@ PennState

CSE 597: Security of Emerging Technologies
Module: Formal Verification

Critical Infrastructure using Cellular Network

!

Problem Statement: How can we verify the design
of 4G & 5G network protocols with respect to promised security
and privacy guarantees?

(CCS’19)

ZDNet

L
L |

|D MusT ReEAD: The Internet of Wild Things: How the loT joined the battle against {

New flaws in 4G, 5G allow attackers to intercept LTE security flaw can be abused to take out

calls and track phone locations subscriptions at your expense

Zack Whittaker @zackwhittaker / 11:39 am EST » February 24, 2019 Researchers say the vulnerability impacts “virtually all” smartphones on the market.

High-level Goal

Guarantee is satisfied

ETSITS 124 020w
ETSITS 1 V1530 e
s v/ -
b 4
o
=
oo A o

Design descriptions)
Automated
Reasoner
J

&

g < Guarantee is broken

o

Properties

i.e., security & privacy guarantees of a system

C hal |en ges PennState

& \
- Protocol
Complexity

4 4 N\
Cryptographic Constructs
Stateful Network J + (encryption, message authentication code, certificate)

. J
4 N\ 4)\
Multiple Participants + Intertwined Sub-Procedures
. J . J
(. . . \ (. . . \

Qualitative Properties + Quantitative Properties
L (temporal ordering of events)) L (rate of receiving a message))

Background (Cellular Device or User Equipment)

IMSI = International Mobile Subscriber Identity

IMEI = International Mobile Equipment ldentity

Background (4G System Architecture) @ Pennstate

Registration Area Base Station

< NB
" (gm)

\

@\ | it
. Y/
I AX

:
B

Background (4G System Architecture) @ PennState

IMSI Key
IMSI_| Key |

M2 | Key2 Home Server

IMSI_victim Key_victim

Attach/Registration Procedure @ PennState

Authentication Security Algorithm TMSI Exchange
(CK,IK,KysmE) Selection (Kyas,,... Knas;,;) IP assignment

UE Base Station Core Network

Attach Request (IMSI/IMEI, UE’s Security Capabilities)

Connection Setup

Attach/Registration Procedure () pennstate

Identification Authentication Sef:urity Algorithm TMSI Exchange
(CK,IK,KysmE) Selection (Kyas,,... Knas;,;) IP assignment
UE Base Station Core Network

(g ==

Challenge (Authentication Request)

Response (Authentication Response)

Attach/Registration Procedure @ PennsState

Identification Authentication Sef:urity Algorithm TMSI Exchange
(CK,IK,KysmE) Selection (Kyas,,... Knas;,;) IP assignment
UE Base Station Core Network

g =

Select Security Algorithm (Security Mode Command)

Confirm Security Algorithm (Security Mode Complete)

Attach Procedure @ PennState

Identification Authentication Security Algorithm TMSI Exchange
(CK,IK,KysmE) Selection (Kyas,,..» Knas;,,) IP assignment
Base Station Core Network

(g E

Network accepts the attach and allocates temporary identity (Attach Accept)

Confirm Attach and new temporary identity(Attach Complete)

Idle

Model Checking

@ PennState

Model, M:
Abstract normal behavior of the system

UK

Property, ¢

.

Model Checker

M ke
J

Verified

Violated, Not verified

o000

12

Dolev-Yao Adversary Model @ PennState

Device NAS FSM Core Network
NAS FSM

* Adversary FSM * 1
Device RRC FSM Adversary FSM Base Station R%\

FSM

Dolev-Yao Adversary Model

@ PennState

Cellular
Device

Adversary

Base Station & Core
Network

* Al

42

Adversary is located between
cellular device and Base Station

&

Treated as environment variable

s e
LR L Foldd

Dolev-Yao Adversary Model

@ PennState

Drop, Modify, or Spoof Messages

|

Cellular

Deviceg,

Base Station &

Adversary

r

-

You must adhere to all the
cryptographic assumptions!

~

)

Core Network

Key Insight of Our Adversarial Testing Framework

[Property characteristics
v'Temporal ordering of events
v’ Cryptographic constructs

v’ Linear integer arithmetic and other predicates
e SQN++ and verify SQN < XSQN < (SQN + range)

Temporal trace
property _|'|_ Cryptographic

& %f Constructs
Linear integer

arithmetic

Model Checker Cryptographic Verifier

How can we leverage reasoning power of these two!

Adversarial Testing Framework: LTElnspector

B56

Technical
Specifications

p £ r g
lro ?limr

T‘
N

Reasonlng about

adversXt |a| actions

?/<

Desired Properties
¢

N/
MEo]

del Checker

Abstract Adversarial Threat
Cellular Model Instrumented
Protocol Model, M

MAAAI

»o56

Technical Requirements

& Conformance Test
suits

17

Adversarial Testing Framework: LTElnspector

> v— 7
IZ:

‘RacioRasa 54 Contol RRC),
Protoc ipscifation

Bo56

»o56

Desired Properties

Technical Specifications Technical Requirements &

Conformance Test suits

Abstract Cellular Threat
Protocol Model Instrumented
Model, M

18

Adversarial Testing Framework: LTElnspector

=

e
V=

Desired Properties

1)
< Invariant
Cryptographlc
ProtocoJ:Verifier
o000
M |=(P Counterexample \{/Lu%}/
Model Checker | > f;';

‘ Cryptography-enabled

Satisfied Protocol Model &

Query Generator .

