
CSE 597: Security of Emerging Technologies
Module: Vulnerabilities

Prof. Syed Rafiul Hussain

Systems and Network Security (SyNSec) Research Group

Department of Computer Science and Engineering

The Pennsylvania State University

• Systems software

– OS; hypervisor; web servers; firmware; network controllers; device drivers;

compilers; …

• Benefits of C/C++: programming model close to the machine model;

flexible; efficient

• BUT error‐prone

– C/C++ not memory safe; huge security risk

– Debugging memory errors is a headache

• Perhaps on par with debugging multithreaded programs

Language of Choice for Systems Programming:
C/C++

• Refer to reading/writing a buffer out of its bounds
– Programmers’ job in C/C++ to not do this
– In contrast, many modern languages (Java, Python, …) prevent buffer overflows

by performing automatic bounds-checking

• The first Internet worm, and many subsequent ones (CodeRed, Blaster,
...) exploited buffer overflows

• Buffer overflows still cause many security alerts nowadays
– E.g., check out CERT, cve.mitre.org, or bugtraq

Buffer Overflows

• C‐style strings consist of a contiguous sequence of characters,
terminated by and including the first null character.

– String length is the number of bytes preceding the null character.

– The number of bytes required to store a string is the number of
characters plus one (times the size of each character).

h e l l o \0

C-style Strings

• C provides many string functions in its libraries (libc)

• For example, we use the strcpy function to copy one string to

another:

#include <string.h>

char string1[] = "Hello, world!";

char string2[20];

strcpy(string2, string1);

Using Strings in C

• Another lets us compare strings

char string3[] = "this is"; char

string4[] = "a test";

if(strcmp(string3, string4) == 0)

printf("strings are equal\n");

else printf("strings are different\n")

• This code fragment will print "strings are different".Notice that strcmp
does not return a boolean result.

Using Strings in C

• strlen: getting the length of a string

• strcpy/strncpy: string copying

• strcat/strncat: string concatenation

• gets, fgets: receive input to a string

• …

Other Common String Functions

• Programming with C‐style strings, in C or

C++, is error prone

• Common errors include

– buffer overflows

– null‐termination errors

– off‐by‐one errors

– …

Common String Manipulation Errors

• Occur when data is copied from an unbounded source to a

fixed‐length character array

void main(void) {

 char Password[8];

puts("Enter a 8‐character password:");

gets(Password);

printf("Password=%s\n",Password);

}

gets: Unbounded String Copies

• The standard string library functions do not know the size of the
destination buffer

int main(int argc, char *argv[]) {

char name[2048];

 strcpy(name, argv[1]);

strcat(name, " = ");

 strcat(name, argv[2]);

...

}

strcpy and strcat

• Functions that restrict the number of bytes are often

recommended

• Never use gets(buf)

– Use fgets(buf, size, stdin)instead

Better String Library Functions

...
}

• char *fgets(char *BUF, int N, FILE *FP);
– “Reads at most N‐1 characters from FP until a newline

is found. The characters including to the newline are
stored in BUF. The buffer is terminated with a 0.”

void main(void) {
char Password[8];9

puts("Enter a 8‐character password:");
fgets(Password, 8, stdin);

9

From gets to fgets

• Instead of strcpy(), use strncpy()

• Instead of strcat(), use strncat()

• Instead of sprintf(), use snprintf()

Better String Library Functions

• char *strncpy(char *s1, const char *s2, size_t n);

– “Copy not more than n characters (including the null character) from the array
pointed to by s2 to the array pointed to by s1; If the string pointed to by s2 is shorter
than n characters, null characters are appended to the destination array until a total
of n characters have been written.”

– What happens if the size of s2 is n or greater

• It gets truncated

• And s1 may not be null‐terminated!

But Still Need Care

int main(int argc, char* argv[]) {

char a[16], b[16];

strncpy(a, "0123456789abcdef", sizeof(a));

printf(“%s\n”,a);

strcpy(b, a);

}

a[] not properly terminated. Possible
segmentation fault if printf(“%s\n”,a);

How to fix it?

Null‐Termination Errors

• Don’t replace

• strcpy(dest, src)

• by

• strncpy(dest, src, sizeof(dest)) but by

• strncpy(dest, src, sizeof(dest)‐1)

• dst[sizeof(dest)‐1] = `\0`;

• if dest should be null‐terminated!

• You never have this headache in memory‐safe languages

• Further, strncpy has big performance penalty vs. strcpy
 It NIL‐fills the remainder of the destination

strcpy to strncpy

char buf[N];

int i, len;

read(fd, &len, sizeof(len));

if (len > N)

{error (“invalid length"); return; }

read(fd, buf, len);

We forget to check for negative lengths

len cast to unsigned and negative length overflows

*slide by Eric Poll

Signed vs Unsigned Numbers

*slide by Eric Poll

char buf[N];

int i, len;

read(fd, &len, sizeof(len));

if (len > N || len < 0)

{erro

r

(“invalid length"); return; }

read(fd, buf, len);

It still has a problem

if the buf is going to be treated as a C string.

