

CSE 597: Security of Emerging Technologies Module: Automata Learning

Kai Tu and Syed Md Mukit Rashid Prof. Syed Rafiul Hussain

Systems and Network Security (SyNSec) Lab Department of Computer Science and Engineering Pennsylvania State University

Agenda for Today

- Introduce Model Checking
- Introduce Passive and Active Automata Learning
- Introduce L* algorithm for Automata Learning
- Problem with L* algorithm
- Improving Automata Learning (StateSynth)
- Detecting Vulnerabilities Using Learned Model (DevScan & DevLyzer)
- Attack Demos
- Details of L* algorithm

Model Checking

Model Checking in Practice

Motivation of Model Learning

What if the system/protocol/HW you want to model check is a black-box system?

Automata Learning

Passive Learning

Active Learning

Passive Automata Learning

Pros and Cons

Non-intrusive methodology

Learns exclusively from existing system traces (logs) without requiring active interaction with the target system.

Incomplete behavior coverage

Model accuracy heavily relies on log quality, limited observed events in logs, potentially leads to missing system behaviors/ states.

Active Automata Learning

Pros and Cons

Targeted Exploration

Actively queries the system to test hypotheses, enabling strategic discovery of edge cases, rare states.

• Scalability Limits 9

State-explosion problem: Learning large systems becomes hard due to exponential growth in query volume.

L* Algorithm

Learning Regular Sets from Queries and Counterexamples*

DANA ANGLUIN

Department of Computer Science, Yale University, P.O. Box 2158, Yale Station, New Haven, Connecticut 06520

Polynomial time algorithm for correctly learning an unknown regular language (polynomial number of states in the minimized DFA of L and the length of the largest counterexample)

Preconditions for Automata Learning

Skeleton of the L* Algorithm

Membership Queries

Hypothesis Model

Closed: I know a definite destination state for every input at every state

Consistent: However I reach a particular given state, the subsequent behavior is the same

Equivalence Queries

Skeleton of the L* Algorithm

Input: Alphabet *A* and MAT *M* Output: DFA of *L*

```
L*(A, M){
Hypothesis DFA D<sub>H</sub> = {}
While(true)
{
```

Construct hypothesis DFA DH through a series of membership queries

If D_H is equivalent to L, then return D_H else use the obtained counterexample to update D_H

A Fundamental Problem

To learn an automata that is observationally equivalent to the SUL, A LOT of queries need to be generated

Device	М	Е	Time (min)	# of states	# of tran- sitions
Motorola Nexus 6	3129	21300	37620	21	556
HTC One E9+	8060	42432	77757	35	1172
Samsung Galaxy S6	3097	10612	21111	20	529
HTC Desire 10 Lifestyle	3129	21300	37676	21	560
Huawei Nexus 6P	3129	21300	37450	21	568
Samsung Galaxy S8+	2908	20961	36762	21	554
Google Pixel 3 XL	3110	20501	36345	21	548
Huawei Y5 Prime	8100	44432	80899	35	114
Honor 8X	4623	16813	33011	28	725
Huawei P8lite	6228	7863	21700	34	1054
Xiaomi Mi A1	3105	21045	37191	21	570
Apple iPhone XS	2340	22450	75361	17	448
4G LTE USB Modem	2905	18332	39953	21	562
Fibocom L860-GL	2322	20470	35099	16	430

Table 2: M = Membership and E = Equivalence queries.

Size of State Machine

Logic Gone Astray: A Security Analysis Framework for the Control Plane Protocols of 5G Basebands

Kai Tu, Abdullah Al Ishtiaq, Syed Md Mukit Rashid, Yilu Dong, Weixuan Wang, Tianwei Wu, Syed Rafiul Hussain

> Systems and Network Security (SyNSec) Lab Department of Computer Science and Engineering **Pennsylvania State University**

5G Cellular Networks

Impacts of Security Policies Violations

Information Leak

Phishing

Downgrade

Denial-of-Service

Our Goal

Is it possible to develop an automated framework to efficiently identify security policy violations in 5G UE implementations?

