
CSE 597: Security of Emerging Technologies
Module: Vulnerabilities

Prof. Syed Rafiul Hussain

Systems and Network Security (SyNSec) Research Group

Department of Computer Science and Engineering

The Pennsylvania State University



• Systems software

– OS; hypervisor; web servers; firmware; network controllers; device drivers;

compilers; …

• Benefits of C/C++: programming model close to the machine model;

flexible; efficient

• BUT error‐prone

– C/C++ not memory safe; huge security risk

– Debugging memory errors is a headache

• Perhaps on par with debugging multithreaded programs

Language of Choice for Systems Programming: 
C/C++



• Refer to reading/writing a buffer out of its bounds
– Programmers’ job in C/C++ to not do this
– In contrast, many modern languages (Java, Python, …) prevent buffer overflows

by performing automatic bounds-checking

• The first Internet worm, and many subsequent ones (CodeRed, Blaster,
...) exploited buffer overflows

• Buffer overflows still cause many security alerts nowadays
– E.g., check out CERT, cve.mitre.org, or bugtraq

Buffer Overflows



• C‐style strings consist of a contiguous sequence of characters,
terminated by and including the first null character.

– String length is the number of bytes preceding the null character.

– The number of bytes required to store a string is the number of
characters plus one (times the size of each character).

h e l l o \0

C-style Strings



• C provides many string functions in its libraries (libc)

• For example, we use the strcpy function to copy one string to

another:

#include <string.h>

char string1[] = "Hello, world!"; 

char string2[20];

strcpy(string2, string1);

Using Strings in C



• Another lets us compare strings

char string3[] = "this is"; char

string4[] = "a test";

if(strcmp(string3, string4) == 0) 

printf("strings are equal\n");

else printf("strings are different\n")

• This code fragment will print "strings are different".Notice that strcmp
does not return a boolean result.

Using Strings in C



• strlen: getting the length of a string

• strcpy/strncpy: string copying

• strcat/strncat: string concatenation

• gets, fgets: receive input to a string

• …

Other Common String Functions



• Programming with C‐style strings, in C or

C++, is error prone

• Common errors include

– buffer overflows

– null‐termination errors

– off‐by‐one errors

– …

Common String Manipulation Errors



• Occur when data is copied from an unbounded source to a

fixed‐length character array

void main(void) { 

 char Password[8];

puts("Enter a 8‐character password:"); 

gets(Password); 

printf("Password=%s\n",Password);

}

gets: Unbounded String Copies



• The standard string library functions do not know the size of the
destination buffer

int main(int argc, char *argv[]) { 

char name[2048]; 

    strcpy(name, argv[1]); 

strcat(name, " = "); 

    strcat(name, argv[2]);

...

}

strcpy and strcat



• Functions that restrict the number of bytes are often

recommended

• Never use gets(buf)

– Use fgets(buf, size, stdin)instead

Better String Library Functions



...
}

• char *fgets(char *BUF, int N, FILE *FP);
– “Reads at most N‐1 characters from FP until a newline 

is found. The characters including to the newline are 
stored in BUF. The buffer is terminated with a 0.”

void main(void) { 
char Password[8];9

puts("Enter a 8‐character password:"); 
fgets(Password, 8, stdin);

9

From gets to fgets



• Instead of strcpy(), use strncpy()

• Instead of strcat(), use strncat()

• Instead of sprintf(), use snprintf()

Better String Library Functions



• char *strncpy(char *s1, const char *s2, size_t n);

– “Copy not more than n characters (including the null character) from the array
pointed to by s2 to the array pointed to by s1; If the string pointed to by s2 is shorter
than n characters, null characters are appended to the destination array until a total 
of n characters have been written.”

– What happens if the size of s2 is n or greater

• It gets truncated

• And s1 may not be null‐terminated!

But Still Need Care



int main(int argc, char* argv[]) { 

char a[16], b[16];

strncpy(a, "0123456789abcdef", sizeof(a)); 

printf(“%s\n”,a);

strcpy(b, a);

}

a[] not properly terminated. Possible
segmentation fault if printf(“%s\n”,a);

How to fix it?

Null‐Termination Errors



• Don’t replace

• strcpy(dest, src)

• by

• strncpy(dest, src, sizeof(dest)) but by

• strncpy(dest, src, sizeof(dest)‐1) 

• dst[sizeof(dest)‐1] = `\0`;

• if dest should be null‐terminated!

