any
such encryption technique depending on the choice of hav-
ing stronger security or lower computational overhead.

Unlike commonly used MACs, e.g., MD5 and SHA-1, the
size of the MAC generated by the AM-FM sketch is adjust-
able. Sensor nodes can set an acceptable verification error
rate " for the generated MACs and a sample size k of the
provenance so that the size of such generated MAC never
grows beyond a range ½ð1� "Þk; ð1þ "Þ2k� with probability

ð1� dÞ where 0 < d < 1, if k � Oðlogð2=dÞ
"2

Þ [13]. Here, the veri-

fication error refers to false positives and false negatives of
MACs’ verification. Hence, the larger the MAC size is, the
lower the error rates are. Therefore, security overheads

incurred in our approach is adjustable as there is a tradeoff
between the security and its overheads.

7.3 Performance Analysis

Dictionary based approach is a lossless compression tech-
nique. The high compression rate of provenance in our
approach attributes to the extra storage space for dictionar-
ies. The space complexity of our provenance scheme is
described in the following scenarios:

1) Linear topology. If a packet reuses the previous packets’
paths all the way from its source to the BS, the storage com-
plexity of the pathIndex is constant and so is prIndex.

Suppose that at some point in the network operations,
we have K distinct pathIndexes hnb1; ne1i; . . . ; hnbK; neKi.
Now if a new packet is generated, and traverses a path
that can be built entirely from the above pathIndexes, the
storage complexity of the provenance remains OðKÞ. Note
that K does not have direct relationship with the number
of nodes on the traversed path. Therefore, the storage com-
plexity increases only with the increase in the number of
pathIndexes that are involved in the provenance encoding.

2) Tree topology. Assume that a tree has L branches and
each branch contains K path snippets on average. Thus the
storage complexity of provenance for such a topology is
OðLKÞ. Since the packet size has an upper-bound, the num-
ber of packets being aggregated at a time is limited, i.e., the
value of L is bounded.

If we use the recursive provenance scheme, the resulting
provenance size of the tree topology is only one bit longer
than that of the linear topology as it uses a binary variable
flag. In this approach, the more the path snippets are
reused, the better compression rate is achieved.

Compared with existing lightweight provenance
schemes [2], [5], our scheme needs extra space for storing
dictionaries but can save more energy through high com-
pression rate of provenance. We believe ours is the correct
choice because memory chips are today more compact,
cheaper, and have low power consumption. On the con-
trary, the battery is still a bottleneck for sensor nodes.

8 SIMULATION

We have evaluated the performance of our proposed dictio-
nary based provenance scheme (DP) through simulation for
both linear and tree topologies. We have used the TinyOS
2.1.2 TOSSIM simulator [15] and micaz as energy model to
implement our scheme. In our simulation, we consider a
sensor network of 100 stationary nodes with IDs 0 through
99 and vary the network diameter from 2 to 14 hops. The
node with ID 0 is assumed to be the BS. Some nodes are ran-
domly selected as data source nodes and aggregator nodes, and
the rest are considered as forwarder nodes. The duration of
each data collection round is set to 2 s.

We compare the performance of our approach with that
of the following three schemes:

Bloom filter based provenance scheme (BFP). This scheme [2],
[16] uses a fixed size Bloom filter (BF) to encode the prove-
nance of a packet. It embeds all the nodes on a packet’s path
in the BF using a set of hash functions.

Generic secure provenance scheme (SPS). For comparison
purpose, we adapt the generic secure provenance scheme
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[17] for use in WSN. Here, we simplify the provenance
record of a node ni as Pi = h ni; hashðDiÞ; Ci i, where
hashðDiÞ is a cryptographic hash of the updated data Di,
and Ci contains an integrity checksum computed as
Signðhashðni; hashðDiÞ jj Ci�1ÞÞ. As each node ni on the
packet’s path appends its Pi to the received provenance, the
size of the provenance increases linearly. To implement
SPS, we use SHA-1 (160 bit) for cryptographic hash opera-
tions and the TinyECC library [18] to generate 160-bit digital
signatures. The node ID is 2 bytes in size and thus
the increase in the size of the provenance at each hop is 42
bytes.