No Comprehensive List of Security Policies

High-level Philosophy of Our Approach

Challenges of Active Automata Learning

Large number of equivalence checking queries are generated in the model validation stage and most of them are not CE.

Hybrid Automata Learning

• Synthesize an initial FSM to provide guidance at the beginning of the active learning!

Collaborative Automata Learning

• Since all basebands implement the same protocol, and CEs found during FSM construction of one device are likely to be applicable to other basebands as well.

28

StateSynth: Workflow

Evaluation of StateSynth

Security Analysis Using Learned Model

Protocols usually do not provide a list that contains a complete set of security policies

Significant manual work to manually analyze all deviations

Limitation of previous work^[1]: prematurely stop their exploration for different variations of a deviation.

[1] Hussain, Syed Rafiul, et al. "Noncompliance as deviant behavior: An automated black-box noncompliance checker for 4g Ite cellular devices." Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2021.

DevScan: Workflow

DevScan: Results

Approach	# Deviations	Avg. time (sec.)
DIKEUE [35]	1325	83
BLEDiff [39] 5GBaseChecker	724 2044	118 98

DevLyzer: Workflow

Evaluation

• We tested 17 Commercial Devices from 5 vendors + 2 Open-Source UE Implementations with 5GBaseChecker.

Findings and Impact

- Uncovered 22 unique issues, 13 could lead to exploitable attacks.
- 12 CVEs assigned and some vendor acknowledgements.
 - CVE-2023-52341, -49928, -50804, -49927, -50803, -52343, -52533, -52534, -52342, -52344; CVE-2024-29152, -28818
- GSMA Mobile Security Research Acknowledgements (CVD-2023-0081)

CVD- 2023	0081	Kai Tu, Abdullah Al Ishtiaq, Syed MD Mukit Rashid, Yilu Dong, Weixuan Wang, Tianwei Wu, Syed Rafiul Hussain	Pennsylvania State University
--------------	------	---	-------------------------------