• You never have this headache in memory‐safe languages

• Further, strncpy has big performance penalty vs. strcpy
 It NIL‐fills the remainder of the destination

strcpy to strncpy



char buf[N]; 

int i, len;

read(fd, &len, sizeof(len)); 

if (len > N)

{error (“invalid length"); return; } 

read(fd, buf, len);

We forget to check for negative lengths

len cast to unsigned and negative length overflows

*slide by Eric Poll

Signed vs Unsigned Numbers



*slide by Eric Poll

char buf[N]; 

int i, len;

read(fd, &len, sizeof(len));

if (len > N || len < 0)

{erro

r

(“invalid length"); return; }

read(fd, buf, len);

It still has a problem

if the buf is going to be treated as a C string.

Checking for Negative Lengths



*slide by Eric Poll

char buf[N]; 

int i, len;

read(fd, &len, sizeof(len));

if (len > N-1 || len < 0)

{erro

r

(“invalid length"); return; }

read(fd, buf, len);

buf[len] = '\0'; // null terminate buf

A Good Version



• An integer overflow occurs when an integer is increased beyond its
maximum value or decreased beyond its minimum value

• Standard integer types (signed)

– signed char, short int, int, long int, long long int

• Signed overflow vs unsigned overflow

– An unsigned overflow occurs when the underlying representation can no
longer represent an integer value.

– A signed overflow occurs when a value is carried over to the sign bit

Integer Overflows



unsigned int ui; 

signed int si;

ui = UINT_MAX; // 4,294,967,295;

ui++;

printf(“ui = %u\n", ui);

si = INT_MAX; // 2,147,483,647

si++;

printf(“si = %d\n", si);

ui = 0

si = -2,147,483,648

Overflow Examples



ui = 0;

ui‐‐;

printf(“ui = %u\n", ui);

si = INT_MIN; // ‐2,147,483,648;

si‐‐;

printf(“si = %d\n", si);

ui = 4,294,967,295

si = 2,147,483,647

Overflow Examples, cont’d



int main(int argc, char *const *argv) { 

unsigned short int total;

total = strlen(argv[1]) + strlen(argv[2])

+ 1; 

char *buff = (char *) malloc(total); 

strcpy(buff, argv[1]);

strcat(buff, argv[2]);

}

What if the total variable is overflowed because of the addition
operation?

Integer Overflow Example



• Stack overflow: overflow a memory region on the stack (e.g.,
overwrite a return address)

• Heap overflow: overflow a memory region dynamically
allocated on the heap
int authenticated = 0;

char *packet = (char *)malloc(1000);

while (!authenticated) { 

PacketRead(packet);

if (Authenticate(packet)) 

authenticated = 1;

}

if (authenticated) 

ProcessPacket(packet);

What happens if PacketRead 

overflows the packet buffer 

and overwrite important data 

in memory?

32

Buffer Overflow



• Heap allocators (AKA memory managers)

– What regions have been allocated and their sizes

– What regions are available for allocation

• Heap allocators maintain metadata such as chunk size, previous,

and next pointers

– Metadata adjusted during heap‐management functions

• malloc() and free()

– Heap metadata often adjacent to heap user data

Overflow Heap Meta‐Data



• Maintain a doubly‐linked list of allocated and free chunks

• malloc() and free() modify this list

Example Heap Allocator



• free() removes a chunk from allocated list

– chunk2‐>bk‐>fd = chunk2‐>fd

– chunk2‐>fd‐>bk = chunk2‐>bk

An Example of Removing a Chunk



• By overflowing chunk2, attacker controls bk and fd of chunk2

• Suppose the attacker wants to write value to memory address addr

– Attacker sets chunk2‐>fd to be value

– Attacker sets chunk2‐>bk to be addr‐offset, where offset is the offset 
of the fd field in the structure

Attacking the Example Heap Allocator



• free() changed in the following way

– chunk2‐>bk‐>fd = chunk2‐>fd becomes 

(addr‐offset)‐>fd = value, the same as (*addr)=value

– chunk2‐>fd‐>bk= chunk2‐>bk becomes

 value‐>bk = addr‐offset

• The first memory write achieves the attacker’s goal

– Arbitrary memory writes

Attacking the Example Heap Allocator



• Error: Program frees memory on the heap, but then

references that memory as if it were still valid

– Adversary can control data written using the freed pointer

• AKA use of dangling pointers

Use After Free



int main(int argc, char **argv) { 

char *buf1, *buf2, *buf3;

buf1 = (char *) malloc(BUFSIZE1); 

free(buf1);

buf2 = (char *) malloc(BUFSIZE2); 

buf3 = (char *) malloc(BUFSIZE2); 

strncpy(buf1, argv[1], BUFSIZE1‐1);
…

}

What happens here?

