
Fuzzing: Challenges and
Reflections
Marcel Böhme
Monash University, Australia

Cristian Cadar
Imperial College London, UK

Abhik Roychoudhury
National University of Singapore, Singapore

Abstract—Fuzzing is a method to discover software bugs and vulnerabilities by automatic test
input generation which has found tremendous recent interest in both academia and industry.
Fuzzing comes in the form of several techniques. On one hand, we have symbolic execution,
which enables a particularly effective approach to fuzzing by systematically enumerating the
paths of a program. On the other hand, we have random input generation, which generates large
amounts of inputs per second with none or minimal program analysis overhead. In this article,
we summarize the open challenges and opportunities for fuzzing and symbolic execution as they
emerged in discussions among researchers and practitioners in a Shonan Meeting, and were
validated in a subsequent survey. We take a forward-looking view of the software vulnerability
discovery technologies and provide concrete directions for future research.

Introduction

The Internet and the world’s Digital Economy
runs on a shared, critical open-source software
(OSS) infrastructure. A security flaw in a single
library can have severe consequences. For in-
stance, OpenSSL implements protocols for secure
communication and is widely used by Internet
servers, including the majority of HTTPS web-
sites. The Heartbleed vulnerability in an earlier
version of OpenSSL would leak secret data and
caused huge financial losses. It is important for
us to develop practical and effective techniques
to discover vulnerabilities automatically and at
scale. Today, fuzzing is one of the most promising
techniques in this regard. Fuzzing is an automatic
bug and vulnerability discovery technique which
continuously generates inputs and reports those
that crash the program. There are three main cat-
egories of fuzzing tools and techniques: blackbox,

greybox and whitebox fuzzing.
Blackbox fuzzing generates inputs without any

knowledge of the program. There are two main
variants of blackbox fuzzing: mutational and gen-
erational. In mutational blackbox fuzzing, the
fuzz campaign starts with one or more seed
inputs. These seeds are modified to generate new
inputs. Random mutations are applied to random
locations in the input. For instance, a file fuzzer
may flip random bits in a seed file. The process
continues until a time budget is exhausted. In gen-
erational blackbox fuzzing, inputs are generated
from scratch. If a structural specification of the
input format is provided, new inputs are generated
that meet the grammar. Peach (http://community.
peachfuzzer.com) is one popular blackbox fuzzer.

Greybox fuzzing leverages program instru-
mentation to get lightweight feedback which is
used to steer the fuzzer. Typically, a few con-
trol locations in the program are instrumented

IEEE Software Published by the IEEE Computer Society c© 2020 IEEE 1

http://community.peachfuzzer.com
http://community.peachfuzzer.com


at compile time and an initial seed corpus is
provided. Seed inputs are mutated to generate
new inputs. Generated inputs that cover new con-
trol locations, and thus increase code coverage,
are added to the seed corpus. The coverage-
feedback allows a greybox fuzzer to gradually
reach deeper into the code. In order to identify
bugs and vulnerabilities, sanitizers inject asser-
tions into the program. Existing greybox fuzzing
tools include AFL (https://lcamtuf.coredump.cx/
afl/), LibFuzzer (https://llvm.org/docs/LibFuzzer.
html), and Honggfuzz (https://github.com/google/
honggfuzz).

Whitebox fuzzing is based on a technique
called symbolic execution [6], which uses pro-
gram analysis and constraint solvers to systemat-
ically enumerate interesting program paths. The
constraint solvers used as the back-end in white-
box fuzzing are Satisfiability Modulo Theory
(SMT) solvers, which allow for reasoning about
(quantifier free) first-order logic formulas with
equality and function/predicate symbols drawn
from different background theories. Whitebox
fuzzers calculate the path condition of an input
i—the set of inputs which traverse the same path
as i. The path condition is represented as an SMT
formula, e.g. i[0] = 42 ∧ i[0]− i[1] > 7.

Given a seed input s, the path condition is
calculated and mutated (as opposed to mutating
the program input). The mutated path condition
is then sent to a constraint solver to generate new
inputs. The main benefit of this technique is that
by carefully keeping track of path conditions of
all inputs seen so far, it always generates an input
traversing a new path (new control flow). Existing
whitebox fuzzing tools include KLEE [5] and
SAGE [10].

In this article, we provide reflections on recent
advances in the field as well as concrete directions
for future research. We discuss recent impact
and enumerate open research challenges from the
perspective of both practitioners and researchers.
For a detailed, technical review, we refer the
reader to Godefroid [9].