C.577 O4/06 20:19:47.410: [gtp] INF0: gtp_connect() [127.0.0.7]:2152 (/lib/gtp/path.c:60) 04/06 20:19:47.411: [amf] WARNING: 0x7f40a981c010 (/src/amf/n amf-handler.c:83) 04/06 20:19:47.411: [sctp] INF0: sctp_senddata (/lib/sctp/ogs -sctp.c:73) 04/06 20:19:47.446: [amf] INF0: number of events in queue 1 (/src/amf/event.c:106) 04/06 20:19:47.446: [gtp] INF0: gtp_connect() [127.0.0.5]:2152 (/lib/gtp/path.c:60) 04/06 20:19:47.446: [amf] INF0: set e->h.sbi.message (/src/am f/amf-sm.c:511)		
I∓I kai@kai: ~/Desktop/clean/openairinter Q ≡ _ □ ×		
harq rounds) [NR_MAC] handle harq for rnti 636f, in RA pAttacker	File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help Image:	
[NR_PHY] [gNB 0][RAPROC] Frame 79, slot 19 Terminal edure with preamble 5, energy 51.0 dB (IO 136, Terminal y 9 start symbol 0 freq index 0 [NR PHY] [gNB 0][RAPROC] Frame 79, slot 19 Initiating RA proc	ip.addr == 127.0.0.5 && dns ngap gtp Capture No. Protocol Info 3856 GTP <t application="" data<="" td=""> Capture</t>	e
edure with preamble 41, energy 51.0 dB (I0 180, thres 120), del ay 10 start symbol 4 freq index 0 [NR_PHY] [gNB 0][RAPROC] Frame 79, slot 19 Initiating RA proc edure with preamble 0, energy 48.0 dB (I0 219, thres 120), dela y 20 start symbol 8 freq index 0	3857 GIP <1 443 → 37814 [RST] Seq=1009 WIN=0 Len=0 3868 GTP <d 0x8467="" 260<br="" aaaa="" b4e8sm-dnsotls-ds,metric.gstatic.com="" query="" response="" standard="">3869 GTP <q (kp0),="" dcid="ee7412ff33df9008<br" payload="" protected="">38 0 GTP <q. (kpq),="" dcid="e7412ff33df9008<br" payload="" protected="">38 1 GTP Q. Protected Payload (KPQ), DCID=e7412ff33df9004 38 1 GTP Q. Protected Payload (KPQ), DCID=e7412ff33df9004</q.></q></d>	07
[MAC] UL_info[Frame 79, Slot 19] Calling initiate_ra_proc RAC H:SFN/SLOT:79/19 [NR_MAC] [gNB 0][RAPROC] CC_id 0 Frame 79 Activating Msg2 gen eration in frame 80, slot 7 using RA rnti 10b SSB, new rnti d8d	3872 GTP <t 45302="" 853="" [ack]="" ack="5429" len="0" seq="3/3" tsecr="3869412<br" tsval="2231640716" win="78848" →="">3885 GTP <q (kp0),="" dcid="5acfc1d1af97e6fb1c73a7d7c92efc6d7f9d4e8e<br" paylettic="" protected="">3886 GTP <d aaaa="" bc7="" k5j3nm-dnsotls-ds.metric.gstatic.com<br="" query="" standard="">3887 GTP <t and="" application="" date="" s<="" second="" state="" td="" the=""><td>.23</td></t></d></q></t>	.23
[NR_MAC] [GHE 0] [AAPROC] FAILUPE: CC_10 0 Frame 79 initiating	3889 GTP <t -="" 35340="" 655="" []="6eq-451" ack-5535="" len-6="" tsect-7613726<br="" tsval-1355136226="" will-79672="">3889 GTP <t application="" date<="" td=""><td>.09.</td></t></t>	.09.
[MAC] UL_info[Frame 80, Slot 0] Calling initiate_ra_proc RACH :SFN/SLOT:79/19 [NR_MAC] [GNB 0][RAPROC] FAILURE: CC_Ld 0 Frame 79 Initiating	3891 GTP <d 0xa357="" a="" query="" standard="" youtubei.googleapis.com<br="">3902 GTP <d 0xdbc7="" 266<br="" aaaa="" k5j3nm-dnsotls-ds.metric.gstatic.com="" query="" response="" standard="">3903 GTP <t application="" data<="" th=""><th>60°</th></t></d></d>	60°
[NR_MAC] [GNB 0][RAPROC] CC_id 0 Frame 80, slotP 7: Generatin g RA-Msg2 DCI, rnti 0x10b, state 1, CoreSetType 2 [NR_MAC] [RAPROC] Msg3 slot 17: current slot 7 Msg3 frame 80 k2 7 Msg3 tda id 3	3904 GTP <t 33348="" 853="" [fin,="" ack="475" ack]="" len="0" seq="5535" tsecr="133<br" tsval="761373029" win="67840" →="">3905 GTP <t 33348="" 853="" [ack]="" ack="476" len="0" seq="5536" tsecr="13351367<br" tsval="761373031" win="67840" →="">3906 GTP <d 0xa357="" 142.251.40.138="" 142.7<br="" a="" query="" response="" standard="" youtubei.googleapis.com="">3907 GTP <q 1,="" crypto,="" dcid="aa5c42630c886a78," initial,="" p<="" padding,="" ping,="" pkn:="" td=""><td>35: 234 25: ADI</td></q></d></t></t>	35: 234 25: ADI
[NR_MAC] [gNB 0][RAPROC] Frame 80, Subframe 7: rnti d8d4 RA s tate 2	Frame (118 bytes) Bitstring tvb (4 bytes) Unaligned OC IE IS I KIN	4
		1

🗐 kai@kai: ~/Desktop/5GBaseChecker_Core 📿 🗏 🗕 🗆 🗙

NN[internet] IPv4[10.45.0.2] IPv6[] (../src/smattacker

04/06 20:19:47.410: [gtp] INFO: gtp_connect() Terminal

04/06 20:19:47.410: [upf] INFO: UE F-SEID[CP:0x1 UP:0x1] APN[in ternet] PDN-Type[1] IPv4[10.45.0.2] IPv6[] (../src/upf/context.