Use After Free



• When the first buffer is freed, that memory is available for reuse right

away

• Then, the following buffers are possibly allocated within that

memory region

buf2 = (char *) malloc(BUFSIZE2); buf3 =

(char *) malloc(BUFSIZE2);

• Finally, the write using the freed pointer may overwrite buf2 and buf3

(and their metadata)

strncpy(buf1, argv[1], BUFSIZE1‐1);

Use After Free



• Most effective attacks exploit data of another type

struct A {

void (*fnptr)(char *arg); 

char *buf;

};

struct B {

int B1; int

B2;

char info[32];

};

Use After Free



• Free A, and allocate B does what?
x = (struct A *)malloc(sizeof(struct A)); 

free(x);

y = (struct B *)malloc(sizeof(struct B));

Use After Free



• How can you exploit it?
x = (struct A *)malloc(sizeof(struct A)); 

free(x);

y = (struct B *)malloc(sizeof(struct B));

y->B1 = 0xDEADBEEF;

x->fnptr(x->buf);

 Assume that
 The attacker controls what to write to y‐>B1

 There is a later use‐after‐free that performs a call using “x‐>fnptr”

 Become a popular vulnerability to exploit – over 60% of CVEs in 2018

Use After Free



#include <stdlib.h>

struct node {

struct node *next;

};

void func(struct node *head) { struct

node *p;

for (p = head; p != NULL; p = p‐>next) { 

free(p);
}

}

Exercise: Find the Use‐After‐Free Error and Provide 
a fix



• Difficult to detect because these often occur in complex runtime

states

– Allocate in one function

– Free in another function

– Use in a third function

• It is not fun to check source code for all possible pointers

– Are all uses accessing valid (not freed) references?

– In all possible runtime states

Prevent Use After Free



• What can you do that is not too complex?

– You can set all freed pointers to NULL

• Getting a null‐pointer dereference if using it

• Nowadays, OS has built‐in defense for null‐pointer deference

– Then, no one can use them after they are freed

– Complexity: need to set all aliased pointers to NULL

Prevent Use After Free



main(int argc, char **argv)

{

…

buf1 = (char *) malloc(BUFSIZE1); 

free(buf1);

buf2 = (char *) malloc(BUFSIZE2); 

strncpy(buf2, argv[1], BUFSIZE2‐1); 
free(buf1);

free(buf2);

}

What happens here?

Related Problem: Double Free



• Free buf1, then allocate buf2

– buf2 may occupy the same memory space of buf1

• buf2 gets user‐supplied data

strncpy(buf2, argv[1], BUFSIZE2‐1);

• Free buf1 again

– Which may use some buf2 data as metadata

– And may mess up buf2’s metadata

• Then free buf2, which uses really messed up metadata

Double Free



#include <stdlib.h>

int f(size_t n) {
int error_condition = 0;

int *x = (int *)malloc(n * sizeof(int)); 
if (x == NULL)

return ‐1;

/* Use x and set error_condition on error. */

…

if (error_condition == 1) {
/* Handle error */ 
free(x);

}

free(x);
return error_condition;

}

What’s Wrong?



#include <stdlib.h>

/* p is a pointer to dynamically allocated memory. */ 
void func(void *p, size_t size) {
p2 = realloc(p, size); 
if (p2 == NULL) {
free(p); 
return;

}
}

When size == 0, 
realloc(p,0) same 

As free(p)

What’s Wrong? Fix?



• So,“double free” can achieve the same effect as some heap

overflow vulnerabilities

– So, can be addressed in the same way

– But, you can also save yourself some headache by setting freed pointers

to NULL

– Some new heap allocators nowadays have built‐in defense against double

free

Double Free
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