
CSE 597: Security of Emerging Technologies
Module: Program Analysis

Prof. Syed Rafiul Hussain

Systems and Network Security (SyNSec) Research Group

Department of Computer Science and Engineering

The Pennsylvania State University

Our Goal

Program

Analyzer

Source code
Security bugs

Program analyzer must be able to

understand program properties

(e.g., can a variable be NULL at a

particular program point?)

Must perform

control and data

flow analysis

Do we need to implement control and data flow
analysis from scratch?
• Most modern compilers already perform several types of such analysis for code

optimization
▸We can hook into different layers of analysis and customize them

▸We still need to understand the details

• LLVM (http://llvm.org/) is a highly customizable and modular compiler
framework

▸Users can write LLVM passes to perform different types of analysis

▸Clang static analyzer can find several types of bugs

▸Can instrument code for dynamic analysis

Compiler Overview

• Abstract Syntax Tree : Source code parsed to produce AST

• Control Flow Graph: AST is transformed to CFG

• Data Flow Analysis: operates on CFG

The Structure of a Compiler

5

scanner

parser

checker

code gen

Source code (stream of characters)

stream of tokens

Abstract Syntax Tree (AST)

AST with annotations (types, declarations)

Machine/byte code

Syntactic Analysis

• Input: sequence of tokens from scanner

• Output: abstract syntax tree

• Actually,

▸parser first builds a parse tree, representation of grammars in a tree-like form.

▸AST is then built by translating the parse tree

▸parse tree rarely built explicitly; only determined by, say, how parser pushes stuff to stack

6

Example

• Source Code

 4*(2+3)

• Parser input

NUM(4) TIMES LPAR NUM(2) PLUS NUM(3) RPAR

• Parser output (AST):

7

*

NUM(4)
+

NUM(2) NUM(3)

Parse tree for the example: 4*(2+3)

8

leaves are tokens

NUM(4) TIMES LPAR NUM(2) PLUS NUM(3) RPAR

EXPR

EXPR

EXPR

Parse Tree

• Representation of grammars in a tree-like form.

• Is a one-to-one mapping from the grammar to a tree-form.

A parse tree pictorially shows how the start

symbol of a grammar derives a string in the

language. … Dragon Book

C Statement: return a + 2

a very formal representation that strictly

shows how the parser understands the

statement return a + 2;

Parse Tree

Abstract Syntax Tree (AST)

• Simplified syntactic representations of the source code, and they're most often
expressed by the data structures of the language used for implementation

• Without showing the whole syntactic clutter, represents the parsed string in a
structured way, discarding all information that may be important for parsing the
string, but isn't needed for analyzing it.

ASTs differ from parse trees because superficial

distinctions of form, unimportant for translation,

do not appear in syntax trees.. … Dragon Book

C Statement: return a + 2

Abstract Syntax Tree (AST)

Disadvantages of ASTs

• AST has many similar forms

▸E.g., for, while, repeat...until

▸E.g., if, ?:, switch

• Expressions in AST may be complex, nested

▸(x * y) + (z > 5 ? 12 * z : z + 20)

• Want simpler representation for analysis

▸...at least, for dataflow analysis

15

int x = 1 // what’s the value of x ?

 // AST traversal can give the answer, right?

What about int x; x = 1; or int x= 0; x += 1; ?

Control Flow Graph & Analysis

High-level representation

–Control flow is implicit in an AST

Low-level representation:

–Use a Control-flow graph (CFG)

–Nodes represent statements (low-level linear IR)

–Edges represent explicit flow of control

What Is Control-Flow Analysis?

1

2

a := 0

b := a * b

3 L1: c := b/d

4

5

6

if c < x goto L2

e := b / c

f := e + 1

7 L2: g := f

8

9

h := t - g

if e > 0 goto L3

10 goto L1

11 L3: return

a := 0

 b := a * b

e := b / c

f : e + 1

g := f

h := t – g

If e > 0 ?

goto return

c := b / d

c < x?

1

3

5

7

1110

Yes No

Basic Blocks

• A basic block is a sequence of straight line code that can be entered

only at the beginning and exited only at the end

g := f

h := t – g

If e > 0 ?

