
CSE 597: Security of Emerging Technologies
Module: Automata Learning

Kai Tu and Syed Md Mukit Rashid
Prof. Syed Rafiul Hussain

Pennsylvania State University

Department of Computer Science and Engineering

Systems and Network Security (SyNSec) Lab

Agenda for Today

• Introduce Model Checking

• Introduce Passive and Active Automata Learning

• Introduce L* algorithm for Automata Learning

• Problem with L* algorithm

• Improving Automata Learning (StateSynth)

• Detecting Vulnerabilities Using Learned Model (DevScan &
DevLyzer)

• Attack Demos

• Details of L* algorithm

2

Model Checking

System/SW/HW/Protocol
Model

Desired Property

Security Properties (e.g., Integrity)

Privacy Properties (e.g., Information flow)

Safety Properties (e.g., Reactor temp < 300F)

System correctness Properties (e.g., Turbine speed < 20 rpm)

Model Checking in Practice

Natural Language
System Specification

Natural Language
Guarantees

Manual process

Manual process

M

⍴

Model Checker

Mathematical
Model

Mathematical
Logic formula

Motivation of Model Learning

5

What if the system/protocol/HW you want to model check is a black-box system?

Model Checking with Model Learning

System to Model Check

Natural Language
Guarantees

Model Learning

Manual process

M

⍴

Model
Checker

Mathematical
Model

Mathematical
Logic formula

Our Focus

Automata Learning

7

Passive Learning Active Learning

Passive Automata Learning

8

System
Trace

Passive
Learner

Hypothesis
Model

Pros and Cons

9

• Non-intrusive methodology
Learns exclusively from existing system traces (logs) without requiring
active interaction with the target system.

• Incomplete behavior coverage
Model accuracy heavily relies on log quality, limited observed events in
logs, potentially leads to missing system behaviors/ states.

Active Automata Learning

10

Active Leaner System Under
Learning

Queries

ResponseHypothesis
Model

Pros and Cons

11

• Targeted Exploration
Actively queries the system to test hypotheses, enabling strategic
discovery of edge cases, rare states.

• Scalability Limits
State-explosion problem: Learning large systems becomes hard due to
exponential growth in query volume.

L* Algorithm

12

Polynomial time algorithm for correctly learning an unknown
regular language (polynomial number of states in the minimized

DFA of L and the length of the largest counterexample)

Preconditions for Automata Learning

13

List of Input Symbols
(Alphabet)

System Under Learning (SUL)
With deterministic behavior

Query Responses Executed
From Initial State

Minimally Adequate Teacher
(MAT) Responding to Queries

Minimally Adequate Teacher (MAT)

14

Minimally Adequate Teacher
(MAT)

x ∈? L
Yes/No

Membership
queries

<Yes, -> or
<No, 𝝈>

Equivalence
queries

LH≋?L

15

Active LearnerModel Validator System Under
Learning

Queries

Response

Counter
Example (CE)

Hypothesis
Model

Skeleton of the L* Algorithm

Membership
Queries

Equivalence
Queries

16

Active Learner System Under
Learning

Queries

Response

Hypothesis
Model

Membership Queries

Closed: I know a definite destination
state for every input at every state

Consistent: However I reach a
particular given state, the subsequent
behavior is the same

17

Model Validator System Under
Learning

Queries

Response

Counter
Example (CE)

Hypothesis
Model

Equivalence Queries

Observational
Equivalence

Observational
Equivalence

Skeleton of the L* Algorithm
Input: Alphabet A and MAT M
Output: DFA of L

L*(A, M){
 Hypothesis DFA DH = {}
 While(true)
 {
 Construct hypothesis DFA DH through a series of
membership queries
 If DH is equivalent to L, then return DH
 else use the obtained counterexample to update DH
 }
}

18

A Fundamental Problem

19

To learn an automata that is observationally equivalent to the SUL,
A LOT of queries need to be generated

Alphabet
Size

Time Per
Query

Size of State Machine
[1] Hussain, Syed Rafiul, et al. "Noncompliance as deviant behavior: An automated black-box noncompliance checker for 4g lte cellular devices." Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2021.

