
CSE 597: Security of Emerging Technologies
Module: Static analysis and Symbolic Execution

Prof. Syed Rafiul Hussain

Systems and Network Security (SyNSec) Research Group

Department of Computer Science and Engineering

The Pennsylvania State University

Static Analysis

• Limitation of dynamic testing:

▸We cannot find all vulnerabilities in a program

• Can we build a technique that identifies *all* vulnerabilities?

▸Turns out that we can: static analysis

• Explore all possible executions of a program

▸All possible inputs

▸All possible states

▸But, it has its own major limitation
• Can identify many false positives (not actual vulnerabilities)

▸Can be effective when used carefully

Control Flow Analysis

Can we detect code with no return check?

format.c (line 276):

while (lastc != ’\n’)

{ //reading line

 rdc();

}

input.c (line 27):

rdc() {

 do { //reading words

 readchar(); }

while (lastc == ’ ’ ||

lastc == ’\t’);

 return (lastc);

}

• To find an execution path that does not check the return value of a

function

❑ That is actually run by the program

❑ How do we do this? Control Flow Analysis

Static Analysis

• Provides an approximation of behavior

• “Run in the aggregate”
▸Rather than executing on ordinary states

▸Finite-sized descriptors representing a collection of states

• “Run in non-standard way”
▸Run in fragments

▸Stitch them together to cover all paths

• Various properties of programs can be tracked

• Control flow, Data flow, Types

• Which ones will expose which vulnerabilities

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Static Analysis Example

• Descriptors represent the sign of a value

‣ Positive, negative, zero, unknown

• For an expression, c = a * b

‣ If a has a descriptor pos

‣ And b has a descriptor neg

• What is the descriptor for c after that instruction?

• How might this help?

11

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Static Analysis Example

• Descriptors represent the sign of a value

‣ Positive, negative, zero, unknown

• For an expression, c = a * b

‣ If a has a descriptor pos

‣ And b has a descriptor neg

• What is the descriptor for c after that instruction?

• How might this help?

11

CSE543 - Computer Security Page

Runtime Analysis

 XSystems and Internet Infrastructure Security (SIIS) Laboratory Page

Descriptors

• Choose a set of descriptors that

‣ Abstracts away details to make analysis tractable

‣ Preserves enough information that key properties hold

• Can determine interesting results

• Using sign as a descriptor

‣ Abstracts away specific integer values (billions to four)

‣ Guarantees when a*b = 0 it will be zero in all executions

• Choosing descriptors is one key step in static analysis

12

Buffer Overflow Static Analysis

• For C code where

• char dest[LEN]; int n, a , b;

• if (a > 2*b)

• n = input();

• else n = 50000;

• strncpy(dest, src, n);

• Static analysis will try all paths of the program that impact variable n and flow to strncpy

• May be complex in general because

• Paths: Exponential number of program paths

• Interprocedural: n may be assigned in another function

• Aliasing: n’s memory may be accessed from many places

• What descriptor values do you care about for n?

Limitations of Static Analysis

• Scalability

• Can be expensive to reason about all executions of complex programs

• False positives

• Over-approximation means that executions that are not really possible may be
found

• Accuracy

• Alias analysis and other imprecision may lead to false positives

• Sound methods (no false negatives) can exacerbate scalability and false
positives problems

• Bottom line: Static analysis often must be directed

Static vs. Dynamic

• Dynamic

▸Depends on concrete inputs

▸Must run the program

▸Impractical to run all possible executions in most cases

• Static
▸Overapproximates possible input values (sound)

▸Assesses all possible runs of the program at once

▸Setting up static analysis is somewhat of an art form

• Is there something that combines best of both?

▸Can’t quite achieve all these, but can come closer

Symbolic Execution

• Symbolic execution is a method for emulating the execution of a program to
learn constraints
▸Assign variables to symbolic values instead of concrete values

▸Symbolic execution tells you what values are possible for symbolic variables at any
particular point in your program

• Like dynamic analysis (fuzzing) in that the program is executed in a way – albeit
on symbolic inputs

• Like static analysis in that one start of the program tells you what values may
reach a particular state

Background: SAT

SATisfying

assignment!

Given a propositional formula in CNF, find if there exists an

assignment to Boolean variables that makes the formula true:

1 = (b c)

2 = (a d)

3 = (b d)

 = 1 2 3

A = {a=0, b=1, c=0, d=1}

clauses

literals

Background: SMT

SMT: Satisfiability Modulo Theories

Input: a first-order formula over background theory

Output: is satisfiable?
▸does have a model?

▸Is there a refutation of = proof of ?

For most SMT solvers: is a ground formula
▸Background theories: Arithmetic, Arrays, Bit-vectors, Algebraic Datatypes

▸Most SMT solvers support simple first-order sorts

Symbolic Execution

Void func(int x, int

y){

 int z = 2 * y;

 if(z == x){

 if (x > y + 10)

 ERROR

 }

}

int main(){

int x = sym_input();

int y = sym_input();

func(x, y);

return 0;

}

x = a = 0
y = b = 1

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

Path constraint z = 2b

Note: Require inputs to be marked as symbolic

Generated
Test inputs
for this path

How does symbolic execution work?