Recent Impact
Fuzzing for automatic bug and vulnerability

discovery has taken by storm both the software in-
dustry and the research community. The research
problem of finding bugs in a program by auto-

matic input generation has a long-standing history
which began well before Miller’s inception of
the term “fuzzing” in 1990 (http://pages.cs.wisc.
edu/∼bart/fuzz/Foreword1.html). Yet, only now
do we see mainstream deployment of fuzzing
technology in industry.

Using greybox fuzzing, Google has discov-
ered more than 16,000 bugs in the Chrome
browser over the past eight years and more than
11,000 bugs in over 160 open-source software
projects over the past three years (https://google.
github.io/clusterfuzz/#trophies). Microsoft credits
its whitebox fuzzing tool SAGE with saving
millions of dollars during the development of
Windows 7 [10]. Trail of Bits has been developing
various fuzzing tools, including DeepState, a unit
testing framework that allows developers to fuzz
the various units of their system (https://github.
com/trailofbits/deepstate). The 2016 DARPA Cy-
ber Grand Challenge had machines attack and
defend against other machines by exploiting and
hardening against software vulnerabilities. The
Mayhem system [4], which was awarded two
million dollars for winning the competition, made
extensive use of whitebox fuzzing (https://www.
darpa.mil/news-events/2016-08-04).

What has enabled this recent surge of interest
in fuzzing? First, there is a tremendous need.
Life and business are increasingly permeated
by software systems, and a security vulnerabil-
ity in even the smallest system can have dire
consequences. Second, we now have the incen-
tives and the required mindset. Some software
companies have established lucrative bug bounty
programs that pay top dollar for critical bugs.
Anyone, including the reader, can offer vulner-
ability rewards on bug bounty platforms, such as
HackerOne (https://www.hackerone.com/), which
provides ethical coordination and responsible dis-
closure. Independent security researchers can re-
port the discovered vulnerabilities and collect the
bounties. Some stakeholders take matters into
their own hands, with several companies contin-
uously fuzzing their own software.

Third, we now have the tools. Many fuzzers
are open-source, freely available, easy to use, and
very successful in finding bugs. For instance, the
KLEE symbolic execution engine (https://klee.
github.io/) has been freely available, maintained
and widely-used for more than ten years. As

2 IEEE Software

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html
http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html
https://google.github.io/clusterfuzz/#trophies
https://google.github.io/clusterfuzz/#trophies
https://github.com/trailofbits/deepstate
https://github.com/trailofbits/deepstate
https://www.darpa.mil/news-events/2016-08-04
https://www.darpa.mil/news-events/2016-08-04
https://www.hackerone.com/
https://klee.github.io/
https://klee.github.io/


a result, several companies, such as Baidu, Fu-
jitsu and Samsung, have used and extended it to
test their software products. Similarly, the AFL
greybox fuzzer (http://lcamtuf.coredump.cx/afl/)
is highly effective and easy to use. Its trophy case
includes bugs and security vulnerabilities found
in a large number of open-source systems.

Lastly, this open-science approach and
meaningful engagement between industry and
academia has facilitated rapid advances in
fuzzing. For instance, fuzzers are getting faster,
find more types of bugs and work for more
application domains.

Challenges
In September 2019, we organized a Shonan

meeting on Fuzzing and Symbolic Execution
in Shonan Village Center, Japan (https://shonan.
nii.ac.jp/seminars/160/). The meeting brought to-
gether thought leaders, distinguished researchers,
tool builders, founders, and promising young sci-
entists from the greybox and whitebox fuzzing
(symbolic execution) communities. Below, we
discuss the main challenges identified during the
meeting. We phrase the challenges as research
questions and hope that they provide guidance
and direction going forward.

Automation
Automated vulnerability discovery is a game

between adversaries. Given the same resources,
the adversary with the fuzzer that finds more
vulnerabilities has the advantage.

[C.1] More Software. How can we fuzz ef-
ficiently more types of software systems? We
already know how to fuzz command-line tools
(AFL, KLEE) and APIs (LibFuzzer). The fuzzer
generates inputs and observes the program’s out-
put. The community is actively working on how
to fuzz programs that take highly-structured in-
puts, such as file parsers or object-oriented pro-
grams. However, fuzzing cyber-physical systems,
which interact with the environment as part of
their execution, or machine learning systems,
whose behavior is determined by their training
data, is an under-explored area.