Logic Gone Astray: A Security Analysis Framework
for the Control Plane Protocols of 5G Basebands

Kai Tu, Abdullah Al Ishtiaq, Syed Md Mukit Rashid, Yilu Dong, Weixuan Wang,
Tianwei Wu, Syed Rafiul Hussain

Pennsylvania State University

Department of Computer Science and Engineering

Systems and Network Security (SyNSec) Lab

5G Cellular Networks

21

22

Impacts of Security Policies Violations

Information
Leak

Denial-of-ServiceDowngradePhishing

23

Is it possible to develop an automated framework to
efficiently identify security policy violations in 5G UE

implementations?

Our Goal

24

No Comprehensive List of Security Policies

3GPP does not provide such a list which
contains a complete set of security policies

High-level Philosophy of Our Approach

25

...

Input: I1I2...In

Output 1: O1 O2...On

Output 2: O1 O2...O’n

Sequence
Generator Differential Testing

Output 1

Output 2

How to generate
inputs?

DevScan:
Identifying Deviations

DevLyzer:
Triaging the Deviations

StateSynth:
FSM Synthesizer

Challenges of Active Automata Learning

26

Active learner, initially does not have any idea about the 5G
protocol interactions. It will generate many meaningless queries.

Large number of equivalence checking queries are generated in
the model validation stage and most of them are not CE.

Hybrid Automata Learning

27

Network
Trace

Passive
Learner

Initial FSM

• Synthesize an initial FSM to provide guidance at the
beginning of the active learning!

Active
Learner

Bootstrap

Collaborative Automata Learning

28

• Since all basebands implement the same protocol, and CEs found
during FSM construction of one device are likely to be applicable to
other basebands as well.

CE

CE

CE

CE

Model Validator

Active Leaner

UE

CEs

29

StateSynth: Workflow

Network
Trace

Passive
Learner

Initial FSM Active Leaner W/ Counter-
example (CE) reuse

5G UE Implementations Queries/
Responses

Synthesized FSMs
CEs

Hybrid learning

Collaborative
 learning

Evaluation of StateSynth

30

Security Analysis Using Learned Model

31

Model Desired
Property

Protocols usually do not provide
a list that contains a complete set
of security policies

Significant manual work to
manually analyze all deviations

DevScan

Deviation scanner
using symbolic
model checker

deviations

FSM 1

FSM 2

I1 I2 In / O1 O2 On

I1 I2 In / O1 O2 O’n

Limitation of previous work[1]: prematurely stop their exploration for different
variations of a deviation.

[1] Hussain, Syed Rafiul, et al. "Noncompliance as deviant behavior: An automated black-box noncompliance checker for 4g lte cellular devices." Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2021.

Unique paths for deviation:
Path 1: S0 → S1 → S3

Unique Paths for Deviation

S0

S1

S2

S3 S4 S5
c / 3 d / 5

S0

S1

S2

S3 S4 S5
c / 4 d / 5

Path 2: S0 → S2 → S3

DevScan: Workflow

Deviation scanner
using symbolic
model checker

Graph
traversal

Unique
deviations

FSM 1

FSM 2
I1 I2 In / O1 O2 On

I1 I2 In / O1 O2 O’n

DevScan: Results

LTL: Linear temporal logic

DevLyzer: Workflow

DevLyzer

Vulnerable
traces and
property
violationUnresolved unique

deviating traces

Benign traces

𝑇 ⊨ ϕ?

I1 I2 Ix / O1 O2 Ox

I1 I2 Iy / O1 O2 Oy

3GPP Specification

I1 I2 Iz / O1 O2 Oz

I1 I2 Ix / O1 O2 Ox

I1 I2 Iz / O1 O2 Oz

We only needed to manually
analyze 36 deviations out of 2044

Evaluation

37

• We tested 17 Commercial Devices from 5 vendors + 2 Open-
Source UE Implementations with 5GBaseChecker.

