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Verification vs. Falsification

• An automated verification tool
▸can report that the system is verified (with a proof); 
▸or that the system was not verified. 

• When the system was not verified, it would be helpful to explain why
▸Model checkers can output an error counterexample: a concrete execution scenario that 

demonstrates the error. 

• Can view a model checker as a falsification tool –
▸The main goal is to find bugs 

• So what can we verify or falsify?



Temporal Properties

• Temporal Property 
▸A property with time-related operators such as “invariant” or “eventually”

• Invariant(p) 
▸is true in a state if property p is true in every state on all execution paths starting at that 

state 
▸G, AG,  (“globally” or “box” or “forall”) 

• Eventually(p) 
▸is true in a state if property p is true at some state on every execution path starting from 

that state F, AF, ♢ (“future” or “diamond” or “exists”)



An Example Concurrent Program

• A simple concurrent mutual exclusion 
program 
• Two processes execute asynchronously 
• There is a shared variable turn 
• Two processes use the shared variable to 

ensure that they are not in the critical 
section at the same time 
• Can be viewed as a “fundamental” program: 

any bigger concurrent one would include this 
one

10: while (true){ 
11:    wait(turn == 0); 

// critical section 
12:    work(); turn = 1; 
13: } 

// concurrently with 

20: while (true) { 
21:    wait(turn == 1); 

// critical section 
22: work(); turn = 0; 
23: }



Reachable States of the Example Program



Analyzed System is a Transition System

• Labeled transition system 
T = (S, I, R, L) –
S = Set of states                       // standard FSM 
I ⊆ S = Set of initial states        // standard FSM 
R ⊆ S × S = Transition relation // standard FSM 
L: S → 2AP = Labeling function // this is new! 

• AP: Set of atomic propositions (e.g., “x=5”∈AP) 
• Atomic propositions capture basic properties 
• For software, atomic props depend on variable values 
• The labeling function labels each state with the set of propositions true in that state



Example Properties of the Program

• “In all the reachable states (configurations) of the system, the two processes are 
never in the critical section at the same time” 
▸“pc1=12”, “pc2=22” are atomic properties for being in the critical section 

▸Invariant (⏋(PC1=12 ∧ PC2 = 22)

• “Eventually the first process enters the critical section
▸Eventually (PC1 = 12)



Temporal Logics

• There are four basic temporal 
operators: 
• X p Next p, p holds in the next state 
• G p: Globally p, p holds in every state, p 

is an invariant 
• F p: Future p, p will hold in a future state, 

p holds eventually 
• p U q: p Until q, assertion p will hold 

until q holds 
• Precise meaning of these temporal 

operators is defined on execution paths



Execution Paths

• A path in a transition system is an infinite sequence of states 
▸(s0 , s1 , s2 , ...), such that ∀i≥0. (si , si+1) ∈ R 

• A path (s0 ,s1 ,s2 ,...) is an execution path if s0 ∈ I 
• Given a path x = (s0 , s1 , s2 , ...) 

▸hi denotes the ith state: si
▸hi denotes the i-th suffix: (si , si+1, si+2, ...) 
▸In some temporal logics one can quantify paths starting from a state using path 

quantifiers 
• A : for all paths 
• E : there exists a path



Paths and Predicates

• We write 

h ╞ p 

“the path x makes the predicate p true” 
▸h is a path in a transition system 
▸p is a temporal logic predicate • 

• Example: A h.   h╞ G (¬(pc1=12 ∧ pc2=22))



Linear Temporal Logic (LTL)

• LTL properties are constructed from atomic propositions in AP; logical 
operators ∧, ∨, ¬ and temporal operators X, G, F, U.
• The semantics of LTL is defined on paths
• Given a path h:  h ╞ p

h ╞ p iff L(h0, ap) atomic prop

h ╞ X p iff h1 p next

h ╞ F p iff ∃i≥0. hi p future

h ╞ G p iff ∀i≥0. hi p globally

h ╞ p U q iff ∃i≥0. hi q and ∀j<i. hj p until



Satisfying Linear Time Logic

• Given a transition system T = (S, I, R, L) and an LTL property p, T satisfies p if all 
paths starting from all initial states I satisfy p



Computation Tree Logic

• In CTL, temporal properties use path 
quantifiers: 
▸A : for all paths, E : there exists a path

