
CSE 597: Security of Emerging Technologies
Module: Formal Verification (Part 2)

Prof. Syed Rafiul Hussain
Systems and Network Security (SyNSec) Research Group

Department of Computer Science and Engineering
The Pennsylvania State University

Verification vs. Falsification

• An automated verification tool
▸can report that the system is verified (with a proof);
▸or that the system was not verified.

• When the system was not verified, it would be helpful to explain why
▸Model checkers can output an error counterexample: a concrete execution scenario that

demonstrates the error.

• Can view a model checker as a falsification tool –
▸The main goal is to find bugs

• So what can we verify or falsify?

Temporal Properties

• Temporal Property
▸A property with time-related operators such as “invariant” or “eventually”

• Invariant(p)
▸is true in a state if property p is true in every state on all execution paths starting at that

state
▸G, AG, (“globally” or “box” or “forall”)

• Eventually(p)
▸is true in a state if property p is true at some state on every execution path starting from

that state F, AF, ♢ (“future” or “diamond” or “exists”)

An Example Concurrent Program

• A simple concurrent mutual exclusion
program
• Two processes execute asynchronously
• There is a shared variable turn
• Two processes use the shared variable to

ensure that they are not in the critical
section at the same time
• Can be viewed as a “fundamental” program:

any bigger concurrent one would include this
one

10: while (true){
11: wait(turn == 0);

// critical section
12: work(); turn = 1;
13: }

// concurrently with

20: while (true) {
21: wait(turn == 1);

// critical section
22: work(); turn = 0;
23: }

Reachable States of the Example Program

Analyzed System is a Transition System

• Labeled transition system
T = (S, I, R, L) –
S = Set of states // standard FSM
I ⊆ S = Set of initial states // standard FSM
R ⊆ S × S = Transition relation // standard FSM
L: S → 2AP = Labeling function // this is new!

• AP: Set of atomic propositions (e.g., “x=5”∈AP)
• Atomic propositions capture basic properties
• For software, atomic props depend on variable values
• The labeling function labels each state with the set of propositions true in that state

Example Properties of the Program

• “In all the reachable states (configurations) of the system, the two processes are
never in the critical section at the same time”
▸“pc1=12”, “pc2=22” are atomic properties for being in the critical section

▸Invariant (⏋(PC1=12 ∧ PC2 = 22)

• “Eventually the first process enters the critical section
▸Eventually (PC1 = 12)

Temporal Logics

• There are four basic temporal
operators:
• X p Next p, p holds in the next state
• G p: Globally p, p holds in every state, p

is an invariant
• F p: Future p, p will hold in a future state,

p holds eventually
• p U q: p Until q, assertion p will hold

until q holds
• Precise meaning of these temporal

operators is defined on execution paths

Execution Paths

• A path in a transition system is an infinite sequence of states
▸(s0 , s1 , s2 , ...), such that ∀i≥0. (si , si+1) ∈ R

• A path (s0 ,s1 ,s2 ,...) is an execution path if s0 ∈ I
• Given a path x = (s0 , s1 , s2 , ...)

▸hi denotes the ith state: si
▸hi denotes the i-th suffix: (si , si+1, si+2, ...)
▸In some temporal logics one can quantify paths starting from a state using path

quantifiers
• A : for all paths
• E : there exists a path

Paths and Predicates

• We write

h ╞ p

“the path x makes the predicate p true”
▸h is a path in a transition system
▸p is a temporal logic predicate •

• Example: A h. h╞ G (¬(pc1=12 ∧ pc2=22))

Linear Temporal Logic (LTL)

• LTL properties are constructed from atomic propositions in AP; logical
operators ∧, ∨, ¬ and temporal operators X, G, F, U.
• The semantics of LTL is defined on paths
• Given a path h: h ╞ p

h ╞ p iff L(h0, ap) atomic prop

h ╞ X p iff h1 p next

h ╞ F p iff ∃i≥0. hi p future

h ╞ G p iff ∀i≥0. hi p globally

h ╞ p U q iff ∃i≥0. hi q and ∀j<i. hj p until

Satisfying Linear Time Logic

• Given a transition system T = (S, I, R, L) and an LTL property p, T satisfies p if all
paths starting from all initial states I satisfy p

Computation Tree Logic

• In CTL, temporal properties use path
quantifiers:
▸A : for all paths, E : there exists a path

• The semantics of CTL is defined on states
• Given a state s
• s ╞ ap iff L(s, ap)
• s0 ╞ EX p iff ∃ a path (s0, s1, s2, ...). s1 ╞ p
• s0 ╞AX p iff ∀ paths (s0, s1, s2, ...). s1 ╞ p
• s0 ╞ EG p iff ∃ a path (s0, s1, s2, ...). ∀i≥0. si ╞ p
• s0 ╞AG p iff ∀ paths (s0, s1, s2, ...). ∀i≥0. si ╞ p

