
CSE 597: Security of Emerging Technologies
Module: Formal Verification

Prof. Syed Rafiul Hussain

Systems and Network Security (SyNSec) Research Group

Department of Computer Science and Engineering

The Pennsylvania State University

Computer Systems and Correctness

• Suppose we design a (complex) system, which may contain various components,
for example, sensors, networks, computers.

• All of these components are using software.

• We have requirements on how the system should function, for example safety,
reliability, security, availability, absence of deadlocks etc.

• How can one ensure that the system satisfies these requirements?

▸Modern computer systems are unreliable.

2

Small Example (Software)

• Consider the following C code fragment

int* allocateArray(int length)

{

 int i;

 int* array;

 array = malloc(sizeof(int)*length);

 for (i = 0;i <= length;i++) array[i] = 0;

 return array;

}

3

Is the program correct?

Writing to unallocated

memory

Small Example (Software)

• Consider the following C code fragment

int* allocateArray(int length)

{

 int i;

 int* array;

 array = malloc(sizeof(int)*length);

 for (i = 0;i < length;i++) array[i] = 0;

 return array;

}

4

Is the program correct?

Returns NULL when

allocation fails

Writing to NULL

memory

Small Example (Software)

/*Returns a new array of integers of a given length
 initialized by a non-zero value */

int* allocateArray(int length){

 int i;

 int* array;

 array = malloc(sizeof(int)*length);

 if(!array) return NULL ;

 for (i = 0;i < length;i++) array[i] = 0;

 return array;

}

5
Is the program correct?

Program Correctness

• We discussed program correctness without ever defining it

• What is program correctness?

6

Program Correctness

• We did not need to understand the intended meaning of the program to identify
the first two types of errors.

• We just needed to understand the meaning of C programs in general and some
specific properties of programming in C.

7

Program Correctness

• To understand the last error, however, we needed to understand the intended
behavior of the C program.

8

Example: Circuit Design

9

We used a circuit C1 in a processor and
would like to replace it by another circuit C2.

For example, we may believe that the use of C2
results in a lower energy consumption.

We want to be sure that C2 is correct, that is,

it will behave according to some specification.

If we know that C1 is correct, it is sufficient

to prove that C2 is functionally equivalent to C1.

Another Example (Vending Machine)

1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
The drink storage stores drinks of two kinds: beer and coffee. We are only
interested in whether a particular kind of drink is currently being stored or not,
but not interested in the amount of it.

2. The coin slot can accommodate up to three coins.

3. The drink dispenser can store at most one drink. If it contains a drink, this
drink should be removed before the next one can be dispensed.

4. A can of beer costs two coins. A cup of coffee costs one coin.

5. There are two kinds of customers: students and professors. Students drink
only beer, professors drink only coffee.

6. From time to time the drink storage can be recharged.

10

Property: The vending machine always dispenses the right drink.

How to Establish Correctness?

1. Consider the system (or a computer program) as a mathematical object. To
do this, we will have to build a formal model of the system (or the program).

2. Use a formal language for expressing intended properties. The language must
have a semantics that explains what are possible interpretations of the
sentences of the formal language. The semantics is normally based on the
notions is true, is false, satisfies.

3. Write a specification, that is, intended properties of the system in this
language.

4. Prove formally that the model satisfies the specification.

11

How to Prove Properties of Programs or Systems?

• Hire all people with PhD in mathematical logic in the world;

• Delegate the problem of proving to a computer program.

12

How to Establish Correctness?

1. Consider the system (or a computer program) as a mathematical object. To
do this, we will have to build a formal model of the system (or the program).

2. Use a formal language for expressing intended properties. The language must
have a semantics that explains what are possible interpretations of the
sentences of the formal language. The semantics is normally based on the
notions is true, is false, satisfies.

3. Write a specification, that is, intended properties of the system in this
language.

4. Prove formally that the model satisfies the specification.

13

Automated

Reasoning

Automated Reasoning

14

System

Requirements

satisfies

Formalize

Mathematical

Logic

Expressed

Mathematical

object

Automated

reasoner

Why teach automated reasoning in security?

15

System

Requirements

satisfies

Formalize

Mathematical

Logic

Expressed

Mathematical

object

Automated

reasoner

What is Logic?

• Mathematical logic is a branch of science that deals with notions such as

▸Syntax and semantics;

▸Proof theory and model theory;

▸Reasoning.