FI n d | n gs @ PennState

N

56 11 new attacks 4Gie 10 new attacks

-

Authentication Bypass

i/N_o\ . é »)

TMSI Overbilling
Séﬁﬁ&ag/‘ _\\}*WWWS'“Q $ =

Location tracking

Xpasure
9
wqw‘hi-"q....

Battery
If’)\’gqg"\i_ Service Profiling I depletion Artificial

Chaos

20

Model Checking @ PennState

* Model checking is the exhaustive exploration of the state space of a system,
typically to see if an error state is reachable. It produces concrete
counterexamples.

* The state explosion problem refers to the large number of states in the model.

* Temporal logic allows you to specify properties with concepts like “eventually”
and “always”.

* Keywords:
> Model checking is an automated technique
> Model checking verifies transition systems
> Model checking verifies temporal properties

Model checking falsifies by generating counterexamples A model checker is a program that
checks if a (transition) system satisfies a (temporal) property 9

Verification vs. Falsification @ PennState

* What is verification?
> Prove that a property of a system holds

* What is falsification!?
> Disprove that a property holds

Verification vs. Falsification @ PennState

* An automated verification tool
> can report that the system is verified (with a proof);
> or that the system was not verified.

* When the system was not verified, it would be helpful to explain why

> Model checkers can output an error counterexample: a concrete execution scenario that
demonstrates the error.

e Can view a model checker as a falsification tool —
> The main goal is to find bugs

* So what can we verify or falsify?

Temporal Properties @ Pennstate

* Temporal Property
> A property with time-related operators such as “invariant” or “eventually”

* Invariant(p)

> is true in a state if property p is true in every state on all execution paths starting at that
state

» G,AG, LI (“globally” or “box” or “forall’)

* Eventually(p)

> is true in a state if property p is true at some state on every execution path starting from
that state EAF, ¢ (“future” or “diamond” or “exists”)

An Example Concurrent Program @ PennState

[] I .
A simple concurrent mutual exclusion 10: while (true)q

program 11: wait(turn == 0);
// critical section
* Two processes execute asynchronously 15 work(); turn = 1;
13: }

* There is a shared variable turn

* Two processes use the shared variable to // concurrently with

ensure that they are not in the critical 2s whele (Eme) |
section at the same time 21: wait(turn == 1);
// critical section
. b3
* Can be viewed as a “fundamental” program: 22: work(); turn = 0;

any bigger concurrent one would include this ¢ !

one

Reachable States of the Example Program @ PennState

Next: formalize
this intuition ...

Each state is a valuation

of all the variables:

turn and the two program
counters for two processes

Analyzed System is a Transition System @ PennState

* Labeled transition system
T=(IR,L) -
S = Set of states // standard FSM
| € S = Set of initial states // standard FSM
R € S x S =Transition relation // standard FSM
L: S — 2AP = Labeling function // this is new!

* AP: Set of atomic propositions (e.g.,"x=5"€AP)
* Atomic propositions capture basic properties
* For software, atomic props depend on variable values
* The labeling function labels each state with the set of propositions true in that state

Example Properties of the Program @ PennState

* “In all the reachable states (configurations) of the system, the two processes are
never in the critical section at the same time”

> “pcl=12","pc2=22" are atomic properties for being in the critical section

> Invariant (1 (PCI1=12 A PC2 = 22)

* “Eventually the first process enters the critical section
> Eventually (PCI1 = [2)

Temporal Logics () pennstate

* There are four basic temporal

operators:
A
* X p Next p, p holds in the next state LT g
* G p Globally p, p holds in every state, p Forever A (TA)

IS an invariant

A P A I—P e —p A [—Pp oo

* F p Future p, p will hold in a future state,

p holds eventually Eventually A (OA)
* p U q p Until g,assertion p will hold s > eee A e
until q holds

Next A (OA)

* Precise meaning of these temporal
operators are defined on execution — A > cee —m > e
paths

Execution Paths @ PennState

* A path in a transition system is an infinite sequence of states
> (sO,sl,s2,..),such that Vi=20. (si,si+1]) €R

* A path (sO ,sl ,s2,...) is an execution path if sO € |
* Given a path x = (s0,sl ,s2,..)

> x; denotes the ith state:s;
» x' denotes the i-th suffix: (s, , Si4|, Sis2; ---)
> In some temporal logics one can quantify paths starting from a state using path

quantifiers
* A :for all paths
* E :there exists a path

Paths and Predicates @ PennState

* We write

X Fp

“the path x makes the predicate p true”
> X is a path in a transition system
> p is a temporal logic predicate ¢

* Example:A x. X E G (=(pcl=12 A pc2=22))

Next Class @ PennState

* Linear Temporal Logic (LTL)

* Computation Tree Logic (CTL)
* SAT/SMT Solver

* Model Checker with NuXMV

Thanks to Bor-Yuh Evan Chang for some slides.

