

CSE 597: Security of Emerging Technologies Module: Formal Verification (Part 2)

Prof. Syed Rafiul Hussain <u>Sy</u>stems and <u>Network Sec</u>urity (SyNSec) Research Group Department of Computer Science and Engineering The Pennsylvania State University

Verification vs. Falsification

• An automated verification tool

- can report that the system is verified (with a proof);
- ▶ or that the system was not verified.
- When the system was not verified, it would be helpful to explain why
 - Model checkers can output an error counterexample: a concrete execution scenario that demonstrates the error.
- Can view a model checker as a falsification tool
 - ► The main goal is to find bugs
- So what can we verify or falsify?

Temporal Properties

• Temporal Property

- ► A property with time-related operators such as "invariant" or "eventually"
- Invariant(p)
 - is true in a state if property p is true in every state on all execution paths starting at that state
 - ► G,AG, ("globally" or "box" or "forall")
- Eventually(p)
 - ▶ is true in a state if property p is true at some state on every execution path starting from that state F,AF, ◊ ("future" or "diamond" or "exists")

An Example Concurrent Program

- A simple concurrent mutual exclusion program
- Two processes execute asynchronously
- There is a shared variable turn
- Two processes use the shared variable to ensure that they are not in the critical section at the same time
- Can be viewed as a "fundamental" program: any bigger concurrent one would include this one

```
10: while (true) {
11:
      wait(turn == 0);
       // critical section
      work(); turn = 1;
12:
13: }
// concurrently with
20: while (true) {
       wait(turn == 1);
21:
       // critical section
22: work(); turn = 0;
23: }
```


Analyzed System is a Transition System

PennState

• Labeled transition system

- T = (S, I, R, L) -
- S = Set of states // standard FSM
- $I \subseteq S = Set of initial states // standard FSM$
- $R \subseteq S \times S = Transition relation // standard FSM$
- L: S \rightarrow 2^{AP} = Labeling function // this is new!

• AP: Set of atomic propositions (e.g., "x=5"∈AP)

- Atomic propositions capture basic properties
- For software, atomic props depend on variable values
- The labeling function labels each state with the set of propositions true in that state

Example Properties of the Program

- "In all the reachable states (configurations) of the system, the two processes are never in the critical section at the same time"
 - "pcl=12", "pc2=22" are atomic properties for being in the critical section
 - ► Invariant (\neg (PCI=I2 \land PC2 = 22)

"Eventually the first process enters the critical section
Eventually (PCI = 12)

Temporal Logics

- There are four basic temporal operators:
- X p Next p, p holds in the next state
- G p: Globally p, p holds in every state, p is an invariant
- F p: Future p, p will hold in a future state, p holds eventually
- p U q: p Until q, assertion p will hold until q holds
- Precise meaning of these temporal operators is defined on execution paths

Execution Paths

- A path in a transition system is an infinite sequence of states
 - ▶ (s0 , s1 , s2 , ...), such that $\forall i \ge 0$. (si , si+1) $\in \mathbb{R}$
- A path (s0 ,s1 ,s2 ,...) is an execution path if s0 \in I
- Given a path x = (s0, s1, s2, ...)
 - ► h_i denotes the ith state: s_i
 - ► h^i denotes the i-th suffix: $(s_i, s_{i+1}, s_{i+2}, ...)$
 - In some temporal logics one can quantify paths starting from a state using path quantifiers
 - A : for all paths
 - E : there exists a path

Paths and Predicates

• We write

h |= p

"the path x makes the predicate p true"

- h is a path in a transition system
- p is a temporal logic predicate •

• Example: A h. $h = G (\neg(pcl=l2 \land pc2=22))$

Linear Temporal Logic (LTL)

- PennState
- LTL properties are constructed from atomic propositions in AP; logical operators Λ , V, \neg and temporal operators X, G, F, U.
- The semantics of LTL is defined on **paths**
- Given a path h: h ⊧ p
 - h ⊧ p iff L(h⁰, ap) atomic prop
 - $h \models X p \text{ iff } h^1 p \text{ next}$
 - h ⊧ F p iff ∃i≥0. hⁱ p future
 - h \models G p iff ∀i≥0. hⁱ p globally
 - h \models p U q iff ∃i≥0. hⁱ q and ∀j<i. h^j p until

Satisfying Linear Time Logic

 Given a transition system T = (S, I, R, L) and an LTL property p, T satisfies p if all paths starting from all initial states I satisfy p

Computation Tree Logic

- In CTL, temporal properties use path quantifiers:
- A : for all paths, E : there exists a path finally P globally P next P
 The semantics of CTL is defined on states
 Given a state s
 - s = ap iff L(s, ap)
 - $s_0 \models EX p \text{ iff } \exists a path (s_0, s_1, s_2, ...). s_1 \models p$
 - $s_0 \models AX p \text{ iff } \forall paths (s_0, s_1, s_2, ...). s_1 \models p$
 - $s_0 \models EG p \text{ iff } \exists a path (s_0, s_1, s_2, ...). \forall i \ge 0. s_i \models p$
 - $s_0 \models AG p \text{ iff } \forall paths (s_0, s_1, s_2, ...). \forall i \ge 0. s_i \models p$

Examples of CTL formulas

• EF φ

- It is possible to get to a state where ϕ is true
- AG AF enabled
 - ► A certain process is enabled infinitely often on every computation path
- AG (requested \rightarrow AF acknowledged)
 - ▶ for any state, if a request ocurs, then it will eventually be acknowledged
- AG ($\phi \rightarrow E[\phi U \cup]$)
 - ▶ for any state, if ϕ holds, then there is a future where ψ eventually holds, and ϕ holds for all points in between
- AG ($\phi \rightarrow$ EG (ψ))
 - \blacktriangleright for any state, if ϕ holds then there is a future where ψ –always holds

Linear vs. Branching Time

• LTL is a linear time logic

When determining if a path satisfies an LTL formula, we are only concerned with a single path

• CTL is a branching time logic

- When determining if a state satisfies a CTL, formula we are concerned with multiple paths
- In CTL the computation is instead viewed as a computation tree which contains all the paths
- The expressive powers of CTL and LTL are incomparable incomparable
 - ▶ LTL \subseteq CTL*, CTL \subseteq CTL*
 - Basic temporal properties can be expressed in both logics
 - Not in this lecture, sorry! (Take a class on Modal Logics)

LTL vs. CTL

• Some LTL formulae cannot be translated into CTL formaulae.