Checking for Negative Lengths

*slide by Eric Poll

char buf[N];

int i, len;

read(fd, &len, sizeof(len));

if (len > N-1 || len < 0)

{erro

r

(“invalid length"); return; }

read(fd, buf, len);

buf[len] = '\0'; // null terminate buf

A Good Version

• An integer overflow occurs when an integer is increased beyond its
maximum value or decreased beyond its minimum value

• Standard integer types (signed)

– signed char, short int, int, long int, long long int

• Signed overflow vs unsigned overflow

– An unsigned overflow occurs when the underlying representation can no
longer represent an integer value.

– A signed overflow occurs when a value is carried over to the sign bit

Integer Overflows

unsigned int ui;

signed int si;

ui = UINT_MAX; // 4,294,967,295;

ui++;

printf(“ui = %u\n", ui);

si = INT_MAX; // 2,147,483,647

si++;

printf(“si = %d\n", si);

ui = 0

si = -2,147,483,648

Overflow Examples

ui = 0;

ui‐‐;

printf(“ui = %u\n", ui);

si = INT_MIN; // ‐2,147,483,648;

si‐‐;

printf(“si = %d\n", si);

ui = 4,294,967,295

si = 2,147,483,647

Overflow Examples, cont’d

int main(int argc, char *const *argv) {

unsigned short int total;

total = strlen(argv[1]) + strlen(argv[2])

+ 1;

char *buff = (char *) malloc(total);

strcpy(buff, argv[1]);

strcat(buff, argv[2]);

}

What if the total variable is overflowed because of the addition
operation?

Integer Overflow Example

• Stack overflow: overflow a memory region on the stack (e.g.,
overwrite a return address)

• Heap overflow: overflow a memory region dynamically
allocated on the heap
int authenticated = 0;

char *packet = (char *)malloc(1000);

while (!authenticated) {

PacketRead(packet);

if (Authenticate(packet))

authenticated = 1;

}

if (authenticated)

ProcessPacket(packet);

What happens if PacketRead

overflows the packet buffer

and overwrite important data

in memory?

32

Buffer Overflow

• Heap allocators (AKA memory managers)

– What regions have been allocated and their sizes

– What regions are available for allocation

• Heap allocators maintain metadata such as chunk size, previous,

and next pointers

– Metadata adjusted during heap‐management functions

• malloc() and free()

– Heap metadata often adjacent to heap user data

Overflow Heap Meta‐Data

• Maintain a doubly‐linked list of allocated and free chunks

• malloc() and free() modify this list

Example Heap Allocator

• free() removes a chunk from allocated list

– chunk2‐>bk‐>fd = chunk2‐>fd

– chunk2‐>fd‐>bk = chunk2‐>bk

An Example of Removing a Chunk

• By overflowing chunk2, attacker controls bk and fd of chunk2

• Suppose the attacker wants to write value to memory address addr

– Attacker sets chunk2‐>fd to be value

– Attacker sets chunk2‐>bk to be addr‐offset, where offset is the offset
of the fd field in the structure

Attacking the Example Heap Allocator

• free() changed in the following way

– chunk2‐>bk‐>fd = chunk2‐>fd becomes

(addr‐offset)‐>fd = value, the same as (*addr)=value

– chunk2‐>fd‐>bk= chunk2‐>bk becomes

 value‐>bk = addr‐offset

• The first memory write achieves the attacker’s goal

– Arbitrary memory writes

Attacking the Example Heap Allocator

• Error: Program frees memory on the heap, but then

references that memory as if it were still valid

– Adversary can control data written using the freed pointer

• AKA use of dangling pointers

Use After Free

int main(int argc, char **argv) {

char *buf1, *buf2, *buf3;

buf1 = (char *) malloc(BUFSIZE1);

free(buf1);

buf2 = (char *) malloc(BUFSIZE2);

buf3 = (char *) malloc(BUFSIZE2);

strncpy(buf1, argv[1], BUFSIZE1‐1);
…

}

What happens here?