Findings and Impact

38

• Uncovered 22 unique issues, 13 could lead to exploitable
attacks.

• 12 CVEs assigned and some vendor acknowledgements.

• CVE-2023-52341, -49928, -50804, -49927, -50803, -52343, -52533, -52534, -52342, -
52344; CVE-2024-29152, -28818

• GSMA Mobile Security Research Acknowledgements (CVD-
2023-0081)

5G AKA Bypass

39

Registration Request

Secured Communication Start

Registration Complete

Authentication Procedure

Security Mode Control Procedure

Registration Accept (SHT 4)

UE
Malicious

gNB

Internet Traffic Eavesdropping

40

UE
Malicious

gNB

PDU Session Establishment Request

Internet Access

PDU Session
Establishment Accept

DL NAS
Transport

RRC
Reconfiguration

5G AKA Bypass

41

Phishing SMS Injection

43

Malicious
gNB

5G AKA Bypass

DL NAS Transport
w/ phishing SMS

DFA and NFA

• Finite acceptor: ℳ = <𝒬, ∑, 𝛅, 𝓆0, 𝓕>
• A set of finite states- 𝒬
• An alphabet- ∑
• Transition function- 𝛅 : 𝒬 X ∑ → 𝒬
• Initial state- 𝓆0 ∈ 𝒬
• Accepting states- 𝓕 ⊆ 𝒬

• The transition function 𝛅 decides whether ℳ is a DFA or NFA

46

Insight of the algorithm

• Discriminating sequence:
• The concept is used to distinguish two non-equivalent states
• Two states are equivalent if for all strings they end up in the same

accepting or non-accepting state
• A discriminating sequence is a string suffix that will distinguish between

non-equivalent states (one will end up in an accepting state and the other
in a non-accepting state)

47

Representation of Hypothesis Automata

48

𝐼 𝜀

𝜀 1

0 0

1 0

11 1

00 1

01 0

10 0

110 0

111 0

𝑆

𝐸

Potential
states

Potential
transitions

Discriminating sequence

• 𝐴 ∈ 0, 1
• 𝐼 = 𝑎1, 𝑎2, … , 𝑎𝑛

| 𝑎 ∈ 𝐴

∗

• 𝑂 = {0, 1}
• 𝑆 = Prefix-closed set of I
• 𝐸 = 𝑆. 𝐴 = Suffix-closed set

of I

When do we pose equivalence queries?

• When the observation table is closed and consistent

• Closed: An observation table is closed if only if
• ∀e = s′. a ∈ E ∃𝑠 ∈ 𝑆 | row s = row 𝑒 , 𝑎 ∈ 𝐴

• Consistent: An observation table is consistent if only if
• ∀𝑠1, 𝑠2 ∶ 𝑆 | row 𝑠1 = row 𝑠2 → row 𝑠1 ∙ 𝑎 = row 𝑠2 ∙ 𝑎

49

The L* Algorithm - Explained
• 𝐴 ∈ 0, 1
• 𝐼 = 𝑎1, 𝑎2, … , 𝑎𝑛

| 𝑎 ∈ 𝐴

∗

• 𝑂 = {0, 1}
• 𝑆 = Prefix-closed set of I
• 𝐸 = Suffix-closed set of I
• Develop an observation table that is closed and consistent.

• We will explain the algorithm through an example:
• Learn the observation table/DFA of a DFA that only accepts strings with even 0𝑠 and 1𝑠.

𝐼 𝜀

𝜀 1

0 0

1 0

𝑆

𝐸

Observation table – Closed and consistent

The table is initialized as follows:

𝐼 𝜀

𝜀 1

0 0

1 0

𝑆

𝐸

Closed? No!
row 𝜀 ≠ row(0) is in the
table

Consistent? Yes!
Only one row in S

Observation table – Closed and consistent
• An observation table is closed if:

• ∀e ∈ E ∃𝑠 ∈ 𝑆 | row s = row 𝑒 , 𝑎 ∈ 𝐴
• An observation table is consistent if:

• ∀𝑠1, 𝑠2 | row 𝑠1 = row 𝑠2 → row 𝑠1 ∙ 𝑎 = row 𝑠2 ∙ 𝑎
• Objective 1: Make the table closed.