• Building basic blocks

▸ Identify leaders
o The first instruction in a procedure, or

o The target of any branch, or

o An instruction immediately following a branch

(implicit target)

▸ Gobble all subsequent instructions until the next leader

Basic Block Example

1

2

a := 0

b := a * b

3 L1: c := b/d

4

5

6

if c < x goto L2

e := b / c

f := e + 1

7 L2: g := f

8

9

h := t - g

if e > 0 goto L3

10 goto L1

11 L3: return

Leaders?

Blocks?

Basic Block Example

1

2

a := 0

b := a * b

3 L1: c := b/d

4

5

6

if c < x goto L2

e := b / c

f := e + 1

7 L2: g := f

8

9

h := t - g

if e > 0 goto L3

10 goto L1

11 L3: return

Leaders?

– {1, 3, 5, 7, 10, 11}

Blocks?

– {1, 2}

– {3, 4}

– {5, 6}

– {7, 8, 9}

– {10}

– {11}

Building a CFG From Basic Block

a := 0

 b := a * b

e := b / c

f : e + 1

g := f

h := t – g

If e > 0 ?

goto return

c := b / d

c < x?

1

3

5

7

1110

Yes No

Construction

• Each CFG node represents a basic block

• There is an edge from node i to j if

▸ Last statement of block i branches to the first

statement of j, or

▸ Block i does not end with an unconditional branch

and is immediately followed in program order by

block j (fall through)

Looping

preheader

head

tail exit edge

Exit edge

backedge

entry edge

Loop

Why?

backedges indicate that we

might need to traverse the

CFG more than once for

data flow analysis

Looping

preheader

head

tail exit edge

Exit edge

backedge

entry edge

Loop

Not all loops have preheaders

– Sometimes it is useful to

create them
Without preheader

node

– There can be

multiple entry edges

With single

preheader node

– There is only one

entry edge

Looping

▸An entering block (or loop predecessor) is a

non-loop node that has an edge into the loop

(necessarily the header). If there is only one entering

block entering block, and its only edge is to the

header, it is also called the loop’s preheader.

The preheader dominates the loop without itself

being part of the loop.

▸A latch is a loop node that has an edge to the

header.

▸A backedge is an edge from a latch to the header.

▸An exiting edge is an edge from inside the loop to

a node outside of the loop. The source of such an

edge is called an exiting block, its target is an exit

block.

Dominators

• d dom i if all paths from entry to node i include d

• Strict Dominator (d sdom i)

▸If d dom i, but d != i

• Immediate dominator (a idom b)

▸a sdom b and there does not exist any node c such that a != c, c != b, a dom c, c dom b

• Post dominator (p pdom i)

▸If every possible path from i to exit includes p

Identifying Natural Loops and Dominators

• Back Edge

▸A back edge of a natural loop is one whose target dominates its source

• Natural Loop
▸The natural loop of a back edge (m→n), where n dominates m, is the set of nodes x such

that n dominates x and there is a path from x to m not containing n

Why go through all this trouble?

• Modern languages provide structured control flow

▸Shouldn’t the compiler remember this information rather than throw it away and then

re-compute it?

• Answers?

▸We may want to work on the binary code

▸Most modern languages still provide a goto statement

▸Languages typically provide multiple types of loops. This analysis lets us treat them all

uniformly

▸We may want a compiler with multiple front ends for multiple languages; rather than

translating each language to a CFG, translate each language to a canonical IR and then to a

CFG

Data flow analysis

• Derives information about the
dynamic behavior of a program by
only examining the static code

• Intraprocedural analysis

• Flow-sensitive: sensitive to the control
flow in a function

• Examples

– Live variable analysis

– Constant propagation

– Common subexpression elimination

– Dead code detection

1 a := 0

2 L1: b := a + 1

3 c := c + b

4 a := b * 2

5 if a < 9 goto L1

6 return c

• How many registers do we need?

• Easy bound: # of used variables (3)

• Need better answer

Data flow analysis

• Statically: finite program

• Dynamically: can have infinitely many paths

• Data flow analysis abstraction
• For each point in the program, combines information of all instances of the

same program point

Liveness Analysis

Definition

• A variable is live at a particular point in the program if its value at that

point will be used in the future (dead, otherwise).