How do we fuzz stateful software, such as
protocol implementations, which can produce dif-
ferent outputs for the same input? Most greybox
and whitebox fuzzers are written with a single

programming language in mind. How do we
fuzz polyglot software which is written in several
languages? How do we fuzz GUI-based programs
that take as inputs a sequence of events executed
on a user interface? For whitebox fuzzing, we
already know how symbolic execution can formu-
late constraints on numeric or string-based input
domains. However, given a program whose input
domain is defined by a grammar and/or protocol,
how can a symbolic execution tool effectively
formulate constraints on such ,,structured” input
domains?

[C.2] More Bug Types. How can the fuzzer
identify more types of vulnerabilities? A signifi-
cant portion of current works on fuzzing focus on
simple oracles, such as finding crashes. We need
studies of security-critical classes of bugs that
do not manifest as crashes and develope oracles
that can efficiently detect them. Vulnerabilities
are often encoded as assertions on the program
state. Using such assertions, we already know
how we can discover memory- or concurrency
related errors. The discovery of side-channel vul-
nerabilities, such as information leaks or timing,
cache, or energy-related side-channels is currently
an active research topic [15]. Going forward, we
should invent techniques to automatically detect
and invoke privilege escalation, remote code exe-
cution, and other types of critical security flaws,
not only in C/C++ but also in other programming
languages.

[C.3] More Difficult Bugs. How can we find
“deep bugs” for which efficient oracles exist, but
which nevertheless evade detection? There are
bugs that evade discovery despite long fuzzing
campaigns, e.g. because they are guarded by
complex conditions, or because existing tech-
niques require impractical amounts of resources
to find them. Are there certain kinds of deep
bugs that can be found efficiently with specialized
approaches? Structure-aware and grammar-based
fuzzing as well as the integration of static analysis
and symbolic execution with greybox fuzzing are
promising directions [11], [19]. Second, software
also changes all the time—techniques that can
target software patches will prove essential for
finding bugs as they are introduced [2], [14].
Third, we should investigate strategies to boost
fault finding, such as AFLFast which enables

TBD 2020 3

http://lcamtuf.coredump.cx/afl/
https://shonan.nii.ac.jp/seminars/160/
https://shonan.nii.ac.jp/seminars/160/


faster crash detection in greybox fuzzers [1], and
study the utility of GPUs and other means of
efficient parallelization to maximize the number
of executions per unit time [16]. Finally, rank-
ing bugs in terms of their importance can also
improve the effectiveness of fuzzing in practice.

[C.4] More Empirical Studies. What is the
nature of vulnerabilities that have evaded dis-
covery despite long fuzzing campaigns? Why
have they evaded discovery? We need empirical
studies to understand the nature and distribution
of security vulnerabilities in source code.

The Human Component

[C.5] Human-In-The-Loop. How can fuzzers
leverage the ingenuity of the auditor? Many re-
searchers think of fuzzing as a fully automated
process that involves the human only at the begin-
ning when the software system is prepared for the
fuzzer and at the end when the fuzzer-discovered
vulnerabilities need to be reported. In reality, se-
curity auditors use fuzzers in an iterative manner.
During our meeting, Ned Williamson, a prolific
security researcher at Google, demonstrated his
semi-automated approach to vulnerability discov-
ery. Ned would first audit the code to identify
units that may contain a security flaw. He would
prepare the unit for fuzzing, run the fuzzer for
a while, and identify roadblocks for the fuzzer.
Ned would manually patch out the roadblock to
help the fuzzer make better progress. If the fuzzer
spends more time fuzzing less relevant portions
of the code, Ned would adjust the test driver and
re-focus the fuzzer. Once a potential vulnerability
is found, he would backtrack, add each roadblock
back, and adjust the vulnerability-exposing input
accordingly.

This semi-automated process raises several
research questions. How can we facilitate a more
effective communication between fuzzer and se-
curity auditor? How can the security auditor dy-
namically direct the fuzzer? How can the fuzzer
explain what prevents it from progressing, and
how can the auditor instruct the fuzzer to over-
come the roadblock?