𝐼 𝜀

𝜀 1

0 0

1 0

𝑆

𝐸

Observation table – Closed and consistent
• An observation table is closed if:

• ∀e ∈ E ∃𝑠 ∈ 𝑆 | row s = row 𝑒 , 𝑎 ∈ 𝐴
• An observation table is consistent if:

• ∀𝑠1, 𝑠2 | row 𝑠1 = row 𝑠2 → row 𝑠1 ∙ 𝑎 = row 𝑠2 ∙ 𝑎
• Objective 1: Make the table closed.

𝐼 𝜀

𝜀 1

0 0

1 0

00 1

01 0

𝑆

𝐸

Closed? Yes!
For all rows in 𝐸, there exists
a row in 𝑆 such that the rows
are equal.

Consistent? Yes!
𝑆 only has two distinct rows,
therefore the if condition
doesn’t apply.

Observation table – Closed and consistent
• An observation table is closed if:

• ∀e ∈ E ∃𝑠 ∈ 𝑆 | row s = row 𝑒 , 𝑎 ∈ 𝐴
• An observation table is consistent if:

• ∀𝑠1, 𝑠2 | row 𝑠1 = row 𝑠2 → row 𝑠1 ∙ 𝑎 = row 𝑠2 ∙ 𝑎
• Objective 1: Make the table closed.
• The learner can now formulate a hypothesis and query the system to see if the inferred FSA is

equivalent to the SUL FSA.

𝐼 𝜀

𝜀 1

0 0

1 0

00 1

01 0

𝑆

𝐸

Closed? Yes!
For all rows in 𝐸, there exists
a row in 𝑆 such that the rows
are equal.

Consistent? Yes!
𝑆 only has two distinct rows,
therefore the if condition
doesn’t apply.

Observation table to DFA
• We can construct a DFA using the unique rows in the table.
• Each row in 𝑆 represents a state in the DFA.
• The first row with the first column of 1 is the accepting state.
• For this table, the DFA has 2 states.

𝐼 𝜀

𝜀 1

0 0

1 0

00 1

01 0

𝑆

𝐸

0 10,1

0
1

Equivalence query
• We now ask the SUL, through an equivalence oracle, is this construction an accurate

representation of the target system?
• The equivalence oracle responds with either a yes or a no.
• If the oracle responds with yes, learning is terminated.
• If the oracle responds with no, the oracle provides a counter-example. An input for which

the DFA behaves differently from the target system.
• The L* algorithm, therefore, uses this counter-example to update the observation table.

𝐼 𝜀

𝜀 1

0 0

1 0

00 1

01 0

𝑆

𝐸

0 10,1

0
1

Counter-example
• We incorporate the counter-example whilst keeping the table closed and consistent.
• Assume the oracle gives the counter-example 11, our current DFA will reject this string.
• Add 1 and 11 to 𝑆 and their 0,1 appended suffixes to 𝐸.

𝐼 𝜀

𝜀 1

0 0

1 0

11 1

00 1

01 0

10 0

110 0

111 0

𝑆

𝐸

Closed? Yes!

Consistent? No.
row 0 = row 1 but row 00 ≠ row(10)

Consistency
• Objective 1: Make the table closed.
• Objective 2: Make the table consistent.

• Add column of the 𝑎 ∈ 𝐴, that causes the inconsistency, in this case, 0.

𝐼 𝜀

𝜀 1

0 0

1 0

11 1

00 1

01 0

10 0

110 0

111 0

𝑆

𝐸

Closed? Yes!

Consistent? No.
row 0 = row 1 but row 00 ≠ row(10)

Consistency
• Objective 1: Make the table closed.
• Objective 2: Make the table consistent.

• Add column of the 𝑎 ∈ 𝐴, that causes the inconsistency, in this case, 0.