• The semantics of CTL is defined on states
• Given a state s 
• s  ╞ ap iff L(s, ap) 
• s0 ╞ EX p iff ∃ a path (s0, s1, s2, ...). s1 ╞ p
• s0 ╞AX p iff ∀ paths (s0, s1, s2, ...). s1 ╞ p
• s0 ╞ EG p iff ∃ a path (s0, s1, s2, ...). ∀i≥0. si ╞ p
• s0 ╞AG p iff ∀ paths (s0, s1, s2, ...). ∀i≥0. si ╞ p



Examples of CTL formulas

• EF ϕ
▸It is possible to get to a state where ϕ is true

• AG AF enabled
▸A certain process is enabled infinitely often on every computation path

• AG (requested àAF acknowledged)
▸for any state, if a request ocurs, then it will eventually be acknowledged

• AG (ϕà E[ϕ U ⍦ ])
▸for any state, if ϕ holds, then there is a future where ⍦ eventually holds, and ϕ holds for 

all points in between

• AG (ϕà EG ⍦ )
▸for any state, if ϕ holds then there is a future where ⍦ always holds



Linear vs. Branching Time

• LTL is a linear time logic
▸When determining if a path satisfies an LTL formula, we are only concerned with a single 

path

• CTL is a branching time logic
▸When determining if a state satisfies a CTL, formula we are concerned with multiple 

paths
▸In CTL the computation is instead viewed as a computation tree which contains all the 

paths

• The expressive powers of CTL and LTL are incomparable incomparable 
▸LTL ⊆ CTL*, CTL ⊆ CTL*
▸Basic temporal properties can be expressed in both logics
▸Not in this lecture, sorry! (Take a class on Modal Logics)



LTL vs. CTL

• Some LTL formulae cannot be translated into CTL formaulae.
▸FG s - This formula denotes the property of stability : in each execution of the 

program, s will finally be true until the end of the program (or forever if the 
program never stops). 

▸CTL can only provide a formula that is too strict (AF AG s) or too permissive (AF EG s). 
▸(AF EG s) is clearly wrong. It is not so straightforward for the first. 
▸But AF AG s is erroneous. Consider a system that loops on A1, can go from A1 to B and 

then will go to A2 on the next move. Then the system will stay in A2 state forever. Then 
"the system will finally stay in a A state" is a property of the type FG𝑠. It is obvious that 
this property holds on the system. However,AF AG s cannot capture this property since 
the opposite is true.

•



Linear vs. Branching Time



State Space Explosion

• The complexity of model checking increases linearly with respect to the size of 
the transition system (|S| + |R|) 
• However, the size of the transition system (|S| + |R|) is exponential in the
• number of variables and number of concurrent processes
• This exponential increase in the state space is called the state space explosion

▸Dealing with it is one of the major challenges in model checking research



Symbolic Model Checking

• Symbolic model checking represents state sets and the transition relation as 
Boolean logic formulas
▸Fixed point computations manipulate sets of states rather than individual states

• Use an efficient data structure for manipulation of Boolean logic formulas
▸Binary Decision Diagrams (BDDs)

• SMV (Symbolic Model Verifier) was the first CTL model checker to use BDDs



Satisfiability Modulo Theories (SMT) Solvers
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SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

SAT 
Solver

Arithmetic solver
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Nelson-
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Verification Conditions



SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories
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( A[x]+B[x]>0 Ú x+y>0 ) Ù ( cons(“abc”,d1)≠d2 Ú x<0)



SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

UNSA
T SATSAT 
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Array solver

Datatypes solver
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String solver
DPLL(T),
Nelson-
Oppen

( A[x]+B[x]>0 Ú x+y>0 ) Ù ( cons(“abc”,d1)≠d2 Ú x<0)

(modulo theories) (modulo theories)



SAT Solver

…but first : SAT solvers

• Efficient tools for satisfiability

UNSA
T SAT

( A Ú B ) Ù ( C Ú D ) Ù ¬B

DPLL



NuXmv Example: Modulo 4 counter with reset



LTL Specifications

• Specications Examples:
▸A state in which out = 3 is eventually reached
▸LTLSPEC F out = 3

• Condition out = 0 holds until reset becomes false
▸LTLSPEC (out = 0) U (!reset)

• Every time a state with out = 2 is reached, a state with out = 3 is reached 
afterward
▸LTLSPEC G (out = 2 -> F out = 3)



LTL Specifications



Model Programs in NuXmv



Takeaways

• A system can be modeled as a Labeled Transition System (LTS).
• Based on the expressiveness of the property, we use LTL or CTL property.
• Need to take care of state explosion problem with different types abstractions. 
• Model checking is useful for testing many safety critical systems.



Thanks

Thanks to Bor-Yuh Evan Chang, Andrew Reynolds, and Patrick Trentin
for some slides.