[C.6] Usability. How can we improve the
usability of fuzzing tools? Ethical hacking re-
quires a very special set of skills. Fuzzing already
simplifies the process by automating at least the

test input generation. How can we make fuzzing
more accessible to developers and software engi-
neers? How can we make it easier to develop test
drivers for fuzzers? How can we integrate fuzzing
into the day-to-day development process, e.g., as
component of the CI-pipeline or as a fuzz-driven
unit testing tool in the IDE? Particularly our
industry participants and respondents identified
usability as most important.

How can we prepare the output of a fuzzer for
human consumption? A fuzzer produces an input
that crashes the program and the developer must
find out why it crashes. How can we extend the
fuzzer such that it generates a detailed bug report
or even a bug fix for each identified vulnerability?
Automated repair techniques which have emerged
recently can help in this regard [13]. Recent work
on Linux kernel fuzzing [18] discusses techniques
to address usability challenges while deploying
the kernel fuzzer syzkaller on enterprise Linux
distributions. Generalizing such enhancements to
a fuzzer for general-purpose software remains a
challenge.

Fuzzing Theory
It is important for any discipline to stand on

a firm scientific foundation. We have seen many
technical advances in the engineering of fuzzing
tools. But why do some fuzzers work so much
better than others? What are their limitations? We
want to be able to explain interesting phenomena
that we have observed empirically, make predic-
tions and extrapolate from these observations. To
do this, we need a sound theoretical model of the
fuzzing process.

[C.7] How can we assess residual security
risk if the fuzzing campaign was unsuccessful?
Blackbox and whitebox fuzzing sit on two ends
of a spectrum. A whitebox fuzzer might provide a
formal guarantee about the absence of detectable
vulnerabilities. If we assume that a symbolic exe-
cution engine can enumerate all paths in piece of
code and the oracle is encoded as assertions, then
whitebox fuzzing can formally verify the absence
of bugs. If it can enumerate only some paths
in reasonable time, we can still provide partial
guarantees [8]. To make symbolic execution ap-
plicable in practice, correctness or completeness
are traded for scalability. How does this trade-off
affect the guarantees?

4 IEEE Software



In contrast, a blackbox fuzzer can never guar-
antee the absence of vulnerabilities for all inputs.
What is the residual risk that at the end of a
fuzzing campaign a bug still exists in the program
that has not been found? If we model blackbox
fuzzing as a random sampling from the program’s
input space, we can leverage methods from ap-
plied statistics to estimate the residual risk.

A greybox fuzzer uses program feedback to
boost the efficiency of finding errors. However,
this program feedback introduces an adaptive
bias. How do we account for this adaptive
bias when assessing residual risk? To answer
such questions, we should develop statistical and
probabilistic frameworks, and methodologies for
sound estimation with quantifiable accuracy.

[C.8] What are the theoretical limitations of
blackbox, greybox, and whitebox fuzzing? Black-
and greybox fuzzers are highly efficient—but
at the cost of effectiveness. Unlike whitebox
fuzzers, they struggle to generate inputs that
exercise paths frequented by few inputs. This
tension raises several research questions. Given
a program and a time budget, how can we se-
lect that fuzzing technique, or combination of
techniques, which finds the most vulnerabilities
within the time budget? How do program size and
complexity affect the scalability and performance
of each technique? How much more efficient is
an attacker that has an order of magnitude more
computational resources? With an understanding
of the limitations of existing approaches, we can
develop more advanced techniques.

Evaluation and Benchmarks
In order to validate a claim of superiority

for novel fuzzing tools and techniques, we need
sound methods for evaluation. Generally speak-
ing, the better fuzzer finds a larger number of
important bugs in software that we care about
within a reasonable time. But what is a “rea-
sonable time”, “software that we care about”, or
“important bugs”? If no important bugs are found,
how do we measure effectiveness? How do we
prevent over-fitting? What is a fair baseline for
comparison?

To measure progress, we need to develop
reasonable standards for comparison against pre-
vious work. We encourage the community to be
open about releasing tools, benchmarks, and ex-

perimental setup publicly for anyone to reproduce
the results and to build upon.

Benchmarks

[C.9] How can we evaluate specialized
fuzzers? There are programs that take structured
and those that take unstructured inputs. There
are stateful and stateless programs. There are
programs where the source code is available
and programs where only the compiled binary
is available. There are programs that take inputs
via a file, a GUI, or an API. Extending fuzzing
to different types of software systems is a key
technical challenge (C.1).

Similarly, some fuzzers are specialized for a
specific purpose. For instance, there are fuzzers
that seek to reach a program location [2], [14]
or that focus on exposing specific types of bugs,
such as performance bugs [3].