► FG s - This formula denotes the property of stability : in each execution of the program, s will finally be true until the end of the program (or forever if the program never stops).

- ► CTL can only provide a formula that is too strict (AFAG s) or too permissive (AFEG s).
- ► (AF EG s) is clearly wrong. It is not so straightforward for the first.
- But AF AG s is erroneous. Consider a system that loops on AI, can go from AI to B and then will go to A2 on the next move. Then the system will stay in A2 state forever. Then "the system will finally stay in a A state" is a property of the type FGs. It is obvious that this property holds on the system. However, AF AG s cannot capture this property since the opposite is true.

Linear vs. Branching Time

State Space Explosion

- The complexity of model checking increases linearly with respect to the size of the transition system (|S| + |R|)
- However, the size of the transition system (|S| + |R|) is exponential in the
- number of variables and number of concurrent processes
- This exponential increase in the state space is called the state space explosion
 - Dealing with it is one of the major challenges in model checking research

Symbolic Model Checking

- Symbolic model checking represents state sets and the transition relation as Boolean logic formulas
 - Fixed point computations manipulate sets of states rather than individual states
- Use an efficient data structure for manipulation of Boolean logic formulas
 - Binary Decision Diagrams (BDDs)
- SMV (Symbolic Model Verifier) was the first CTL model checker to use BDDs

Satisfiability Modulo Theories (SMT) Solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

$$(A[x]+B[x]>0 \lor x+y>0) \land (cons(``abc'',d_1)\neq d_2 \lor x<0)$$

• Efficient tools for satisfiability and satisfiability modulo theories

...but first : SAT solvers

• Efficient tools for satisfiability

 $(A \lor B) \land (C \lor D) \land \neg B$

NuXmv Example: Modulo 4 counter with reset

```
MODULE main
                            : boolean;
VAR bO
           : boolean; b1
    reset : boolean;
ASSIGN
 init(b0) := FALSE;
 next(b0) := case reset : FALSE;
                    !reset : !b0;
              esac;
 init(b1) := FALSE;
 next(b1) := case reset : FALSE;
                    TRUE : ((!b0 & b1) |
                            (b0 & !b1));
              esac;
DEFINE out := toint(b0) + 2*toint(b1);
INVARSPEC out < 2
  • recall:
                        0
                                   2
                        3
```

• The invariant is false

```
nuXmv > read_model -i counter4reset.smv;
nuXmv > go; check_invar
-- invariant out < 2 is false
. . .
  -> State: 1.1 <-
    b0 = FALSE
    b1 = FALSE
    reset = FALSE
    out = 0
  -> State: 1.2 <-
    b0 = TRUE
    out = 1
  -> State: 1.3 <-
    b0 = FALSE
    b1 = TRUE
    out = 2
```

LTL Specifications

• Specications Examples:

- A state in which out = 3 is eventually reached
- LTLSPEC F out = 3

• Condition out = 0 holds until reset becomes false

- ► LTLSPEC (out = 0) U (!reset)
- Every time a state with out = 2 is reached, a state with out = 3 is reached afterward
 - ► LTLSPEC G (out = 2 -> F out = 3)

LTL Specifications

All the previous specifications are false:

```
NuSMV > check_ltlspec
-- specification F out = 3 is false ...
-- loop starts here --
-> State 1.1 <-
    b0 = FALSE
   b1 = FALSE
   reset = TRUE
    out = 0
-> State 1.2 <-
-- specification (out = 0 U (!reset)) is false ...
-- loop starts here --
-> State 2.1 <-
    b0 = FALSE
   b1 = FALSE
   reset = TRUE
    out = 0
-> State 2.2 <-
-- specification G (out = 2 -> F out = 3) is false ...
```

Q: why?

Model Programs in NuXmv

	<pre>void main() {</pre>
	// initialization of a and b
11:	while $(a!=b)$ {
12:	if (a>b)
13:	a=a-b;
	else
14:	b=b-a;
	}
15:	// GCD=a=b
	}

MODULE main() VAR a: 0100; b: 0100;			
pc: {l1,l2,l3,l4,l5};			
ASSIGN			
<pre>init(pc):=l1;</pre>			
next(pc):=			
case			
pc=11 & a!=b	: 12;		
pc=l1 & a=b	: 15;		
pc=12 & a>b	: 13;		
pc=12 & a<=b	: 14;		
pc=13 pc=14	: 11;		
pc=15	: 15;		
esac;			

```
next(a):=
    case
        pc=13 & a > b: a - b;
        TRUE: a;
    esac;
next(b):=
    case
        pc=14 & b >= a: b-a;
        TRUE: b;
    esac;
```


- A system can be modeled as a Labeled Transition System (LTS).
- Based on the expressiveness of the property, we use LTL or CTL property.
- Need to take care of state explosion problem with different types abstractions.
- Model checking is useful for testing many safety critical systems.

Thanks to Bor-Yuh Evan Chang, Andrew Reynolds, and Patrick Trentin for some slides.