▸ To compute liveness at a given point, we need to look into the

future

Motivation: Register Allocation

▸ A program contains an unbounded number of variables

▸ Must execute on a machine with a bounded number of registers

▸ Two variables can use the same register if they are never in use at the

same time (i.e, never simultaneously live).

–Register allocation uses liveness information

Control Flow Graph

• Let’s consider CFG where nodes
contain program statement
instead of basic block.

• Example

1. a := 0

2. L1: b := a + 1

3. c:= c + b

4. a := b * 2

5. if a < 9 goto L1

6. return c

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Liveness by Example

• Live range of b

• Variable b is read in line 4, so b is
live on 3->4 edge

• b is also read in line 3, so b is live
on (2->3) edge

• Line 2 assigns b, so value of b on
edges (1->2) and (5->2) are not
needed. So b is dead along those
edges.

• b’s live range is (2->3->4)

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Liveness by Example

• Live range of a

• (1->2) and (4->5->2)

• a is dead on (2->3->4)

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Terminology

• Flow graph terms

• A CFG node has out-edges that lead
to successor nodes and in-edges
that come from predecessor nodes

• pred[n] is the set of all predecessors
of node n

• succ[n] is the set of all successors of
node n

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Examples

– Out-edges of node 5: (5→6) and (5→2)

– succ[5] = {2,6}

– pred[5] = {4}
– pred[2] = {1,5}

Uses and Defs

Def (or definition)

–An assignment of a value to a variable

–def[v] = set of CFG nodes that define variable v

–def[n] = set of variables that are defined at node n

Use

–A read of a variable’s value

–use[v] = set of CFG nodes that use variable v

–use[n] = set of variables that are used at node n

More precise definition of liveness

– A variable v is live on a CFG edge if

(1) a directed path from that edge to a use of v

(node in use[v]), and

(2)that path does not go through any def of v (no

nodes in def[v])

a = 0

a < 9

 def[v]

 use[v]

v live

The Flow of Liveness

• Data-flow

• Liveness of variables is a property
that flows through the edges of
the CFG

• Direction of Flow

• Liveness flows backwards through
the CFG, because the behavior at
future nodes determines liveness
at a given node

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Liveness at Nodes

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

a = 0

Just before computation

Just after computation

Two More Definitions

– A variable is live-out at a node if it is live on any

out edges

– A variable is live-in at a node if it is live on any in

edges

Computing Liveness

• Generate liveness: If a variable is in use[n], it is live-in at node n

• Push liveness across edges:

▸ If a variable is live-in at a node n

▸ then it is live-out at all nodes in pred[n]

• Push liveness across nodes:
▸If a variable is live-out at node n and not in def[n]

▸then the variable is also live-in at n

• Data flow Equation: in[n] = use[n] (out[n] – def[n])

out[n] = in[s]
s succ[n]

Solving Dataflow Equation

for each node n in CFG

 in[n] = ∅; out[n] = ∅

repeat

 for each node n in CFG

 in’[n] = in[n]

 out’[n] = out[n]

 in[n] = use[n] ∪ (out[n] – def[n])

 out[n] = ∪ in[s]

 s ∈ succ[n]

until in’[n]=in[n] and out’[n]=out[n] for all n

Initialize solutions

Save current results

Solve data-flow equation

Test for convergence

Computing Liveness Example

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Iterating Backwards: Converges Faster

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Liveness Example: Round1

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

A variable is live at a particular point in the program if its value

at that point will be used in the future (dead, otherwise). Nod

e

use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

Liveness Example: Round1

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No

Yes

Nod

e

use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

in: c

in: ac

out: c

in: bc

out: ac

in: bc

out: bc

in: ac

out: bc

in: c

out: ac

Liveness Example: Round1

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No

Yes

Nod

e

use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

in: c

in: ac

out: ac

in: bc

out: ac

in: bc

out: bc

in: ac

out: bc

in: c

out: ac

Conservative Approximation

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Solution X:

- From the previous slide

Conservative Approximation

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Solution Y:

Carries variable d uselessly

– Does Y lead to a correct program?