16

Computational Logic

• Computational logic deals with applications of logic in computer science and
computer engineering, including:
▸Software and hardware verification;

▸Circuit design;

▸Constraint satisfaction;

▸Knowledge representation and reasoning;

▸Semantic web;

▸Planning;

▸Databases (semantics and query optimization);

▸Theorem proving in mathematics.

17

Proposition

• Propositional Logic formalizes the notion of proposition, that is a statement
that can be either true or false.

• There are simple propositions called atomic. For example:

▸0 < 1;

▸Alan Turing was born in Manchester;

▸1+1=10.

• More complex propositions are built from simpler ones using a small number of
constructs. Examples of more complex propositions:

▸If 0 < 1, then Alan Turing was born in Manchester;

▸1+1=10 or1+1≠ 10.

Truth

• Each proposition is either true or false.

• The truth value of an atomic proposition, that is, either true or false depends on
an interpretation of such propositions.

• For example, 1 + 1 = 10 is false, if we interpret sequences of digits as the
decimal notation for numbers and true if we use the binary notation.

• If a complex proposition C is build from simpler propositional
S1, . . . , Sn using a construct, then the truth value of C is determined by the truth
value of S1, . . . , Sn. More precisely, it is a function of truth values of S1, . . . , Sn
defined by this construct.

• For example, 1 + 1 = 10 or 1 + 1 ≠10 is true if 1 + 1 ≠ 10 is true.

Propositional Logic: Syntax

• Assume a countable set of boolean variables. Propositional formula:
▸Every boolean variable is a formula, also called atomic formula, or simply

atom.

▸⊤ and ⊥ are formulas.

▸If A1,...,An are formulas,where n≥2,then(A1 ∧...∧ An)and

▸(A1 ∨...∨ An) are formulas.

▸If A is a formula, then (¬A) is a formula.

▸If A and B are formulas, then (A → B) and (A B) are formulas.

• The symbols ⊤, ⊥, ∧, ∨, ¬, →, are called connectives.

Semantics and Interpretation

• Consider an arithmetical expression, for example

x · y + 2 · z.

• In arithmetic, the meaning of expressions with variables is defined as follows.
Take a mapping from variables to (integer) values, for example

{x ↦ 1, y ↦ 7, z ↦ −3}.

• Then, under this mapping, the expression has the value 1. In other words, when
we interpret variables as values, we can compute the value of any expression
built using these variables.

Semantics and Interpretation

• Likewise, the semantics of propositional formulas can be defined by assigning
values to variables.

• There are two boolean values, also called truth values: true (denoted 1) and
false (denoted 0).

• An interpretation for a set P of boolean variables is a mapping I : P ↦ {1, 0}.

• Interpretations are also called truth assignments.

Interpreting Formulas

• The truth value of a complex formula is determined by the truth
values of its components.

• Given an interpretation I, extend I to a mapping from all formulas to
truth values as follows.
▸1. I(⊤)=1 and I(⊥)=0.

▸2. I(A1 ∧...∧ An)=1 if and only if I(Ai)=1 for all i.

▸3. I(A1 ∨...∨An)=1 if and only if I(Ai)=1 for some i.

▸4. I(¬A)=1 if and only if I(A)=0.

▸5. I(A1 →A2)=1 if and only if I(A1)=0 or I(A2)=1.

▸6. I(A1 A2)=1 if and only if I(A1)=I(A2).

Satisfiability, Validity and Equivalence

• Let A be a formula.
▸If I(A)=1, then we say that the formula A is true in I and that I satisfies A and that I is a

model of A, denoted by I ⊨ A.

▸If I(A)=0, then we say that the formula A is false in I.

▸A is satisfiable if it is true in some interpretation.

▸A is valid (or a tautology) if it is true in every interpretation.

▸Two formulas A and B are called equivalent, denoted by A ≡ B if they have the same
models.

Connections between these notions

• A formula A is valid if and only if ¬A is unsatisfiable.

• A formula A is satisfiable if and only if ¬A is not valid.

• A formula A is valid if and only if A is equivalent to ⊤.

• Formulas A and B are equivalent if and only if the formula A B is valid.

• Formulas A and B are equivalent if and only if the formula ¬(A B) is unsatisfiable.