MAC based provenance scheme (MP). We also consider a
MAC-based provenance scheme [2], [16] where a node
transmits its node ID and a MAC computed on it as the
provenance record. We use TinySec library [19] to compute
a 4-byte CBC-MAC. Hence, the provenance size increases
by 6 bytes at each hop.

8.1 Performance Metrics

We analyze the performance of our proposed provenance
scheme using the following performance metrics:

(a) Average provenance size. When the BS receives a packet,
it computes the traversed path using the pathIndex and agr
fields in the provenance. Since the sizes of ni and seq are
fixed, for comparison purpose, we only consider the sizes of
pathIndex (SpathIndex) and agr (Sagr) to determine the prove-
nance size. Therefore, the provenance size of a packet in our
scheme is PSDP ¼ SpathIndex þ Sagr. On the other hand, the
size of the provenance for the BFP scheme (PSBFP ) is deter-
mined by the size of the Bloom filter (Sbf ).

We compute the average provenance size (APS) for m
packets p1; p2; p3; . . . ; pm as follows:

APS ¼
Pm

i¼1 PSi

m
;

where PSi denotes the provenance size for packet pi.
(b) Verification failure rate. For each packet, the AM-FM

sketch evaluates the consistency between its data and prov-
enance. When the BS receives a packet from a particular
data source node for the first time, it stores the packet’s tra-
versed path into its PPD. Later on, when the BS receives
more packets from that same data source node, it verifies
their provenance records using the AM-FM sketch and
then compares them with the stored path information. If
the provenance information is tampered or the packets’
paths are changed, the verification fails at the BS. Now, if
the BS receives packets p1; p2; p3; . . . ; pm, the verification
failure rate (VFR) is defined as the ratio of the number of
packets for which verification fails over the total number

of packets received,

VFR ¼
Pm

i¼1 vfpi
m

	 100%;

where

vfpi ¼
1 if verification fails for pi
0 if verification passes for pi

�

andm is the total number of received packets.
(c) Total energy consumption. We use PowerTOSSIM Z to

measure the amount of energy (in joule) consumed by each
sensor node. If there are n1; n2; n3; . . . ; :::nm nodes in the
network, the total energy consumption (TEC) is computed
as follows:

TEC ¼
Xm
i¼1

ECni ;

where ECni represents the energy consumed by a node ni

andm is the total number of nodes in the network.
(d) Packet loss detection rate. It is defined as the ratio of the

number of packets detected as lost to the number of packets
that are actually lost. If l packet losses are detected out of m
actual packet losses, loss detection rate (LDR) is computed

as l
m.

8.2 Simulation Results

Fig. 4 presents the average provenance size (in bytes) for DP,
BFP, MP and SPS schemes with respect to the number of
hops the packets traverse. In both SPS and MP, each node
appends its encoded provenance to the received one. As a
result, the provenance size increases linearly with the path
length. However, the SPS approach appends 42 bytes at each
hop and thus results the provenance size to increase at a
much higher rate than that ofMP. Also in BFP, the size of the
provenance increases with the number of nodes traversed,
but not as fast as in MP. As shown in Fig. 4, to correctly
decode the provenance of a packet that traverses 12 hops, a
30-byte size Bloom filter is required. The provenance size in
our scheme does not increase as the number of hops increases
and remains constant at around 2 bytes. Hence, our scheme
demonstrates much better performance than BFP in reducing
the provenance size as the number of hops increases.

We also compare the average provenance size of DP and
BFP ([2], [16]) schemes for three different scenarios in
Figs. 5a, 5b, and 5c where there are 1, 10, and 15 data source
nodes in the network, respectively. In this simulation, we
assume that no node aggregates provenance information
while the packets move towards the BS. For each scenario,
the data source nodes send 10, 100, 500, 1,000, and 2,000 pack-
ets to the BS. Upon receiving the packets, the BS calculates
the average provenance size. Fig. 5 shows that the average
provenance size in our scheme decreases with the increase
of packet transmissions, and eventually reaches a point
where it remains stable. Note that, the higher the number of
transmitted packets is, the higher the probability that a
transmission path is reused. Therefore, the provenance size
decreases correspondingly. However, for the BFP scheme,
every time a packet is sent, all the nodes along its path are
embedded into the Bloom filter [2], [16]. As a result, when a

Fig. 4. Average provenance size for different hop counts.
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packet traverses large number of nodes, the size of the
Bloom filter, i.e., the size of the provenance increases to
keep the error rate minimum. Hence, the provenance size in
BFP scheme increases with the number of nodes on the
packet’s path. In Fig. 5, we show that this scheme exhibits
larger provenance size than that of our DP scheme.