Imprecise conservative solutions ⇒ sub-optimal but correct

programs

Conservative Approximation

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Solution Z:

Does not identify c as live in all cases

– Does Z lead to a correct program?

Non-conservative solutions ⇒ incorrect programs

Need for approximation

• Static vs. Dynamic Liveness: b*b is always non-negative, so c >= b is always true
and a’s value will never be used after node

No compiler can statically identify

all infeasible paths

Liveness Analysis Example Summary

• Live range of a

• (1->2) and (4->5->2)

• Live range of b

• (2->3->4)

• Live range of c

• Entry->1->2->3->4->5->2, 5->6

You need 2 registers Why?

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No
Yes

Example 2: Reaching Definition

Computing Reaching Definition

• Assumption: At most one definition per node

• Gen[n]: Definitions that are generated by node n (at most one)

• Kill[n]: Definitions that are killed by node n

{y,i}

Data-flow equations for Reaching Definition

Recall Liveness Analysis

• Data-flow Equation for liveness

• Liveness equations in terms of Gen and Kill

Gen: New information that’s added at a node

Kill: Old information that’s removed at a node

Can define almost any data-flow analysis in terms of Gen and Kill

Direction of Flow

Data-Flow Equation for reaching definition

Available Expression

• An expression, x+y, is available at node n if every path from the entry node to
n evaluates x+y, and there are no definitions of x or y after the last evaluation.

Available Expression for CSE

• Common Subexpression eliminated

▸If an expression is available at a point where it is evaluated, it need not be recomputed

Must vs. May analysis

• May information: Identifies possibilities

• Must information: Implies a guarantee

May Must

Forward Reaching Definition Available Expression

Backward Live Variables Very Busy Expression

Thanks

Thanks to Suman Jana and Baishakhi Ray for some slides.

	Slide 1: CSE 597: Security of Emerging Technologies Module: Program Analysis
	Slide 2: Our Goal
	Slide 3: Do we need to implement control and data flow analysis from scratch?
	Slide 4: Compiler Overview
	Slide 5: The Structure of a Compiler
	Slide 6: Syntactic Analysis
	Slide 7: Example
	Slide 8: Parse tree for the example: 4*(2+3)
	Slide 11: Parse Tree
	Slide 12: Parse Tree
	Slide 13: Abstract Syntax Tree (AST)
	Slide 14: Abstract Syntax Tree (AST)
	Slide 15: Disadvantages of ASTs
	Slide 16: Control Flow Graph & Analysis
	Slide 17: What Is Control-Flow Analysis?
	Slide 18: Basic Blocks
	Slide 19: Basic Block Example
	Slide 20: Basic Block Example
	Slide 21: Building a CFG From Basic Block
	Slide 22: Looping
	Slide 23: Looping
	Slide 24: Looping
	Slide 25: Dominators
	Slide 26: Identifying Natural Loops and Dominators
	Slide 29: Why go through all this trouble?
	Slide 30: Data flow analysis
	Slide 31: Data flow analysis
	Slide 32: Liveness Analysis
	Slide 33: Control Flow Graph
	Slide 34: Liveness by Example
	Slide 35: Liveness by Example
	Slide 36: Terminology
	Slide 37: Uses and Defs
	Slide 38: The Flow of Liveness
	Slide 39: Liveness at Nodes
	Slide 40: Computing Liveness
	Slide 41: Solving Dataflow Equation
	Slide 42: Computing Liveness Example
	Slide 43: Iterating Backwards: Converges Faster
	Slide 44: Liveness Example: Round1
	Slide 45: Liveness Example: Round1
	Slide 46: Liveness Example: Round1
	Slide 47: Conservative Approximation
	Slide 48: Conservative Approximation
	Slide 49: Conservative Approximation
	Slide 50: Need for approximation
	Slide 51: Liveness Analysis Example Summary
	Slide 52: Example 2: Reaching Definition
	Slide 53: Computing Reaching Definition
	Slide 54: Data-flow equations for Reaching Definition
	Slide 55: Recall Liveness Analysis
	Slide 56: Direction of Flow
	Slide 57: Data-Flow Equation for reaching definition
	Slide 58: Available Expression
	Slide 59: Available Expression for CSE
	Slide 60: Must vs. May analysis
	Slide 61: Thanks