• A formula A is satisfiable if and only if A is not equivalent to ⊥

Evaluate a formula

Satisfiability Modulo Theories (SMT)

First Order Logic (FOL)

• Logical symbols
▸Connectives: ¬,∧,∨,⇒,⇔
▸Parentheses: ()

▸Quantifiers: ∀,∃ ✗
• Non-logical symbols

▸Constants: x,y,z
▸N-ary functions: f, g
▸N-ary predicates: p, q

▸Variables: u,v,w ✗

• We will only consider the quantifier free fragment of FOL.

Satisfiability Modulo Theories (SMT) Solvers

• SMT solvers are:
▸Fully automated reasoners

▸Widely used in applications

Software

Verification

Tools

Interactive

Proof

Assistants

Symbolic

Execution

Engines

SMT

Solvers

Verification

Conditions
Conjectures Path Constraints

Synthesis

Tools,

Planners

Specifications

Satisfiability Modulo Theories (SMT) Solvers

Software

Verification

Tools

Interactive

Proof

Assistants

Symbolic

Execution

Engines

SMT

Solvers

Verification

Conditions
Conjectures Path Constraints

Synthesis

Tools,

Planners

Specifications

Expressed as formulas

over some background theory

e.g. arithmetic, arrays

Satisfiability Modulo Theories (SMT) Solvers

Software

Verification

Tools

Interactive

Proof

Assistants

Symbolic

Execution

Engines

SMT

Solvers

Verification

Conditions
Conjectures Path Constraints

Synthesis

Tools,

Planners

Specifications

SMT solvers are general-purpose

tools for handling each case

Satisfiability Modulo Theories (SMT) Solvers

Software

Verification

Tools

Interactive

Proof

Assistants

Symbolic

Execution

Engines

SMT

Solvers

Verification

Conditions
Conjectures Path Constraints

Synthesis

Tools,

Planners

Specifications

Will first focus

on this portion

Overview

• Satisfiability Modulo Theories (SMT) solvers: how they work
▸DPLL, DPLL(T), decision procedures,

SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

SAT

Solver

Arithmetic

solver

Array solver

Datatypes solver

Bit-vector solver

String solver
DPLL(T),

Nelson-

Oppen

Verification Conditions

SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

SAT

Solver

Arithmetic

solver

Array solver

Datatypes solver

Bit-vector solver

String solver
DPLL(T),

Nelson-

Oppen

(A[x]+B[x]>0  x+y>0)  (cons(“abc”,d1)≠d2  x<0)

SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

UNSA

T
SATSAT

Solver

Arithmetic

solver

Array solver

Datatypes solver

Bit-vector solver

String solver
DPLL(T),

Nelson-

Oppen

(A[x]+B[x]>0  x+y>0)  (cons(“abc”,d1)≠d2  x<0)

(modulo theories) (modulo theories)

SAT Solver

…but first : SAT solvers

• Efficient tools for satisfiability

UNSA

T
SAT

(A  B)  (C  D)  B

DPLL

(A  B)  (C  D)  B

DPLL (Davis–Putnam–Logemann–Lovelan)

(A  B)  (C  D)  B

DPLL

Convert to clausal normal form (CNF)

• A formula is CNF if it is a conjunction of clauses

• A clause is a disjunction of literals e.g. (A  B)

• A literal is an atom or its negation e.g. A, B,…

(A  B)  (C  D)  B

DPLL

• Alternate between:
• Propagations : assign values to atoms whose value is forced

• Decisions : choose an arbitrary value for an unassigned atom

(A  B)  (C  D)  B

DPLL

DPLL

• DPLL algorithm
▸Propagate : B → false

(A  B)  (C  D)  B

Context

B → ⊥

DPLL

• DPLL algorithm
▸Propagate : B → false

▸Propagate : A → true

(A  B)  (C  D)  B

Context

B → ⊥

A → T

DPLL

• DPLL algorithm
▸Propagate : B → false

▸Propagate : A → true

▸Decide : C → true

(A  B)  (C  D)  B

Context

B → ⊥

A → T

C → Td

• DPLL algorithm
▸Propagate : B → false

▸Propagate : A → true

▸Decide : C → true

 Input is by interpretation where

 {A → T, B → ⊥, C → T}

DPLL

(A  B)  (C  D)  B

Context

B → ⊥

A → T

C → Td

SAT

DPLL

(A  B)  (C  B)  (C  B)  (A  D)