Symbolic Execution

x = a = 0
y = b = 1

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

z = 2b

How does symbolic execution work?

x = a = 0
y = b =

1

x = a = 2
y = b =

3

x = a = 5
y = b =

4

…
…
…

…
…
…

x = a = 2
y = b =

1x = a = 4
y = b =

2x = a = -
6

y = b = -
3

x = a = 40
y = b = 20

x = a = 30
y = b = 15

x = a = 48
y = b = 24

……
…

Path constraints represent
equivalence classes of inputs

Symbolic Execution

Void func(int x, int

y){

 int z = 2 * y;

 if(z == x){

 if (x > y + 10)

 ERROR

 }

}

int main(){

int x = sym_input();

int y = sym_input();
func(x, y);

return 0;

}

Symbolic
Execution

Engine

SMT solver

Path
constraint

Satisfying
Assignment

High coverage
test inputs

Symbolic Execution

• Execute the program with symbolic valued inputs (Goal: good path
coverage)

• Represents equivalence class of inputs with first order logic formulas (path
constraints)

• One path constraint abstractly represents all inputs that induces the program
execution to go down a specific path

• Solve the path constraint to obtain one representative input that exercises the
program to go down that specific path

Symbolic Execution

• Instead of concrete state, the program maintains symbolic states, each of which
maps variables to symbolic values

• Path condition is a quantifier-free formula over the symbolic inputs that
encodes all branch decisions taken so far

• All paths in the program form its execution tree, in which some paths are
feasible and some are infeasible

Symbolic Execution Tools

• FuzzBALL:

▸Works on binaries, generic SE engine. Used to, e.g., find PoC exploits given a vulnerability
condition.

▸KLEE: Instruments through LLVM-based pass, relies on source code. Used to, e.g., nd bugs
in programs.

▸S2E: Selective Symbolic Execution: automatic testing of large source base, combines KLEE
with an concolic execution. Used to, e.g., test large source bases (e.g., drivers in kernels)
for bugs.

• Efficiency of SE tool depends on the search heuristics and search strategy. As
search space grows exponentially, a good search strategy is crucial for efficiency
and scalability.

Symbolic Execution Summary

• Symbolic execution is a great tool to find vulnerabilities or to create
PoC exploits.

• Symbolic execution is limited in its scalability. An efficient search
strategy is crucial.

Concolic Execution

Void func(int x, int

y){

 int z = 2 * y;

 if(z == x){

 if (x > y + 10)

 ERROR

 }

}

int main(){

int x = sym_input();

int y = sym_input();

func(x, y);

return 0;

}

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

ERROR

Path constraint

z = 2b

Start with x=22, y=7

Solve 2b == a
Start with a=2, b=1

Solve (2b == a) ∧ (a – b> 10)
Start with a=30, b=15

Formal Verification

• Formal verification is the act of using formal methods to proving or disproving the
correctness of a certain system given its formal specification.

• Formal verification requires a specification and an abstraction mechanism to show that
the formal specification either holds (i.e., its correctness is proven) or fails (i.e., there is a
bug).

• Verification is carried out by providing a formal proof on the abstracted mathematical
model of the system according to the specification. Many different forms of mathematical
objects can be used for formal verification like finite state machines or formal semantics
of programming languages (e.g., operational semantics or Hoare logic).

Takeaways

• Testing is simple but only tests for presence of functionality.

• Fuzzing uses test cases to explore other paths, might run forever.

• Static analysis has limited precision (e.g., aliasing).

• Symbolic execution needs guidance when searching through program.

• Formal verification is precise but arithmetic operations can be difficult.

• All mechanisms (except testing) run into state explosion.

Thanks

Thanks to Omar Chowdhury, Gang Tan, Suman Jana and Baishakhi Ray

for some slides.

	Slide 1: CSE 597: Security of Emerging Technologies Module: Static analysis and Symbolic Execution
	Slide 2: Static Analysis
	Slide 3: Control Flow Analysis
	Slide 4: Static Analysis
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Buffer Overflow Static Analysis
	Slide 9: Limitations of Static Analysis
	Slide 10: Static vs. Dynamic
	Slide 11: Symbolic Execution
	Slide 12: Background: SAT
	Slide 13: Background: SMT
	Slide 16: Symbolic Execution
	Slide 17: Symbolic Execution
	Slide 18: Symbolic Execution
	Slide 19: Symbolic Execution
	Slide 20: Symbolic Execution
	Slide 22: Symbolic Execution Tools
	Slide 23: Symbolic Execution Summary
	Slide 24: Concolic Execution
	Slide 25: Formal Verification
	Slide 26: Takeaways
	Slide 27: Thanks

