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Agenda for Today

• Introduce Model Checking

• Introduce Passive and Active Automata Learning

• Introduce L* algorithm for Automata Learning

• Problem with L* algorithm 

• Improving Automata Learning (StateSynth)

• Detecting Vulnerabilities Using Learned Model (DevScan & 
DevLyzer)

• Attack Demos

• Details of L* algorithm
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Model Checking

System/SW/HW/Protocol 
Model

Desired Property

Security Properties (e.g., Integrity)                                                  

Privacy Properties  (e.g., Information flow)                                    

Safety Properties  (e.g., Reactor temp < 300F)                              

System correctness Properties (e.g., Turbine speed < 20 rpm)



Model Checking in Practice

Natural Language 
System Specification

Natural Language 
Guarantees

Manual process

Manual process

M

⍴

Model Checker

Mathematical 
Model

Mathematical 
Logic formula



Motivation of Model Learning
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What if the system/protocol/HW you want to model check is a black-box system?



Model Checking with Model Learning

System to Model Check

Natural Language 
Guarantees

Model Learning

Manual process

M

⍴

Model 
Checker

Mathematical 
Model

Mathematical 
Logic formula

Our Focus



Automata Learning
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Passive Learning Active Learning



Passive Automata Learning
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System 
Trace

Passive 
Learner

Hypothesis
Model



Pros and Cons
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• Non-intrusive methodology
Learns exclusively from existing system traces (logs) without requiring 
active interaction with the target system.

• Incomplete behavior coverage
Model accuracy heavily relies on log quality, limited observed events in 
logs, potentially leads to missing system behaviors/ states.



Active Automata Learning
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Active Leaner System Under 
Learning

Queries

ResponseHypothesis
Model



Pros and Cons

11

• Targeted Exploration
Actively queries the system to test hypotheses, enabling strategic 
discovery of edge cases, rare states.

• Scalability Limits
State-explosion problem: Learning large systems becomes hard due to 
exponential growth in query volume.



L* Algorithm
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Polynomial time algorithm for correctly learning an unknown
regular language (polynomial number of states in the minimized

DFA of L and the length of the largest counterexample)



Preconditions for Automata Learning
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List of Input Symbols
(Alphabet)

System Under Learning (SUL)
With deterministic behavior

Query Responses Executed
From Initial State

Minimally Adequate Teacher 
(MAT) Responding to Queries



Minimally Adequate Teacher (MAT)
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Minimally Adequate Teacher 
(MAT) 

x ∈? L
Yes/No

Membership 
queries

<Yes, -> or 
<No, 𝝈>

Equivalence 
queries

LH≋?L
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Active LearnerModel Validator System Under 
Learning

Queries

Response

Counter
Example (CE)

Hypothesis
Model

Skeleton of the L* Algorithm

Membership
Queries

Equivalence
Queries
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Active Learner System Under 
Learning

Queries

Response

Hypothesis
Model

Membership Queries

Closed: I know a definite destination 
state for every input at every state 

Consistent: However I reach a 
particular given state, the subsequent 
behavior is the same 
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Model Validator System Under 
Learning

Queries

Response

Counter
Example (CE)

Hypothesis
Model

Equivalence Queries

Observational
Equivalence

Observational 
Equivalence



Skeleton of the L* Algorithm
Input: Alphabet A and MAT M   
Output: DFA of L

L*(A, M){
 Hypothesis DFA DH = {}
 While(true)
 {
  Construct hypothesis DFA DH through a series of 
membership queries
  If DH is equivalent to L, then return DH
  else use the obtained counterexample to update DH 
 }
}
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A Fundamental Problem
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To learn an automata that is observationally equivalent to the SUL, 
A LOT of queries need to be generated 

Alphabet
Size

Time Per
Query

Size of State Machine
[1] Hussain, Syed Rafiul, et al. "Noncompliance as deviant behavior: An automated black-box noncompliance checker for 4g lte cellular devices." Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2021.
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5G Cellular Networks 
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Impacts of Security Policies Violations

Information
Leak

Denial-of-ServiceDowngradePhishing
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Is it possible to develop an automated framework to 
efficiently identify security policy violations in 5G UE 

implementations? 

Our Goal
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No Comprehensive List of Security Policies

3GPP does not provide such a list which 
contains a complete set of security policies



High-level Philosophy of Our Approach
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...

