
CSE 597: Security of Emerging Technologies
Module: Cryptographic Protocol Verification

Prof. Syed Rafiul Hussain
Systems and Network Security (SyNSec) Research Group

Department of Computer Science and Engineering
The Pennsylvania State University

A Recipe for Automated Proof

• Translate program to a ProVerif script
▸Programs become pi calculus processes
▸Symbolic libraries become equational theories
▸Security goals become ProVerif queries

• Prove that if the ProVerif script is secure, so is the original program
▸Hand proof: the translation preserves reductions
▸Need to prove this only once

• Use ProVerif to automatically prove security

ProVerif

• It can handle an unbounded number of sessions of the protocol, thanks to some
well-chosen approximations

• It can give false attacks, but if it claims that the protocol satisfies some property,
then the property is actually satisfied.

• When the tool cannot prove a property, it tries to reconstruct an attack, that is,
an execution trace of the protocol that falsifies the desired property

Simple Example

• msg: constructor tag
• enc-dec: constructor--destructor pair
• kab: fresh name (key) Generated for this script
• client, server: replicated processes (share kab)

Running ProVerif

PV’s input language as a generic variant
of the pi-calculus
• Syntax of Terms:

▸M,N::= terms
• x,y,z variable
• a,b,c,k name
• f(M1,…,Mn) constructor application

• Allows users to define their own cryptographic primitives
▸E.g. encrypt((x,n), k)
▸Specify properties with destructors (more below).

Names, Channels, and Communication

• Any value can be used as a channel
• Send and Receive are synchronous

▸But the continuation P may be 0

• Fresh names are generated by new
▸Such names may be used as private channels, or as nonces, or keys for crypto

operations

Parallel Processes and Replication

• !P is an unlimited number of copies of P
!new a; P

▸This process generates fresh names a1, a2, … and uses each in a different copy of P

• Parallel composition is symmetric, associative

• 0 represents a finished process

Events

• A global log of events
• Any value can be logged as an event

PV’s input language as a generic variant
of the spi-calculus
• Syntax of Processes:

▸P,Q::= processes
• out(c,M);P output
• in(c,x);P input (this also declares the variable x)
• 0 nil
• P|Q parallel composition
• !P replication
• (new n);P restriction
• let x=g(M1,…,Mn) in P else Q destructor application
• let x=M in P local definition (this also declares the variable x)
• if M=N then P else Q conditional

• e.g. new n; out(net, encrypt((x,n), k))

Three ways to generate names

• In a process: new a; P
▸Creates a fresh name, known only to P
▸P may choose to send it to other processes
▸E.g., new kab; (client | server)

• In a declaration: free a
▸Creates a fresh name known to all processes including the attacker.
▸E.g., free net, or free timestamp

• In a declaration: private free a
▸Creates a fresh name known only to good processes, and not known to the attacker
▸E.g., private free passwordDatabase

[private] free id1, ..., idn

• Free names:
▸are public by default (e.g., untrusted channels, agent ids)
▸can optionally be declared private (e.g., trusted channels, global

keys)
•Private free names are equivalent to names that are new-
bound in front of the main process

Free names

Three kinds of constructors

• Invertible data constructors: data f/n
▸ Both f(x) and f-1(x) are easily computable
▸ E.g., data utf8/1.

• Functions: fun f/n
▸f(x) is computable, but f-1(x) may not be –
▸ E.g., fun enc/2, fun sha1/1, fun hmacsha1/2

• • Private functions: private fun f/n
▸f(x) can be called by good processes but not by attacker
▸E.g., fun cookie/3.

[private] fun id/n

•Examples:
▸fun encrypt/2
▸fun sign/2
▸fun hash/1

Constructors

You can also declare constructors as
private; it is kind of uncommon but useful,
for instance for declaring the function that
the server uses to retrieve the key she
shares with a given user

Destructor Rules

• Destructors are defined by reduction rules
▸Forms a set of (directed) equations
▸E.g., reduc iutf8(utf8(x)) = x
▸E.g., reduc dec(enc(x,k), k) = x

• Multiple rules may apply
▸reduc errorCode(y, utf8(base64(x))) = Error1()
▸reduc errorCode(x, utf8(x)) = Error2()

• Private destructors: private reduc
▸Defines function that may not be used by attacker
▸E.g., reduc icookie(cookie(x,y,z)) = (x, y, z)

• Constructors (-expected parameters):
▸encrypt/2-(M,K): M encrypted with symmetric key K
▸pencrypt/2-(M,enc(K)): M encrypted with encryption key enc(K)
▸enc/1-(K), dec/1-(K): key extraction
▸ntuple/n-(M1, ... ,Mn): n-tupling
▸hash/1-(M): hashing

• Destructors:
▸reduc decrypt(encrypt(x,y),y)=x: symmetric key decryption
▸reduc pdecrypt(pencrypt(x,enc(y)),dec(y))=x: asymmetric key decryption
▸reduc ithOfn(ntuple(x1,... ,xn))=xi

Constructors/destructors

let id = 〈process〉

• After this declaration you can refer to the 〈process〉 by id
• ProVerif textually replaces the id by the 〈process〉

Process macros

Pattern matching

• ProVerif supports pattern-matching both at input and in let-expressions
▸To match you need to precede the id with =
▸To bind omit the =

• Example:
▸let (=tag,=B, x) = decrypt(ctext,k) in …

• This pattern is matched by a triple (tag, B, M) binding M to x
• In this case x is used as a variable, but tag and B are not

▸it is syntactic suggar; how would you write it in SPI?

• Events can be inserted into processes
• Used for correspondence assertions
▸We will see more on this when talking about authentication.

• They have no effect at runtime

• Examples:
▸event beginSend(A,B,m)
▸event endSend(A,B,m)

Events

• In the declaration section, you need to query for the
properties that you want ProVerif to analyze:
▸Secrecy: queries if the attacker can obtain M
• query attacker : M

▸Weak Authenticity: Many-one correspondence: queries if event M
is always preceded by event N
• query ev: M ==> ev: N (∀ parameters)

▸Strong Authenticity: One-one correspondence: queries if event M
is always preceded by event N, and every trace contains at least as
many N-events as M-events
• query evinj : M ==> evinj : N

Queries: examples

All you need to know is if the attacker has a
given message.

Thanks

Thanks to Karthikeyan Bhargavan for some slides.