Context

DPLL

(A  B)  (C  B)  (C  B)  (A  D)

Context

A→Td

• DPLL algorithm
▸Decide : A → true

DPLL

(A  B)  (C  B)  (C  B)  (A  D)

Context

Ad

• DPLL algorithm
▸Decide : A → true

Alternatively,

can view

context

as set of

literals

• DPLL algorithm
▸Decide : A → true

▸Propagate : B → true

DPLL
Context

Ad

B
(A  B)  (C  B)  (C  B)  (A  D)

(A  B)  (C  B)  (C  B)  (A  D)

DPLL
Context

Ad

B

C
• DPLL algorithm

▸Decide : A → true

▸Propagate : B → true

▸Propagate : C → false

(A  B)  (C  B)  (C  B)  (A  D)

DPLL
Context

Ad

B

C
• DPLL algorithm

▸Decide : A → true

▸Propagate : B → true

▸Propagate : C → false

 Conflicting clause!
 (all literals are false)

(A  B)  (C  B)  (C  B)  (A  D)

DPLL
Context

Ad

B

C
• DPLL algorithm

▸Decide : A → true

▸Propagate : B → true

▸Propagate : C → false

 Conflicting clause!
 (all literals are false)

 …backtrack on a decision

• DPLL algorithm

▸Backtrack : A → false

(A  B)  (C  B)  (C  B)  (A  D)

DPLL
Context

A

(A  B)  (C  B)  (C  B)  (A  D)

• DPLL algorithm

▸Backtrack : A → false

▸Propagate : D → true

DPLL
Context

A

D

(A  B)  (C  B)  (C  B)  (A  D)

• DPLL algorithm

▸Backtrack : A → false

▸Propagate : D → true

▸Decide : B → false

DPLL
Context

A

D

Bd

(A  B)  (C  B)  (C  B)  (A  D)

• DPLL algorithm

▸Backtrack : A → false

▸Propagate : D → true

▸Decide : B → false

  Input is by interpretation where

 {A → ⊥, B → ⊥, D → T}

DPLL
Context

A

D

Bd

SAT

DPLL

• Important optimizations:
▸Two watched literals

▸Non-chronological backtracking

▸Conflict-driven clause learning (CDCL)

▸Decision heuristics

▸Preprocessing / in-processing

SAT

• Using an encoding of problems into propositional logic:
▸ Pros : Decidable, very efficient CDCL-based SAT solvers available

▸ Cons : Not expressive, may require exponentially large encoding
 Motivation for Satisfiability Modulo Theories

SMT solvers handle formulas like:

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0

SMT solvers handle formulas like:

▸…using DPLL(T) algorithm for satisfiability modulo T

• Extends DPLL algorithm to incorporate reasoning about a theory T

• Combines:

▸ Off-the-shelf CDCL-based SAT solver

▸ Theory Solver for T

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0

DPLL(T)

▸DPLL(LIA) algorithm

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0

Invoke DPLL(T) for theory T = LIA (linear integer arithmetic)

DPLL(T)

▸DPLL(LIA) algorithm

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0

Context

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 x+y>0

Context

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 x+y>0

 x+1>0

Context

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Decide : x<0 → true

x+y>0

 x+1>0

x<0d

Context

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Decide : x<0 → true

 Unlike propositional SAT case, we must check T-satisfiability of
context

x+y>0

 x+1>0

x<0d

Context

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Decide : x<0 → true

• Invoke theory solver for LIA on context : { x+1>0, x+y>0, x<0 }

x+y>0

 x+1>0

x<0d

Context

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Decide : x<0 → true

• Invoke theory solver for LIA on context : { x+1>0, x+y>0, x<0 }

x+y>0

 x+1>0

x<0d

Context

Context is LIA-unsatisfiable!

 one of x+1>0, x<0 must be false

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 

(x+1>0  x<0)

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Decide : x<0 → true

• Invoke theory solver for LIA on context : { x+1>0, x+y>0, x<0 }

▸Add theory lemma (x+1>0  x<0)

x+y>0

 x+1>0

x<0d

Context

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 

(x+1>0  x<0)

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Decide : x<0 → true

• Invoke theory solver for LIA on context : { x+1>0, x+y>0, x<0 }

▸Add theory lemma (x+1>0  x<0)

x+y>0

 x+1>0

x<0d

Context

 Conflicting clause!
 …backtrack on a decision

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

x+y>0

 x+1>0

Context

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 

(x+1>0  x<0)