04/06 20:19:47,410: [upf] INFO: UE F-SEID[CP:0x1 UP:0x1] APN[in ternet] PDN-Type[1] IPv4[10.45.0.2] IPv6[] (../src/upf/context.

04/06 20:19:47.410: [upf] INFO: [Added] Number of UPF-Sessions

is now 1 (../src/upf/context.c:178)

(../lib/gtp/path.c:60)

c:397)

0.15 0 4 5

9010018

20:19 ♥ ▲ ▷	₩ 🛇 100% ੇ
Off	
Turns off all network conr calling, texting, internet ac Bluetooth.	nections including access, Wi-Fi, and
While Airplane mode is or and Bluetooth on again in settings panel.	i, you can turn Wi-Fi Settings or the quick

111

0

SM-G991B

Phishing SMS Injection

DFA and NFA

- Finite acceptor: $\mathcal{M} = \langle Q, \Sigma, \delta, q_{\nu 0}, \mathcal{F} \rangle$
 - A set of finite states- Q
 - An alphabet- Σ
 - Transition function- $\delta : Q \times \Sigma \rightarrow Q$
 - Initial state- $q_{0} \in Q$
 - Accepting states- $\mathcal{F} \subseteq \mathcal{Q}$
- The transition function δ decides whether \mathcal{M} is a DFA or NFA

Insight of the algorithm

- Discriminating sequence:
 - The concept is used to distinguish two non-equivalent states
 - Two states are equivalent if for all strings they end up in the same accepting or non-accepting state
 - A discriminating sequence is a string suffix that will distinguish between non-equivalent states (one will end up in an accepting state and the other in a non-accepting state)

Representation of Hypothesis Automata

When do we pose equivalence queries?

- When the observation table is closed and consistent
- **Closed**: An observation table is closed if only if
 - $\forall e = s'.a \in E \exists s \in S \mid row(s) = row(e), a \in A$
- Consistent: An observation table is consistent if only if
 ∀s₁, s₂ : S | row(s₁) = row(s₂) → row(s₁ · a) = row(s₂ · a)

The L* Algorithm - Explained

- $A \in \{0, 1\}$
- $I = \{a_1, a_2, ..., an\} \mid a \in A^*$
- $O = \{0, 1\}$
- S = Prefix-closed set of I
- E =Suffix-closed set of I
- Develop an observation table that is *closed* and *consistent*.
- We will explain the algorithm through an example:
 - Learn the observation table/DFA of a DFA that only accepts strings with even 0s and 1s.

The table is initialized as follows:

Closed? No! row(ε) \neq row(0) is in the table

Consistent? Yes! Only one row in S

- An observation table is closed if:
 - $\forall e \in E \exists s \in S \mid row(s) = row(e), a \in A$
- An observation table is consistent if:
 - $\forall s_1, s_2 \mid \operatorname{row}(s_1) = \operatorname{row}(s_2) \rightarrow \operatorname{row}(s_1 \cdot a) = \operatorname{row}(s_2 \cdot a)$
- Objective 1: Make the table closed.

- An observation table is closed if:
 - $\forall e \in E \exists s \in S \mid row(s) = row(e), a \in A$
- An observation table is consistent if:
 - $\forall s_1, s_2 \mid \operatorname{row}(s_1) = \operatorname{row}(s_2) \rightarrow \operatorname{row}(s_1 \cdot a) = \operatorname{row}(s_2 \cdot a)$
- Objective 1: Make the table closed.

	Ι	Е
C	З	1
3	0	0
	1	0
E	00	1
	01	0

Closed? Yes!

For all rows in E, there exists a row in S such that the rows are equal.

Consistent? Yes! S only has two distinct rows, therefore the if condition doesn't apply.

- An observation table is closed if:
 - $\forall e \in E \exists s \in S \mid row(s) = row(e), a \in A$
- An observation table is consistent if:
 - $\forall s_1, s_2 \mid \operatorname{row}(s_1) = \operatorname{row}(s_2) \rightarrow \operatorname{row}(s_1 \cdot a) = \operatorname{row}(s_2 \cdot a)$
- Objective 1: Make the table closed.
- The learner can now formulate a hypothesis and query the system to see if the inferred FSA is equivalent to the SUL FSA.