Input: I1I2...In

Output 1: O1 O2...On

Output 2: O1 O2...O’n

Sequence
Generator Differential Testing

Output 1 

Output 2 

How to generate 
inputs?

DevScan:
Identifying Deviations

DevLyzer:
Triaging the Deviations

StateSynth:
FSM Synthesizer



Challenges of Active Automata Learning
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Active learner, initially does not have any idea about the 5G 
protocol interactions. It will generate many meaningless queries.

Large number of equivalence checking queries are generated in 
the model validation stage and most of them are not CE.



Hybrid Automata Learning
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Network 
Trace

Passive 
Learner

Initial FSM

• Synthesize an initial FSM to provide guidance at the 
beginning of the active learning!  

Active 
Learner

Bootstrap



Collaborative Automata Learning
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• Since all basebands implement the same protocol, and CEs found 
during FSM construction of one device are likely to be applicable to 
other basebands as well.

CE

CE

CE

CE

Model Validator 

Active Leaner

UE

CEs
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StateSynth: Workflow

Network 
Trace

Passive 
Learner

Initial FSM Active Leaner W/ Counter-
example (CE) reuse 

5G UE Implementations Queries/
Responses

Synthesized FSMs
CEs

Hybrid learning

Collaborative
 learning



Evaluation of StateSynth
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Security Analysis Using Learned Model
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Model Desired 
Property

Protocols usually do not provide 
a list that contains a complete set 
of security policies

Significant manual work to 
manually analyze all deviations



DevScan

Deviation scanner
using symbolic 
model checker 

deviations

FSM 1

FSM 2

I1 I2 In  / O1 O2 On

I1 I2 In  / O1 O2 O’n

Limitation of previous work[1]: prematurely stop their exploration for different 
variations of a deviation.

[1] Hussain, Syed Rafiul, et al. "Noncompliance as deviant behavior: An automated black-box noncompliance checker for 4g lte cellular devices." Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2021.



Unique paths for deviation:
Path 1: S0 → S1 → S3 

Unique Paths for Deviation

S0

S1

S2

S3 S4 S5
c / 3 d / 5

S0

S1

S2

S3 S4 S5
c / 4 d / 5

Path 2: S0 → S2 → S3



DevScan: Workflow

Deviation scanner
using symbolic 
model checker 

Graph 
traversal

Unique 
deviations

FSM 1

FSM 2
I1 I2 In  / O1 O2 On

I1 I2 In  / O1 O2 O’n



DevScan: Results



LTL: Linear temporal logic

DevLyzer: Workflow

DevLyzer

Vulnerable 
traces and 
property 
violationUnresolved unique 

deviating traces

Benign traces

𝑇 ⊨ ϕ?

I1 I2 Ix  / O1 O2 Ox

I1 I2 Iy  / O1 O2 Oy

3GPP Specification

I1 I2 Iz  / O1 O2 Oz

I1 I2 Ix  / O1 O2 Ox

I1 I2 Iz / O1 O2 Oz

We only needed to manually 
analyze 36 deviations out of 2044



Evaluation
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• We tested 17 Commercial Devices from 5 vendors + 2 Open-
Source UE Implementations with 5GBaseChecker.  



Findings and Impact
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• Uncovered 22 unique issues, 13 could lead to exploitable 
attacks. 

• 12 CVEs assigned and some vendor acknowledgements.

• CVE-2023-52341, -49928, -50804, -49927, -50803, -52343, -52533, -52534, -52342, -
52344; CVE-2024-29152, -28818

• GSMA Mobile Security Research Acknowledgements (CVD-
2023-0081)



5G AKA Bypass
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Registration Request

Secured Communication Start

Registration Complete

Authentication Procedure

Security Mode Control Procedure

Registration Accept (SHT 4)

UE
Malicious

gNB



Internet Traffic Eavesdropping
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UE
Malicious

gNB

PDU Session Establishment Request

Internet Access

PDU Session
Establishment Accept

DL NAS
Transport

RRC
Reconfiguration

5G AKA Bypass
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Phishing SMS Injection

43

Malicious
gNB

5G AKA Bypass

DL NAS Transport
w/ phishing SMS







DFA and NFA

• Finite acceptor: ℳ = <𝒬, ∑, 𝛅, 𝓆0, 𝓕>
• A set of finite states- 𝒬
• An alphabet- ∑
• Transition function- 𝛅  : 𝒬 X ∑ → 𝒬
• Initial state- 𝓆0 ∈ 𝒬
• Accepting states- 𝓕 ⊆ 𝒬