Examples of CTL formulas

• EF ϕ
▸It is possible to get to a state where ϕ is true

• AG AF enabled
▸A certain process is enabled infinitely often on every computation path

• AG (requested àAF acknowledged)
▸for any state, if a request ocurs, then it will eventually be acknowledged

• AG (ϕà E[ϕ U ⍦])
▸for any state, if ϕ holds, then there is a future where ⍦ eventually holds, and ϕ holds for

all points in between

• AG (ϕà EG ⍦)
▸for any state, if ϕ holds then there is a future where ⍦ always holds

Linear vs. Branching Time

• LTL is a linear time logic
▸When determining if a path satisfies an LTL formula, we are only concerned with a single

path

• CTL is a branching time logic
▸When determining if a state satisfies a CTL, formula we are concerned with multiple

paths
▸In CTL the computation is instead viewed as a computation tree which contains all the

paths

• The expressive powers of CTL and LTL are incomparable incomparable
▸LTL ⊆ CTL*, CTL ⊆ CTL*
▸Basic temporal properties can be expressed in both logics
▸Not in this lecture, sorry! (Take a class on Modal Logics)

LTL vs. CTL

• Some LTL formulae cannot be translated into CTL formaulae.
▸FG s - This formula denotes the property of stability : in each execution of the

program, s will finally be true until the end of the program (or forever if the
program never stops).

▸CTL can only provide a formula that is too strict (AF AG s) or too permissive (AF EG s).
▸(AF EG s) is clearly wrong. It is not so straightforward for the first.
▸But AF AG s is erroneous. Consider a system that loops on A1, can go from A1 to B and

then will go to A2 on the next move. Then the system will stay in A2 state forever. Then
"the system will finally stay in a A state" is a property of the type FG𝑠. It is obvious that
this property holds on the system. However,AF AG s cannot capture this property since
the opposite is true.

•

Linear vs. Branching Time

State Space Explosion

• The complexity of model checking increases linearly with respect to the size of
the transition system (|S| + |R|)
• However, the size of the transition system (|S| + |R|) is exponential in the
• number of variables and number of concurrent processes
• This exponential increase in the state space is called the state space explosion

▸Dealing with it is one of the major challenges in model checking research

Symbolic Model Checking

• Symbolic model checking represents state sets and the transition relation as
Boolean logic formulas
▸Fixed point computations manipulate sets of states rather than individual states

• Use an efficient data structure for manipulation of Boolean logic formulas
▸Binary Decision Diagrams (BDDs)

• SMV (Symbolic Model Verifier) was the first CTL model checker to use BDDs

Satisfiability Modulo Theories (SMT) Solvers

Software
Verification

Tools

Interactive
Proof

Assistants

Symbolic
Execution
Engines

SMT
Solvers

Verification
Conditions

Conjectures Path Constraints

Synthesis
Tools,

Planners

Specifications

Will first focus
on this portion

SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

SAT
Solver

Arithmetic solver

Array solver

Datatypes solver

Bit-vector solver

String solver
DPLL(T),
Nelson-
Oppen

Verification Conditions

SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

SAT
Solver

Arithmetic solver

Array solver

Datatypes solver

Bit-vector solver

String solver
DPLL(T),
Nelson-
Oppen

(A[x]+B[x]>0 Ú x+y>0) Ù (cons(“abc”,d1)≠d2 Ú x<0)

SMT solvers

• Efficient tools for satisfiability and satisfiability modulo theories

SMT Solver

UNSA
T SATSAT

Solver

Arithmetic solver

Array solver

Datatypes solver

Bit-vector solver

String solver
DPLL(T),
Nelson-
Oppen

(A[x]+B[x]>0 Ú x+y>0) Ù (cons(“abc”,d1)≠d2 Ú x<0)

(modulo theories) (modulo theories)

SAT Solver

…but first : SAT solvers

• Efficient tools for satisfiability

UNSA
T SAT

(A Ú B) Ù (C Ú D) Ù ¬B

DPLL

NuXmv Example: Modulo 4 counter with reset

LTL Specifications

• Specications Examples:
▸A state in which out = 3 is eventually reached
▸LTLSPEC F out = 3

• Condition out = 0 holds until reset becomes false
▸LTLSPEC (out = 0) U (!reset)

• Every time a state with out = 2 is reached, a state with out = 3 is reached
afterward
▸LTLSPEC G (out = 2 -> F out = 3)

LTL Specifications

Model Programs in NuXmv

Takeaways

• A system can be modeled as a Labeled Transition System (LTS).
• Based on the expressiveness of the property, we use LTL or CTL property.
• Need to take care of state explosion problem with different types abstractions.
• Model checking is useful for testing many safety critical systems.

Thanks

Thanks to Bor-Yuh Evan Chang, Andrew Reynolds, and Patrick Trentin
for some slides.