However, existing benchmarks are often not
designed for these specialized tasks. If there is no
previous work, we need standards for researchers
to choose suitable subject programs and baselines
for comparison.

[C.10] How can we prevent overfitting to a
specific benchmark? For any benchmark suite,
there is always the danger of overfitting. Despite
a demonstration of superiority on the benchmark
subjects, a fuzzer might still be inferior in general.
What are reasonable strategies to mitigate overfit-
ting? Can we propose a fair and sound policy to
collect benchmarks? How can we avoid “single-
source” types of benchmarks that are contributed
by just one group and might give undue control
to a single set of people?

Fuzzing tool competitions could be part of
the solution for challenges C9 and C10. One
model, inspired by constraint solving and veri-
fication competitions, is to have different compe-
tition categories, such as coverage-based fuzzing,
directed fuzzing and so on. Within each cate-
gory, there can be a further division based on
the type of bugs and applications the fuzzer is
suited for. Tool builders can submit their own
benchmarks and fuzzers, which would allow in-
dependent scrutiny of the entire process. TEST-
COMP (https://test-comp.sosy-lab.org/) is an ex-
isting competition that illustrates this model.

A second model is to come up with challenge

TBD 2020 5

https://test-comp.sosy-lab.org/


problems in the form of buggy programs, and
have tool developers directly apply the fuzzers to
find the hidden bugs. This has the advantage of
tool developers configuring their tools in the best
possible way for each task, but makes indepen-
dent reproduction of the results more challenging.
RODE0DAY (https://rode0day.mit.edu/) is an ex-
isting competition that illustrates this model.

Another approach is a continuous evalua-
tion, where fuzzers are repeatedly used to fuzz
real programs. For instance, as a concrete out-
come of our Shonan meeting, Google has de-
veloped FUZZBENCH (https://github.com/google/
fuzzbench) and committed computational re-
sources to evaluate submitted fuzzers on submit-
ted benchmarks. In addition to scientific evalua-
tion of technical advances, this approach allows
direct application of these technical advances to a
large set of actual open-source software, to make
critical software systems safer and more secure.

Measures of Fuzzer Performance
During the evaluation of two fuzzing tech-

niques, which quantities should we compare?
What do we measure? Today, fuzzers are typ-
ically evaluated in terms of their effectiveness
and efficiency. When we are interested in security
vulnerabilities, a fuzzer’s effectiveness for a soft-
ware system is determined by the total number
of vulnerabilities a fuzzer has the capability of
finding. In contrast, a fuzzer’s efficiency for a
software system is determined by the rate at
which vulnerabilities are discovered.

[C.11] Are synthetic bugs representative? For
evaluation, buggy software systems can be gen-
erated efficiently simply by injecting artificial
faults into an existing system [7]. We need to
study empirically whether such synthetic bugs are
indeed representative of real and important secu-
rity vulnerabilities. If they are not representative,
how are they different from actual vulnerabilities?
What can we do to make synthetic bugs more like
real bugs? Which types of vulnerabilities are not
represented in synthetic bug benchmarks?

[C.12] Are real bugs, which have previously
been discovered with other fuzzers, representa-
tive? Another approach is to collect actual vul-
nerabilities that have been found through other
means into a benchmark. However, this process

is tedious, such that the sample size may be
relatively low which would affect the generality
of the results. Secondly, the evaluation only es-
tablishes that the newly proposed fuzzer finds at
least the same vulnerabilities that have been found
before. It does not evaluate how well the newly
proposed fuzzer finds new vulnerabilities. How
representative are the discovered vulnerabilities of
all (undiscovered) vulnerabilities? We could build
a large, shared database of vulnerabilities in many
software systems that have been found by several
fuzzers or auditors over a period of time.

[C.13] Is coverage a good measure of fuzzer
effectiveness? When no suitable bug benchmark
is available, we need other means of evaluating
the effectiveness of a fuzzer. Code coverage is
the classic substitute measure. The intuition is
that vulnerabilities cannot be exposed if the code
containing the vulnerability is never executed.
How effective is coverage really at measuring
the capability of a fuzzer to expose vulnerabil-
ities? We need empirical studies that assess how
strongly the increase in different coverage metrics
correlates with an increase in the probability to
find a vulnerability. In addition to code coverage,
there are many other measures of coverage such
as GUI, constraint, model, grammar, or state
coverage. We should conduct empirical studies to
determine correlation and agreement of various
proxy measures of effectiveness.