• The transition function 𝛅 decides whether ℳ is a DFA or NFA
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Insight of the algorithm

• Discriminating sequence: 
• The concept is used to distinguish two non-equivalent states 
• Two states are equivalent if for all strings they end up in the same 

accepting or non-accepting state
• A discriminating sequence is a string suffix that will distinguish between 

non-equivalent states (one will end up in an accepting state and the other 
in a non-accepting state) 
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Representation of Hypothesis Automata
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𝐼 𝜀

𝜀 1

0 0

1 0

11 1

00 1

01 0

10 0

110 0

111 0

𝑆

𝐸

Potential 
states

Potential 
transitions

Discriminating sequence

• 𝐴 ∈ 0, 1
• 𝐼 = 𝑎1, 𝑎2, … , 𝑎𝑛

 
| 𝑎 ∈ 𝐴

∗

• 𝑂 = {0, 1}
• 𝑆 = Prefix-closed set of I
• 𝐸 = 𝑆. 𝐴 = Suffix-closed set 

of I



When do we pose equivalence queries?

• When the observation table is closed and consistent

• Closed: An observation table is closed if only if  
• ∀e = s′. a ∈ E ∃𝑠 ∈ 𝑆 | row s = row 𝑒 , 𝑎 ∈ 𝐴

• Consistent: An observation table is consistent if only if 
• ∀𝑠1, 𝑠2 ∶ 𝑆 | row 𝑠1 = row 𝑠2 → row 𝑠1 ∙ 𝑎 = row 𝑠2 ∙ 𝑎
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The L* Algorithm - Explained
• 𝐴 ∈ 0, 1
• 𝐼 = 𝑎1, 𝑎2, … , 𝑎𝑛

 
| 𝑎 ∈ 𝐴

∗

• 𝑂 = {0, 1}
• 𝑆 = Prefix-closed set of I
• 𝐸 = Suffix-closed set of I
• Develop an observation table that is closed and consistent.

• We will explain the algorithm through an example:
• Learn the observation table/DFA of a DFA that only accepts strings with even 0𝑠 and 1𝑠.

𝐼 𝜀

𝜀 1

0 0

1 0

𝑆

𝐸



Observation table – Closed and consistent

The table is initialized as follows:

𝐼 𝜀

𝜀 1

0 0

1 0

𝑆

𝐸

Closed? No!
row 𝜀 ≠ row(0) is in the 
table

Consistent? Yes!
Only one row in S



Observation table – Closed and consistent
• An observation table is closed if: 

• ∀e ∈ E ∃𝑠 ∈ 𝑆 | row s = row 𝑒 , 𝑎 ∈ 𝐴
• An observation table is consistent if:

• ∀𝑠1, 𝑠2 | row 𝑠1 = row 𝑠2 → row 𝑠1 ∙ 𝑎 = row 𝑠2 ∙ 𝑎
• Objective 1: Make the table closed.

𝐼 𝜀

𝜀 1

0 0

1 0

𝑆

𝐸



Observation table – Closed and consistent
• An observation table is closed if: 

• ∀e ∈ E ∃𝑠 ∈ 𝑆 | row s = row 𝑒 , 𝑎 ∈ 𝐴
• An observation table is consistent if:

• ∀𝑠1, 𝑠2 | row 𝑠1 = row 𝑠2 → row 𝑠1 ∙ 𝑎 = row 𝑠2 ∙ 𝑎
• Objective 1: Make the table closed.

𝐼 𝜀

𝜀 1

0 0

1 0

00 1

01 0

𝑆

𝐸

Closed? Yes!
For all rows in 𝐸, there exists 
a row in 𝑆 such that the rows 
are equal.

Consistent? Yes!
𝑆 only has two distinct rows, 
therefore the if condition 
doesn’t apply.



Observation table – Closed and consistent
• An observation table is closed if: 

• ∀e ∈ E ∃𝑠 ∈ 𝑆 | row s = row 𝑒 , 𝑎 ∈ 𝐴
• An observation table is consistent if:

• ∀𝑠1, 𝑠2 | row 𝑠1 = row 𝑠2 → row 𝑠1 ∙ 𝑎 = row 𝑠2 ∙ 𝑎
• Objective 1: Make the table closed.
• The learner can now formulate a hypothesis and query the system to see if the inferred FSA is 

equivalent to the SUL FSA.