	Ι	Е
C	E	1
S	0	0
	1	0
E	00	1
	01	0

Closed? Yes! For all rows in *E*, there exists a row in *S* such that the rows are equal.

Consistent? Yes! S only has two distinct rows, therefore the if condition doesn't apply.

Observation table to DFA

- We can construct a DFA using the unique rows in the table.
- Each row in *S* represents a state in the DFA.
- The first row with the first column of 1 is the accepting state.
- For this table, the DFA has 2 states.

	Ι	Е
C	e	1
S	0	0
	1	0
E	00	1
	01	0

Equivalence query

- We now ask the SUL, through an equivalence oracle, is this construction an accurate representation of the target system?
 - The equivalence oracle responds with either a *yes* or a *no*.
 - If the oracle responds with *yes*, learning is terminated.
 - If the oracle responds with *no*, the oracle provides a counter-example. An input for which the DFA behaves differently from the target system.
- The L* algorithm, therefore, uses this *counter-example* to update the observation table.

	Ι	Е
C	e	1
3	0	0
	1	0
E	00	1
	01	0

Counter-example

- We incorporate the counter-example whilst keeping the table closed and consistent.
- Assume the oracle gives the counter-example 11, our current DFA will reject this string.
- Add 1 and 11 to *S* and their {0,1} appended suffixes to *E*.

	Ι	S
	S	1
0	0	0
S	1	0
	11	1
	00	1
	01	0
E	10	0
	110	0
	111	0

Closed? Yes!

Consistent? No. row(0) = row(1) but row(00) \neq row(10)

Consistency

- Objective 1: Make the table closed.
- Objective 2: Make the table consistent.
 - Add column of the $a \in A$, that causes the inconsistency, in this case, 0.

	Ι	3
	3	1
0	0	0
S	1	0
	11	1
	00	1
	01	0
E	10	0
	110	0
	111	0

C	los	ed	?	Yes
---	-----	----	---	-----

Consistent? No. row(0) = row(1) but row(00) \neq row(10)

Consistency

- Objective 1: Make the table closed.
- Objective 2: Make the table consistent.
 - Add column of the $a \in A$, that causes the inconsistency, in this case, 0.

	Ι	3	0
	S	1	0
S	0	0	1
	1	0	0
	11	1	0
	00	1	0
E	01	0	0
	10	0	0
	110	0	0
	111	0	0

Closed? Yes.

Consistent? Yes.

Hypothesis refinement

- The learner again queries the EQ oracle for testing the equivalence of hypothesis \mathcal{H} , namely if: $\mathcal{H} \approx \mathcal{M}$ where \mathcal{H} is the hypothesized FSA and \mathcal{M} is the system FSA
- Since the table has 3 unique rows, the DFA has 3 states.

	Ι	Е	0
	Ś	1	0
S	0	0	1
	1	0	0
	11	1	0
	00	1	0
E	01	0	0
	10	0	0
	110	0	1
	111	0	0

Since the DFA does not accept only even 0s and 1s, the EQ oracle returns a *counter-example*. Assume it returns 011. Our DFA will accept this string.

Hypothesis refinement

- The algorithm then repeats the process of making the table closed and consistent, eventually adding the 1 column.
- Our observation table after another closing and consistency iteration becomes:

	Ι	в	0	1
S	3	1	0	0
	0	0	1	0
	1	0	0	1
	11	1	0	0
	011	0	1	0
	00	1	0	0
	01	0	0	0
E	10	0	0	0
	110	0	1	0
	111	0	0	1
	0110	1	0	0
	0111	0	1	0

Hypothesis refinement

• This table has 4 unique rows, therefore, the resulting DFA has 4 states.

	Ι	E	0	1
	S	1	0	0
	0	0	1	0
S	1	0	0	1
5	01	0	0	0
	11	1	0	0
	011	0	1	0
	00	1	0	0
	10	0	0	0
F	010	0	0	1
Ľ	110	0	1	0
	111	0	0	1
	0110	1	0	0
	0111	0	1	0

The EQ oracle returns *True* and the algorithm terminates.