Use After Free

• When the first buffer is freed, that memory is available for reuse right

away

• Then, the following buffers are possibly allocated within that

memory region

buf2 = (char *) malloc(BUFSIZE2); buf3 =

(char *) malloc(BUFSIZE2);

• Finally, the write using the freed pointer may overwrite buf2 and buf3

(and their metadata)

strncpy(buf1, argv[1], BUFSIZE1‐1);

Use After Free

• Most effective attacks exploit data of another type

struct A {

void (*fnptr)(char *arg);

char *buf;

};

struct B {

int B1; int

B2;

char info[32];

};

Use After Free

• Free A, and allocate B does what?
x = (struct A *)malloc(sizeof(struct A));

free(x);

y = (struct B *)malloc(sizeof(struct B));

Use After Free

• How can you exploit it?
x = (struct A *)malloc(sizeof(struct A));

free(x);

y = (struct B *)malloc(sizeof(struct B));

y->B1 = 0xDEADBEEF;

x->fnptr(x->buf);

 Assume that
 The attacker controls what to write to y‐>B1

 There is a later use‐after‐free that performs a call using “x‐>fnptr”

 Become a popular vulnerability to exploit – over 60% of CVEs in 2018

Use After Free

#include <stdlib.h>

struct node {

struct node *next;

};

void func(struct node *head) { struct

node *p;

for (p = head; p != NULL; p = p‐>next) {

free(p);
}

}

Exercise: Find the Use‐After‐Free Error and Provide
a fix

• Difficult to detect because these often occur in complex runtime

states

– Allocate in one function

– Free in another function

– Use in a third function

• It is not fun to check source code for all possible pointers

– Are all uses accessing valid (not freed) references?

– In all possible runtime states

Prevent Use After Free

• What can you do that is not too complex?

– You can set all freed pointers to NULL

• Getting a null‐pointer dereference if using it

• Nowadays, OS has built‐in defense for null‐pointer deference

– Then, no one can use them after they are freed

– Complexity: need to set all aliased pointers to NULL

Prevent Use After Free

main(int argc, char **argv)

{

…

buf1 = (char *) malloc(BUFSIZE1);

free(buf1);

buf2 = (char *) malloc(BUFSIZE2);

strncpy(buf2, argv[1], BUFSIZE2‐1);
free(buf1);

free(buf2);

}

What happens here?

Related Problem: Double Free

• Free buf1, then allocate buf2

– buf2 may occupy the same memory space of buf1

• buf2 gets user‐supplied data

strncpy(buf2, argv[1], BUFSIZE2‐1);

• Free buf1 again

– Which may use some buf2 data as metadata

– And may mess up buf2’s metadata

• Then free buf2, which uses really messed up metadata

Double Free

#include <stdlib.h>

int f(size_t n) {
int error_condition = 0;

int *x = (int *)malloc(n * sizeof(int));
if (x == NULL)

return ‐1;

/* Use x and set error_condition on error. */

…

if (error_condition == 1) {
/* Handle error */
free(x);

}

free(x);
return error_condition;

}

What’s Wrong?

#include <stdlib.h>

/* p is a pointer to dynamically allocated memory. */
void func(void *p, size_t size) {
p2 = realloc(p, size);
if (p2 == NULL) {
free(p);
return;

}
}

When size == 0,
realloc(p,0) same

As free(p)

What’s Wrong? Fix?

• So,“double free” can achieve the same effect as some heap

overflow vulnerabilities

– So, can be addressed in the same way

– But, you can also save yourself some headache by setting freed pointers

to NULL

– Some new heap allocators nowadays have built‐in defense against double

free

Double Free

	Slide 1: CSE 597: Security of Emerging Technologies Module: Vulnerabilities
	Slide 2: Language of Choice for Systems Programming: C/C++
	Slide 3: Buffer Overflows
	Slide 4: C-style Strings
	Slide 5: Using Strings in C
	Slide 6: Using Strings in C
	Slide 7: Other Common String Functions
	Slide 8: Common String Manipulation Errors
	Slide 9: gets: Unbounded String Copies
	Slide 10: strcpy and strcat
	Slide 11: Better String Library Functions
	Slide 12: From gets to fgets
	Slide 13: Better String Library Functions
	Slide 14: But Still Need Care
	Slide 15: Null‐Termination Errors
	Slide 16: strcpy to strncpy
	Slide 17: Signed vs Unsigned Numbers
	Slide 18: Checking for Negative Lengths
	Slide 19: A Good Version
	Slide 20: Integer Overflows
	Slide 21: Overflow Examples
	Slide 22: Overflow Examples, cont’d
	Slide 23: Integer Overflow Example
	Slide 26: Buffer Overflow
	Slide 28: Overflow Heap Meta‐Data
	Slide 29: Example Heap Allocator
	Slide 30: An Example of Removing a Chunk
	Slide 31: Attacking the Example Heap Allocator
	Slide 32: Attacking the Example Heap Allocator
	Slide 33: Use After Free
	Slide 34: Use After Free
	Slide 35: Use After Free
	Slide 36: Use After Free
	Slide 37: Use After Free
	Slide 38: Use After Free
	Slide 39: Exercise: Find the Use‐After‐Free Error and Provide a fix
	Slide 40: Prevent Use After Free
	Slide 41: Prevent Use After Free
	Slide 42: Related Problem: Double Free
	Slide 43: Double Free
	Slide 44: What’s Wrong?
	Slide 45: What’s Wrong? Fix?
	Slide 46: Double Free