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 

(x+1>0  x<0)

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Propagate : x<0 → false

x+y>0

 x+1>0

x<0

Context

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Propagate : x<0 → false

• Propagate : x+y>4 → true

x+y>0

 x+1>0

x<0

x+y>4

Context

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 

(x+1>0  x<0)

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Propagate : x<0 → false

• Propagate : x+y>4 → true

• Invoke theory solver for LIA on: { x+1>0, x+y>0, x<0, x+y>4 }

x+y>0

 x+1>0

x<0

x+y>4

Context

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 

(x+1>0  x<0)

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Propagate : x<0 → false

• Propagate : x+y>4 → true

• Invoke theory solver for LIA on: { x+1>0, x+y>0, x<0, x+y>4 }

x+y>0

 x+1>0

x<0

x+y>4

Context

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 

(x+1>0  x<0)

Context is LIA-unsatisfiable!

 one of x+y>0, x+y>4 must be false

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Propagate : x<0 → false

• Propagate : x+y>4 → true

• Invoke theory solver for LIA on: { x+1>0, x+y>0, x<0, x+y>4 }

▸Add theory lemma (x+y>0  x+y>4)

x+y>0

 x+1>0

x<0

x+y>4

Context

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 

(x+1>0  x<0)  (x+y>0  x+y>4)

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Propagate : x<0 → false

• Propagate : x+y>4 → true

• Invoke theory solver for LIA on: { x+1>0, x+y>0, x<0, x+y>4 }

▸Add theory lemma (x+y>0  x+y>4)

x+y>0

 x+1>0

x<0

x+y>4

Context

 Conflicting clause!
 …no decision to backtrack

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 

(x+1>0  x<0)  (x+y>0  x+y>4)

DPLL(T)

▸DPLL(LIA) algorithm

• Propagate : x+y>0 → false

• Propagate : x+1>0 → true

• Propagate : x<0 → false

• Propagate : x+y>4 → true

• Invoke theory solver for LIA on: { x+1>0, x+y>0, x<0, x+y>4 }

▸Add theory lemma (x+y>0  x+y>4)

 Input is

x+y>0

 x+1>0

x<0

x+y>4

Context

 Conflicting clause!
 …no decision to backtrack

LIA-unsat

(x+1>0  x+y>0)  (x<0  x+y>4)  x+y>0 

(x+1>0  x<0)  (x+y>0  x+y>4)

Encoding in *.smt2 format

(set-logic QF_LIA)

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

(assert (or (> (+ x 1) 0) (> (+ x y) 0)))

(assert (or (< x 0) (> (+ x y) 4)))

(assert (not (> (+ x y) 0)))

(check-sat)

DPLL(T)

SAT

Solver

Theory

Solver

Satisfying Assignment M for F

T-clauses to add to F

F is sat

F is unsat M is T-sat

M is T-unsat

Set of T-clauses F

UNSA

T
SAT

[Nieuwenhuis/Oliveras/Tinelli 2006]

Verification vs. Falsification

• An automated verification tool

▸can report that the system is verified (with a proof);

▸or that the system was not verified.

• When the system was not verified, it would be helpful to explain why
▸Model checkers can output an error counterexample: a concrete execution scenario that

demonstrates the error.

• Can view a model checker as a falsification tool –

▸The main goal is to find bugs

• So what can we verify or falsify?

Temporal Properties

• Temporal Property

▸A property with time-related operators such as “invariant” or “eventually”

• Invariant(p)
▸is true in a state if property p is true in every state on all execution paths starting at that

state

▸G, AG, (“globally” or “box” or “forall”)

• Eventually(p)
▸is true in a state if property p is true at some state on every execution path starting from

that state F, AF, ♢ (“future” or “diamond” or “exists”)

An Example Concurrent Program

• A simple concurrent mutual exclusion
program

• Two processes execute asynchronously

• There is a shared variable turn

• Two processes use the shared variable to
ensure that they are not in the critical
section at the same time

• Can be viewed as a “fundamental” program:
any bigger concurrent one would include this
one

10: while (true){

11: wait(turn == 0);

 // critical section

12: work(); turn = 1;

13: }

// concurrently with

20: while (true) {

21: wait(turn == 1);

 // critical section

22: work(); turn = 0;

23: }

Reachable States of the Example Program

10: while (true){

11: wait(turn == 0);

 // critical section

12: work(); turn = 1;

13: }

// concurrently with

20: while (true) {

21: wait(turn == 1);

 // critical section

22: work(); turn = 0;

23: }

Analyzed System is a Transition System

• Labeled transition system

T = (S, I, R, L) –

S = Set of states // standard FSM

I ⊆ S = Set of initial states // standard FSM

R ⊆ S × S = Transition relation // standard FSM

L: S → 2AP = Labeling function // this is new!