Fig. 6 shows the verification failure rate of DP and BFP
schemes. The causes for verification failure can be attributed
to provenance information tampering by malicious nodes,
node failure on system crash, or link quality degradation.
However in general, the BFP scheme has high verification
failure rate because of the usage of Bloom filter. During the
simulation we consider 200 bytes as the size of the Bloom fil-
ter which is large enough and thus causes high communica-
tion overhead. To reduce such overhead, we could decrease
the size, but doing so increases the error rate as well as the
verification failure rate. Fig. 6 manifests that VFR for DP
scheme is initially high and gradually decreases over time
as the number of packet transmissions increases. Since we
consider a large Bloom filter for BFP scheme, the simulation
shows (in Fig. 6) similar VFR for both provenance schemes.

Fig. 7 illustrates the total energy consumption in DP ,
BFP , and MP schemes for different hop counts over 100
packet transmissions. We see that the energy consumption
in MP and BFP increases at a much higher rate than that of
DP scheme. Hence, Fig. 7 shows that our scheme is more
energy efficient than other provenance schemes.

Fig. 8 presents the average provenance size of DP
scheme for three different scenarios of data aggregation-(1)

five data source nodes and five aggregator nodes, (2) 10 data
source nodes and five aggregator nodes, and (3) 10 data source
nodes and 10 aggregator nodes. For all these scenarios, the
provenance size decreases as the number of packet trans-
missions increases. In the first scenario, the probability is
high that two or more packets do not meet on the aggregator
nodes. Therefore, even if we do not use the recursive prove-
nance scheme, the average provenance size is close to the
linear one’s as shown in Fig. 5. However, in the second sce-
nario the probability of aggregation is higher. As a result,
the average provenance size increases correspondingly.
For such scenario, we can use the recursive provenance
scheme which causes the provenance size to increase only
one bit from that of the dictionary based scheme presented
in Section 4.

Fig. 9a shows the detection rate of packet losses in the DP
scheme. In this simulation, we set the natural link loss rate
to 1 percent, and the malicious link loss rate to 3, 6, and 9
percent. We also consider one malicious node in every data
path. In Fig. 9a, we see that the higher the link loss rate is,
the more the detection rate decreases. With the increase of
link loss rate, the probability of consecutive packet drops
also increases which our approach cannot detect.

Fig. 9b shows the packet loss rate over time which is used
to detect packet drop attacks. In this simulation, we con-
sider a 12-hop network where the second node of each path
is set as malicious. The results show that the packet loss rate
for a benign network converges to the natural link loss rate.
In contrast, with the presence of malicious nodes, the loss

Fig. 5. Average provenance size for (a) 1, (b) 10, and (c) 15 data source nodes.

Fig. 6. Verification failure rate for (a) 1, (b) 10, and (c) 15 data source nodes.

Fig. 7. Total energy consumption for different hop counts. Fig. 8. Average provenance size in aggregation scenario.
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rate gradually increases and eventually reaches a point
higher than the natural loss rate.

9 EXPERIMENTS

To further asses our scheme we deployed it in a test-bed
containing 10 real sensor motes. In this section, we present
its performance evaluation with respect to the metrics men-
tioned in Section 8.1.

9.1 Experimental Setup

We used the TelosB sensor mote to port the implementation
of our approach. TelosB has a 8 MHz TI MSP430 micro-con-
troller, 2.4 GHz radio, 10 kB RAM, and 1 MB external flash
for data logging. We placed TelosB motes in an indoor envi-
ronment (network area of size 10x10 ft2Þ and controlled the
transmission power of the motes (i.e., set to the lowest
power level) to ensure multi-hop communication in the net-
work. All motes were battery powered and a special mote
was used as the base station to collect statistical information.
The data source nodes generated packets in every one second.
For the purpose of performance analysis, we collected prov-
enance information by running the experiments for 10, 100,
500, 1,000, and 1,500 packet transmissions. We connected
the BS to a laptop through USB port in order to collect the
statistical data from the network.

