
CSE 597: Security of Emerging Technologies
Module: Formal Verification

Prof. Syed Rafiul Hussain
Systems and Network Security (SyNSec) Research Group

Department of Computer Science and Engineering
The Pennsylvania State University

Critical Infrastructure using Cellular Network

2

Problem Statement: How can we systematically verify the design
of 4G & 5G network protocols with respect to promised security

and privacy guarantees?
(CCS’19)

High-level Goal

3

Design descriptions
Automated
Reasoner

Properties
i.e., security & privacy guarantees of a system

Guarantee is satisfied

Guarantee is broken

Challenges

Protocol
Complexity

4

Stateful Network Cryptographic Constructs
(encryption, message authentication code, certificate)

Multiple Participants

Qualitative Properties
(temporal ordering of events)

Quantitative Properties
(rate of receiving a message)

Intertwined Sub-Procedures

Background (Cellular Device or User Equipment)

IMSI = International Mobile Subscriber Identity

IMEI = International Mobile Equipment Identity

Background (4G System Architecture)

Background (4G System Architecture)

IMSI
IMSI Key

IMSI_1 Key_1

IMSI_2 Key_2

IMSI_victim Key_victim

Attach/Registration Procedure

8

Identification Authentication
(𝐶𝐾, 𝐼𝐾, 𝐾!"#$)

Security Algorithm
Selection (𝐾%!"!"# , 𝐾%!"$"%)

TMSI Exchange
IP assignment

Attach Request (IMSI/IMEI, UE’s Security Capabilities)

Connection Setup

UE Core NetworkBase Station

Attach/Registration Procedure

9

Identification Authentication
(𝐶𝐾, 𝐼𝐾, 𝐾!"#$)

Security Algorithm
Selection (𝐾%!"!"# , 𝐾%!"$"%)

TMSI Exchange
IP assignment

Challenge (Authentication Request)

Response (Authentication Response)

UE Core NetworkBase Station

Attach/Registration Procedure

10

Identification Authentication
(𝐶𝐾, 𝐼𝐾, 𝐾!"#$)

Security Algorithm
Selection (𝐾%!"!"# , 𝐾%!"$"%)

TMSI Exchange
IP assignment

Select Security Algorithm (Security Mode Command)

Confirm Security Algorithm (Security Mode Complete)

UE Core NetworkBase Station

Attach Procedure

11

Identification Authentication
(𝐶𝐾, 𝐼𝐾, 𝐾!"#$)

Security Algorithm
Selection (𝐾%!"!"# , 𝐾%!"$"%)

TMSI Exchange
IP assignment

Network accepts the attach and allocates temporary identity (Attach Accept)

Confirm Attach and new temporary identity(Attach Complete)

UE Core NetworkBase Station

Idle

Model Checking

Model, M:
Abstract normal behavior of the system

Property, 𝞿

Verified

Violated, Not verified

12

Model Checker
M ╞𝞿

Dolev-Yao Adversary Model

Dolev-Yao Adversary Model

Drop, Modify, or Spoof Messages

You must adhere to all the
cryptographic assumptions!

Dolev-Yao Adversary Model

q Property characteristics
üTemporal ordering of events
ü Cryptographic constructs
ü Linear integer arithmetic and other predicates

• SQN++ and verify SQN ≤ XSQN ≤ (SQN + range)

16

Temporal trace
property

&
Linear integer

arithmetic

Cryptographic
Constructs

P

P

Next (P)

Eventually (P)

PP P PAlways (P)

QP P PUntil (P, Q)

Model Checker Cryptographic Verifier

How can we leverage reasoning power of these two?

Key Insight of Our Adversarial Testing Framework

Technical
Specifications

Desired Properties Technical Requirements
& Conformance Test

suits

M ╞ φ
Model Checker

Abstract
Cellular
Protocol
Model

φ

Threat
Instrumented

Model, M

Reasoning about
adversarial actions

Adversarial
Model

17

Adversarial Testing Framework: LTEInspector

Technical Requirements &
Conformance Test suits

Desired Properties

M ╞ φ
Model Checker

φTechnical Specifications

Abstract Cellular
Protocol Model

Threat
Instrumented

Model, M
18

Adversarial Testing Framework: LTEInspector

Desired Properties

M ╞ φ
Model Checker

φ

Cryptography-enabled
Protocol Model &
Query Generator

Counterexample

Satisfied

No AttackInvariant

Cryptographic
Protocol Verifier

19

Adversarial Testing Framework: LTEInspector

Findings

No
Service

No
ServiceNo

Service
No

Service

Overbilling

Location tracking

Battery
depletion Artificial

Chaos

Service Profiling

TMSI
exposure

20

Authentication Bypass

Model Checking

• Model checking is the exhaustive exploration of the state space of a system,
typically to see if an error state is reachable. It produces concrete
counterexamples.
• The state explosion problem refers to the large number of states in the model.
• Temporal logic allows you to specify properties with concepts like “eventually”

and “always”.
• Keywords:

▸Model checking is an automated technique
▸Model checking verifies transition systems
▸Model checking verifies temporal properties
Model checking falsifies by generating counterexamples A model checker is a program that
checks if a (transition) system satisfies a (temporal) property 9

Verification vs. Falsification

• What is verification?
▸Prove that a property of a system holds

• What is falsification?
▸Disprove that a property holds

Verification vs. Falsification

• An automated verification tool
▸can report that the system is verified (with a proof);
▸or that the system was not verified.

• When the system was not verified, it would be helpful to explain why
▸Model checkers can output an error counterexample: a concrete execution scenario that

demonstrates the error.

• Can view a model checker as a falsification tool –
▸The main goal is to find bugs

• So what can we verify or falsify?

Temporal Properties

• Temporal Property
▸A property with time-related operators such as “invariant” or “eventually”

• Invariant(p)
▸is true in a state if property p is true in every state on all execution paths starting at that

state
▸G, AG, � (“globally” or “box” or “forall”)

• Eventually(p)
▸is true in a state if property p is true at some state on every execution path starting from

that state F, AF, ♢ (“future” or “diamond” or “exists”)

An Example Concurrent Program

• A simple concurrent mutual exclusion
program
• Two processes execute asynchronously
• There is a shared variable turn
• Two processes use the shared variable to

ensure that they are not in the critical
section at the same time
• Can be viewed as a “fundamental” program:

any bigger concurrent one would include this
one

10: while (true){
11: wait(turn == 0);

// critical section
12: work(); turn = 1;
13: }

// concurrently with

20: while (true) {
21: wait(turn == 1);

// critical section
22: work(); turn = 0;
23: }

Reachable States of the Example Program

Analyzed System is a Transition System

• Labeled transition system
T = (S, I, R, L) –
S = Set of states // standard FSM
I ⊆ S = Set of initial states // standard FSM
R ⊆ S × S = Transition relation // standard FSM
L: S → 2AP = Labeling function // this is new!

• AP: Set of atomic propositions (e.g., “x=5”∈AP)
• Atomic propositions capture basic properties
• For software, atomic props depend on variable values
• The labeling function labels each state with the set of propositions true in that state

Example Properties of the Program

• “In all the reachable states (configurations) of the system, the two processes are
never in the critical section at the same time”
▸“pc1=12”, “pc2=22” are atomic properties for being in the critical section

▸Invariant (⏋(PC1=12 ∧ PC2 = 22)

• “Eventually the first process enters the critical section
▸Eventually (PC1 = 12)

Temporal Logics

• There are four basic temporal
operators:
• X p Next p, p holds in the next state
• G p Globally p, p holds in every state, p

is an invariant
• F p Future p, p will hold in a future state,

p holds eventually
• p U q p Until q, assertion p will hold

until q holds
• Precise meaning of these temporal

operators are defined on execution
paths

Execution Paths

• A path in a transition system is an infinite sequence of states
▸(s0 , s1 , s2 , ...), such that ∀i≥0. (si , si+1) ∈ R

• A path (s0 ,s1 ,s2 ,...) is an execution path if s0 ∈ I
• Given a path x = (s0 , s1 , s2 , ...)

▸xi denotes the ith state: si

▸xi denotes the i-th suffix: (si , si+1, si+2, ...)
▸In some temporal logics one can quantify paths starting from a state using path

quantifiers
• A : for all paths
• E : there exists a path

Paths and Predicates

• We write

X ╞ p

“the path x makes the predicate p true”
▸x is a path in a transition system
▸p is a temporal logic predicate •

• Example: A x. X ╞ G (¬(pc1=12 ∧ pc2=22))

Next Class

• Linear Temporal Logic (LTL)
• Computation Tree Logic (CTL)
• SAT/SMT Solver
• Model Checker with NuXMV

Thanks

Thanks to Bor-Yuh Evan Chang for some slides.