• AP: Set of atomic propositions (e.g., “x=5”∈AP)
• Atomic propositions capture basic properties

• For software, atomic props depend on variable values

• The labeling function labels each state with the set of propositions true in that state

Example Properties of the Program

• “In all the reachable states (configurations) of the system, the two processes are
never in the critical section at the same time”
▸“pc1=12”, “pc2=22” are atomic properties for being in the critical section

▸Invariant (⏋(PC1=12 ∧ PC2 = 22)

• “Eventually the first process enters the critical
 section
▸Eventually (PC1 = 12)

10: while (true){

11: wait(turn == 0);

 // critical section

12: work(); turn = 1;

13: }

// concurrently with

20: while (true) {

21: wait(turn == 1);

 // critical section

22: work(); turn = 0;

23: }

Temporal Logics

• There are four basic temporal
operators:

• X p Next p, p holds in the next state

• G p: Globally p, p holds in every state, p
is an invariant

• F p: Future p, p will hold in a future state,
p holds eventually

• p U q: p Until q, assertion p will hold
until q holds

• Precise meaning of these temporal
operators is defined on execution paths

Execution Paths

• A path in a transition system is an infinite sequence of states

▸(s0 , s1 , s2 , ...), such that ∀i≥0. (si , si+1) ∈ R

• A path (s0 ,s1 ,s2 ,...) is an execution path if s0 ∈ I

• Given a path x = (s0 , s1 , s2 , ...)
▸hi denotes the i-th state: si

▸hi denotes the i-th suffix: (si , si+1, si+2, ...)

▸In some temporal logics one can quantify paths starting from a state using path
quantifiers

• A : for all paths

• E : there exists a path

Paths and Predicates

• We write

h ╞ p

“the path x makes the predicate p true”

▸h is a path in a transition system

▸p is a temporal logic predicate •

• Example: A h. h╞ G (¬(pc1=12 ∧ pc2=22))

Linear Temporal Logic (LTL)

• LTL properties are constructed from atomic propositions in AP; logical
operators ∧, ∨, ¬ and temporal operators X, G, F, U.

• The semantics of LTL is defined on paths

• Given a path h: h ╞ p

h ╞ p iff L(h0, ap) atomic prop

h ╞ X p iff h1 p next

h ╞ F p iff ∃i≥0. hi p future

h ╞ G p iff ∀i≥0. hi p globally

h ╞ p U q iff ∃i≥0. hi q and ∀j<i. hj p until

Satisfying Linear Time Logic

• Given a transition system T = (S, I, R, L) and an LTL property p, T satisfies p if all
paths starting from all initial states I satisfy p

Computation Tree Logic

• In CTL, temporal properties use path
quantifiers:
▸A : for all paths, E : there exists a path

• The semantics of CTL is defined on states

• Given a state s

• s ╞ ap iff L(s, ap)

• s0 ╞ EX p iff ∃ a path (s0, s1, s2, ...). s1 ╞ p

• s0 ╞ AX p iff ∀ paths (s0, s1, s2, ...). s1 ╞ p

• s0 ╞ EG p iff ∃ a path (s0, s1, s2, ...). ∀i≥0. si ╞ p

• s0 ╞ AG p iff ∀ paths (s0, s1, s2, ...). ∀i≥0. si ╞ p

Examples of CTL formulas

• EF ϕ
▸It is possible to get to a state where ϕ is true

• AG AF enabled

▸A certain process is enabled infinitely often on every computation path

• AG (requested → AF acknowledged)

▸for any state, if a request ocurs, then it will eventually be acknowledged

• AG (ϕ→ E[ϕ U ⍦])

▸for any state, if ϕ holds, then there is a future where ⍦ eventually holds, and ϕ holds for
all points in between

• AG (ϕ→ EG ⍦)
▸for any state, if ϕ holds then there is a future where ⍦ always holds