9.2 Experimental Results

Fig. 10a presents the average provenance size resulting in
the testbed experiments of our scheme. In this experiment
we consider only one data source node that sends packets to
the BS at every second. This result reflects the trends
observed in the simulation results as shown in Fig. 5a. It
also confirms the claim that the average provenance size
decreases with the number of packet transmissions and
eventually reaches an optimal value where it remains stable.

Concerning the verification failure rate, the experimental
result in Fig. 10b shows similar trend to the result in Fig. 6a.
At the initial stage of testbed experiments, the verification

failure rate is higher than at any other time. Due to initial
network instability, data-flow paths change frequently at
that time. However, as the network becomes stable over
time, more stable routes are established. As a result, VFR
decreases exponentially to almost 0.

Fig. 10c shows the average provenance size for an aggre-
gation scenario where a particular node aggregates packets
from two other nodes and forwards this aggregated packet
to the next node. In this experiment, the provenance size
also decreases with the number of packet transmissions and
remains stable at size 2 bytes.

Hence, the experimental results show trends similar to
the simulation results and generate almost the same values
for different performance metrics.

10 RELATED WORKS

Extensive research has been carried out on the topic of net-
work provenance. However, due to limited computational
ability, energy constraints, and low bandwidth, these con-
ventional provenance schemes [20], [21] cannot be applied
in WSNs directly.

Alam and Fahmy propose a probabilistic approach [5] to
encode the nodes’ IDs into the provenance. Shebaro et al.
use Bloom filter [6] to encode the IDs of the nodes that are
on a packet’s path. These approaches minimize the size of
provenance information by keeping only the nodes’ IDs.
However, the edges which refer the packet transmissions
are discarded. Hence, those approaches are lossy prove-
nance compression techniques. Salmin et al. [2], [16]
propose a lightweight secure provenance scheme based on
in-packet Bloom filter. This approach binds data and its
provenance together and also chains the packet sequence
numbers adjacently to detect provenance forgery and
packet dropping attacks.

Lossy provenance encoding schemes [2], [5], [6], [16]
share the following characteristics: (i) only nodes’ IDs are
recorded in the data provenance, (ii) unavoidable false posi-
tive in provenance decoding, and (iii) increase in the

Fig. 9. (a) Packet loss detection rate for various malicious link loss rates, (b) Packet loss rate over time.

Fig. 10. Experimental (a) average provenance size, (b) verification failure rate, and (c) average provenance size in aggregation scenario.
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provenance size with the number of nodes traversed in
order to keep the false positive rate under a given threshold.

The compression technique used in this paper is based on
the compression algorithms proposed by Ziv and Lempel
[11], [12]. To build the dictionary they use the substrings that
appear multiple times in a message. As cyclic paths are not
allowed in sensor networks, a node shows up at most once
on a packet’s path i.e., there is no repeated nodes on a path.
As a result, these traditional dictionary based algorithms
cannot be applied directly to provenance compression.

Chen and Reif [22] reduce the subtrees recursively into
their roots. So, the resulting graph represents a coarse gran-
ular view of the provenance. By recursively shrinking chil-
dren nodes into their aggregator nodes, the provenance tree
can be represented as a set of linear path snippets. Then
each of these path snippets is compressed using PPDs. This
work is close to our approach. However, a significant differ-
ence between these two approaches is that our approach
can recover the complete provenance tree from the coarse
granular view by looking up the pathIndexes in their PPDs
whereas the approach by Chen and Reif cannot.

Hasan et al. [17] use the provenance chain model and
MAC to ensure integrity of the provenance. Compared with
our security solutions, this approach requires to transmit a
large amount of provenance information as it is not specifi-
cally designed for WSNs.

11 CONCLUSIONS

In this paper, we propose a dictionary based secure prove-
nance scheme for wireless sensor networks. Using packet
path dictionaries, we enclose path indexes instead of the
path itself in the provenance. Hence, the size of the com-
pressed provenance in our lossless approach is smaller than
that of the existing lossy provenance schemes. By using the
AM-FM sketch scheme and a secure packet sequence num-
ber generation technique, we ensure the security objectives
of our scheme. Simulation and experimental results show
that our scheme can save more energy and bandwidth than
other existing provenance schemes.
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