𝐼 𝜀 0

𝜀 1 0

0 0 1

1 0 0

11 1 0

00 1 0

01 0 0

10 0 0

110 0 0

111 0 0

𝑆

𝐸

Closed? Yes.

Consistent? Yes.

Hypothesis refinement
• The learner again queries the EQ oracle for testing the equivalence of hypothesis ℋ, namely if:

ℋ ≈ ℳ where ℋ is the hypothesized FSA and ℳ is the system FSA
• Since the table has 3 unique rows, the DFA has 3 states.

𝐼 𝜀 0

𝜀 1 0

0 0 1

1 0 0

11 1 0

00 1 0

01 0 0

10 0 0

110 0 1

111 0 0

𝑆

𝐸

0 10

0

1

2

1

1

Since the DFA does not accept only even 0s and 1s,
the EQ oracle returns a counter-example. Assume it
returns 011. Our DFA will accept this string.

0

Hypothesis refinement
• The algorithm then repeats the process of making the table closed and consistent, eventually

adding the 1 column.
• Our observation table after another closing and consistency iteration becomes:

𝐼 𝜀 0 1

𝜀 1 0 0

0 0 1 0

1 0 0 1

11 1 0 0

011 0 1 0

00 1 0 0

01 0 0 0

10 0 0 0

110 0 1 0

111 0 0 1

0110 1 0 0

0111 0 1 0

𝑆

𝐸

Hypothesis refinement
• This table has 4 unique rows, therefore, the resulting DFA has 4 states.

𝐼 𝜀 0 1

𝜀 1 0 0

0 0 1 0

1 0 0 1

01 0 0 0

11 1 0 0

011 0 1 0

00 1 0 0

10 0 0 0

010 0 0 1

110 0 1 0

111 0 0 1

0110 1 0 0

0111 0 1 0

𝑆

𝐸

0 10

0

1

2

1 1

3

1

0

0

The EQ oracle returns True and the algorithm
terminates.

	Slide 1
	Slide 2: Agenda for Today
	Slide 3
	Slide 4
	Slide 5: Motivation of Model Learning
	Slide 6
	Slide 7: Automata Learning
	Slide 8: Passive Automata Learning
	Slide 9: Pros and Cons
	Slide 10: Active Automata Learning
	Slide 11: Pros and Cons
	Slide 12: L* Algorithm
	Slide 13: Preconditions for Automata Learning
	Slide 14: Minimally Adequate Teacher (MAT)
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Skeleton of the L* Algorithm
	Slide 19: A Fundamental Problem
	Slide 20
	Slide 21: 5G Cellular Networks
	Slide 22: Impacts of Security Policies Violations
	Slide 23: Our Goal
	Slide 24: No Comprehensive List of Security Policies
	Slide 25: High-level Philosophy of Our Approach
	Slide 26: Challenges of Active Automata Learning
	Slide 27: Hybrid Automata Learning
	Slide 28: Collaborative Automata Learning
	Slide 29: StateSynth: Workflow
	Slide 30: Evaluation of StateSynth
	Slide 31: Security Analysis Using Learned Model
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Evaluation
	Slide 38: Findings and Impact
	Slide 39: 5G AKA Bypass
	Slide 40: Internet Traffic Eavesdropping
	Slide 41
	Slide 42
	Slide 43: Phishing SMS Injection
	Slide 44
	Slide 45
	Slide 46: DFA and NFA
	Slide 47: Insight of the algorithm
	Slide 48: Representation of Hypothesis Automata
	Slide 49: When do we pose equivalence queries?
	Slide 50: The L* Algorithm - Explained
	Slide 51: Observation table – Closed and consistent
	Slide 52: Observation table – Closed and consistent
	Slide 53: Observation table – Closed and consistent
	Slide 54: Observation table – Closed and consistent
	Slide 55: Observation table to DFA
	Slide 56: Equivalence query
	Slide 57: Counter-example
	Slide 58: Consistency
	Slide 59: Consistency
	Slide 60: Hypothesis refinement
	Slide 61: Hypothesis refinement
	Slide 62: Hypothesis refinement
	Slide 63