Linear vs. Branching Time

• LTL is a linear time logic

▸When determining if a path satisfies an LTL formula, we are only concerned with a single
path

• CTL is a branching time logic
▸When determining if a state satisfies a CTL, formula we are concerned with multiple

paths

▸In CTL the computation is instead viewed as a computation tree which contains all the
paths

• The expressive powers of CTL and LTL are incomparable incomparable

▸LTL ⊆ CTL*, CTL ⊆ CTL*

▸Basic temporal properties can be expressed in both logics

▸Not in this lecture, sorry! (Take a class on Modal Logics)

LTL vs. CTL

• Some LTL formulae cannot be translated into CTL formaulae.

▸FG s - This formula denotes the property of stability : in each execution of the
program, s will finally be true until the end of the program (or forever if the
program never stops).

▸CTL can only provide a formula that is too strict (AF AG s) or too permissive (AF EG s).

▸(AF EG s) is clearly wrong. It is not so straightforward for the first.

▸But AF AG s is erroneous. Consider a system that loops on A1, can go from A1 to B and
then will go to A2 on the next move. Then the system will stay in A2 state forever. Then
"the system will finally stay in a A state" is a property of the type FG𝑠. It is obvious that
this property holds on the system. However,AF AG s cannot capture this property since
the opposite is true.

•

Linear vs. Branching Time

State Space Explosion

• The complexity of model checking increases linearly with respect to the size of
the transition system (|S| + |R|)

• However, the size of the transition system (|S| + |R|) is exponential in the
number of variables and number of concurrent processes

• This exponential increase in the state space is called the state space explosion

▸Dealing with it is one of the major challenges in model checking research

Symbolic Model Checking

• Symbolic model checking represents state sets and the transition relation as
Boolean logic formulas
▸Fixed point computations manipulate sets of states rather than individual states

• Use an efficient data structure for manipulation of Boolean logic formulas
▸Binary Decision Diagrams (BDDs)

• SMV (Symbolic Model Verifier) was the first CTL model checker to use BDDs

Satisfiability Modulo Theories (SMT) Solvers

Software

Verification

Tools

Interactive

Proof

Assistants

Symbolic

Execution

Engines

SMT

Solvers

Verification

Conditions
Conjectures Path Constraints

Synthesis

Tools,

Planners

Specifications

Will first focus

on this portion

SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

SAT

Solver

Arithmetic solver

Array solver

Datatypes solver

Bit-vector solver

String solver
DPLL(T),

Nelson-

Oppen

Verification Conditions

SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

SAT

Solver

Arithmetic solver

Array solver

Datatypes solver

Bit-vector solver

String solver
DPLL(T),

Nelson-

Oppen

(A[x]+B[x]>0  x+y>0)  (cons(“abc”,d1)≠d2  x<0)

SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

UNSA

T
SATSAT

Solver

Arithmetic solver

Array solver

Datatypes solver

Bit-vector solver

String solver
DPLL(T),

Nelson-

Oppen

(A[x]+B[x]>0  x+y>0)  (cons(“abc”,d1)≠d2  x<0)

(modulo theories) (modulo theories)

SAT Solver

…but first : SAT solvers

• Efficient tools for satisfiability

UNSA

T
SAT

(A  B)  (C  D)  B

DPLL

NuXmv Example: Modulo 4 counter with reset

LTL Specifications

• Specications Examples:

▸A state in which out = 3 is eventually reached

▸LTLSPEC F out = 3

• Condition out = 0 holds until reset becomes false

▸LTLSPEC (out = 0) U (!reset)

• Every time a state with out = 2 is reached, a state with out = 3 is reached
afterward

▸LTLSPEC G (out = 2 -> F out = 3)

LTL Specifications

Model Programs in NuXmv

Takeaways

• A system can be modeled as a Labeled Transition System (LTS).

• Based on the expressiveness of the property, we use LTL or CTL property.

• Need to take care of state explosion problem with different types abstractions.

• Model checking is useful for testing many safety critical systems.

Thanks

Thanks to Bor-Yuh Evan Chang, Andrew Reynolds, and Patrick Trentin

for some slides.