𝐼 𝜀

𝜀 1

0 0

1 0

00 1

01 0

𝑆

𝐸

Closed? Yes!
For all rows in 𝐸, there exists 
a row in 𝑆 such that the rows 
are equal.

Consistent? Yes!
𝑆 only has two distinct rows, 
therefore the if condition 
doesn’t apply.



Observation table to DFA
• We can construct a DFA using the unique rows in the table.
• Each row in 𝑆 represents a state in the DFA.
• The first row with the first column of 1 is the accepting state.
• For this table, the DFA has 2 states.

𝐼 𝜀

𝜀 1

0 0

1 0

00 1

01 0

𝑆

𝐸

0 10,1

0
1



Equivalence query
• We now ask the SUL, through an equivalence oracle, is this construction an accurate 

representation of the target system?
• The equivalence oracle responds with either a yes or a no.
• If the oracle responds with yes, learning is terminated.
• If the oracle responds with no, the oracle provides a counter-example. An input for which 

the DFA behaves differently from the target system.
• The L* algorithm, therefore, uses this counter-example to update the observation table.

𝐼 𝜀

𝜀 1

0 0

1 0

00 1

01 0

𝑆

𝐸

0 10,1

0
1



Counter-example
• We incorporate the counter-example whilst keeping the table closed and consistent.
• Assume the oracle gives the counter-example 11, our current DFA will reject this string.
• Add 1 and 11 to 𝑆 and their 0,1  appended suffixes to 𝐸.

𝐼 𝜀

𝜀 1

0 0

1 0

11 1

00 1

01 0

10 0

110 0

111 0

𝑆

𝐸

Closed? Yes!

Consistent? No.
row 0 = row 1  but row 00 ≠ row(10)



Consistency
• Objective 1: Make the table closed.
• Objective 2: Make the table consistent.

• Add column of the 𝑎 ∈ 𝐴, that causes the inconsistency, in this case, 0.

𝐼 𝜀

𝜀 1

0 0

1 0

11 1

00 1

01 0

10 0

110 0

111 0

𝑆

𝐸

Closed? Yes!

Consistent? No.
row 0 = row 1  but row 00 ≠ row(10)



Consistency
• Objective 1: Make the table closed.
• Objective 2: Make the table consistent.

• Add column of the 𝑎 ∈ 𝐴, that causes the inconsistency, in this case, 0.

𝐼 𝜀 0

𝜀 1 0

0 0 1

1 0 0

11 1 0

00 1 0

01 0 0

10 0 0

110 0 0

111 0 0

𝑆

𝐸

Closed? Yes.

Consistent? Yes.



Hypothesis refinement
• The learner again queries the EQ oracle for testing the equivalence of hypothesis ℋ, namely if:

ℋ ≈ ℳ where ℋ is the hypothesized FSA and ℳ is the system FSA
• Since the table has 3 unique rows, the DFA has 3 states.

𝐼 𝜀 0

𝜀 1 0

0 0 1

1 0 0

11 1 0

00 1 0

01 0 0

10 0 0

110 0 1

111 0 0

𝑆

𝐸

0 10

0

1

2

1

1

Since the DFA does not accept only even 0s and 1s,
the EQ oracle returns a counter-example. Assume it
returns 011. Our DFA will accept this string.

0



Hypothesis refinement
• The algorithm then repeats the process of making the table closed and consistent, eventually 

adding the 1 column.
• Our observation table after another closing and consistency iteration becomes:

𝐼 𝜀 0 1

𝜀 1 0 0

0 0 1 0

1 0 0 1

11 1 0 0

011 0 1 0

00 1 0 0

01 0 0 0

10 0 0 0

110 0 1 0

111 0 0 1

0110 1 0 0

0111 0 1 0

𝑆

𝐸



Hypothesis refinement
• This table has 4 unique rows, therefore, the resulting DFA has 4 states.

𝐼 𝜀 0 1

𝜀 1 0 0

0 0 1 0

1 0 0 1

01 0 0 0

11 1 0 0

011 0 1 0

00 1 0 0

10 0 0 0

010 0 0 1

110 0 1 0

111 0 0 1

0110 1 0 0

0111 0 1 0

𝑆

𝐸

0 10

0

1

2

1 1

3

1

0

0

The EQ oracle returns True and the algorithm
terminates.
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