	Slide 1: CSE 597: Security of Emerging Technologies Module: Formal Verification
	Slide 2: Computer Systems and Correctness
	Slide 3: Small Example (Software)
	Slide 4: Small Example (Software)
	Slide 5: Small Example (Software)
	Slide 6: Program Correctness
	Slide 7: Program Correctness
	Slide 8: Program Correctness
	Slide 9: Example: Circuit Design
	Slide 10: Another Example (Vending Machine)
	Slide 11: How to Establish Correctness?
	Slide 12: How to Prove Properties of Programs or Systems?
	Slide 13: How to Establish Correctness?
	Slide 14: Automated Reasoning
	Slide 15: Why teach automated reasoning in security?
	Slide 16: What is Logic?
	Slide 17: Computational Logic
	Slide 18: Proposition
	Slide 19: Truth
	Slide 20: Propositional Logic: Syntax
	Slide 21: Semantics and Interpretation
	Slide 22: Semantics and Interpretation
	Slide 23: Interpreting Formulas
	Slide 24: Satisfiability, Validity and Equivalence
	Slide 25: Connections between these notions
	Slide 26: Evaluate a formula
	Slide 27: Satisfiability Modulo Theories (SMT)
	Slide 28: First Order Logic (FOL)
	Slide 29: Satisfiability Modulo Theories (SMT) Solvers
	Slide 30: Satisfiability Modulo Theories (SMT) Solvers
	Slide 31: Satisfiability Modulo Theories (SMT) Solvers
	Slide 32: Satisfiability Modulo Theories (SMT) Solvers
	Slide 33: Overview
	Slide 34: SMT solvers
	Slide 35: SMT solvers
	Slide 36: SMT solvers
	Slide 37: …but first : SAT solvers
	Slide 38: DPLL (Davis–Putnam–Logemann–Lovelan)
	Slide 39: DPLL
	Slide 40: DPLL
	Slide 41: DPLL
	Slide 42: DPLL
	Slide 43: DPLL
	Slide 44: DPLL
	Slide 45: DPLL
	Slide 46: DPLL
	Slide 47: DPLL
	Slide 48: DPLL
	Slide 49: DPLL
	Slide 50: DPLL
	Slide 51: DPLL
	Slide 52: DPLL
	Slide 53: DPLL
	Slide 54: DPLL
	Slide 55: DPLL
	Slide 56: DPLL
	Slide 57: DPLL
	Slide 58: SAT
	Slide 59: SMT solvers handle formulas like:
	Slide 60: SMT solvers handle formulas like:
	Slide 61: DPLL(T)
	Slide 62: DPLL(T)
	Slide 63: DPLL(T)
	Slide 64: DPLL(T)
	Slide 65: DPLL(T)
	Slide 66: DPLL(T)
	Slide 67: DPLL(T)
	Slide 68: DPLL(T)
	Slide 69: DPLL(T)
	Slide 70: DPLL(T)
	Slide 71: DPLL(T)
	Slide 72: DPLL(T)
	Slide 73: DPLL(T)
	Slide 74: DPLL(T)
	Slide 75: DPLL(T)
	Slide 76: DPLL(T)
	Slide 77: DPLL(T)
	Slide 78: DPLL(T)
	Slide 79: Encoding in *.smt2 format
	Slide 80: DPLL(T)
	Slide 81: Verification vs. Falsification
	Slide 82: Temporal Properties
	Slide 83: An Example Concurrent Program
	Slide 84: Reachable States of the Example Program
	Slide 85: Analyzed System is a Transition System
	Slide 86: Example Properties of the Program
	Slide 87: Temporal Logics
	Slide 88: Execution Paths
	Slide 89: Paths and Predicates
	Slide 90: Linear Temporal Logic (LTL)
	Slide 91: Satisfying Linear Time Logic
	Slide 92: Computation Tree Logic
	Slide 93: Examples of CTL formulas
	Slide 94: Linear vs. Branching Time
	Slide 95: LTL vs. CTL
	Slide 96: Linear vs. Branching Time
	Slide 97: State Space Explosion
	Slide 98: Symbolic Model Checking
	Slide 99: Satisfiability Modulo Theories (SMT) Solvers
	Slide 100: SMT solvers
	Slide 101: SMT solvers
	Slide 102: SMT solvers
	Slide 103: …but first : SAT solvers
	Slide 104: NuXmv Example: Modulo 4 counter with reset
	Slide 105: LTL Specifications
	Slide 106: LTL Specifications
	Slide 107: Model Programs in NuXmv
	Slide 108: Takeaways
	Slide 109: Thanks