[C.14] What is a fair choice of time budget?
It is not possible to measure fuzzer effectiveness
directly. If our measure is the number of bugs
found, then effectiveness is the total number of
bugs the fuzzer finds in the limit, i.e., when given
infinite time. Instead, researchers can derive a
trivial lower bound on the effectiveness, i.e., the
total number of bugs a fuzzer finds, by fixing
a time budget. Currently, this time budget is
typically anywhere between one hour and one
day. However, an extremely effective fuzzer may
take some time to generate test cases during
which time another fuzzer can generate several
orders of magnitudes more test cases [12]. If the
chosen time budget is too small, the faster, yet
less effective fuzzer might appear more effective.
Thus, we should develop standards that facilitate
a fair choice of time budget when evaluating the
effectiveness of a fuzzer.

6 IEEE Software

https://rode0day.mit.edu/
https://github.com/google/fuzzbench
https://github.com/google/fuzzbench


Techniques versus Implementations

[C.15] How do we evaluate techniques in-
stead of implementations? In order to demonstrate
claims of superiority of a proposed technique,
researchers compare an implementation of the
proposed technique to that of an existing tech-
nique. In the implementation, the researcher can
make engineering decisions that can substantially
affect the effectiveness of the fuzzer [17]. For
instance, a comparison between the AFL grey-
box fuzzer against the KLEE whitebox fuzzer to
determine whether a whitebox fuzzing technique
outperforms a greybox fuzzing technique should
always be taken with a grain of salt. If possible,
the proposed technique (e.g., an improvement to
greybox fuzzing) is implemented directly into the
baseline (e.g., AFL).

Survey
To request feedback from the larger commu-

nity on the identified challenges, we surveyed
further experts from industry and academia. Our
objective was to identify points of contention, to
add challenges or reflections that we might have
overlooked, and to solicit concrete pathways or
initiatives for some of the identified challenges.
We sent an email invitation to software security
experts who have previously published in fuzzing
or have professional work on automatic vulnera-
bility discovery. Out of 24 respondents, 14 work
in academia and 10 work in industry; 3 attended
the Shonan meeting.

The survey participants marked improving
automation (71%), building a theory of fuzzing
(63%), and finding valid measures of fuzzer per-
formance (63%) as their Top-3 most important
challenges. While practitioners and researchers
were mostly in agreement, practitioners demon-
strated a particularly greater interest in the devel-
opment of human-in-the-loop approaches (+0.8
Likert points). On average, a respondent marked
all identified challenges as important or very
important on a 5-point Likert-scale. No major ad-
ditional challenges were identified. Other survey
results were directly added to the corresponding
sections.

Awareness and Education
Fuzzing is used today in corporations in a

significant manner, often on a daily basis, for de-

tecting bugs and security flaws. Despite advances
in static analysis and formal verification, fuzzing
remains the primary automatic mechanism for
vulnerability discovery in most software products.
However, the security of our software systems is
in the hands of each and every software engineer,
including future volunteers that contribute to crit-
ical open-source software. We believe awareness
and education, in the small and in the large, are
of paramount importance.

One mechanism is the organization of
security-oriented hackathons and Capture-the-
Flag (CTF) competitions. For instance, the Build
it Break it Fix it contest from Maryland (https:
//builditbreakit.org/) represents an early success-
ful attempt in this direction. The community
could also move towards competitions between
fuzzing tools (such as FuzzBench, Test-Comp,
and Rode0Day) or organize regular fuzzing
camps.

Another mechanism is to teach about fuzzing
in software engineering and cyber-security
courses. The second and third authors were ac-
tively involved in designing and delivering such
courses at the university level. A key challenge
in developing such educational content is that
the students need to be exposed to several tools,
which takes a significant amount of the stu-
dents’ time. The recent development of online
books [20] can alleviate some of these issues by
presenting an integrated resource and repository
for getting familiarised with various variants of
fuzzing.

Acknowledgments
We thank the participants at the Shonan Meet-

ing on Fuzzing and Symbolic Execution, and
the survey respondents. This project has received
funding from European Research Council (ERC)
under the European Union’s Horizon 2020 re-
search and innovation programme (grant agree-
ment No. 819141). This work was partially sup-
ported by the National Satellite of Excellence
in Trustworthy Software Systems and funded
by National Research Foundation (NRF) Singa-
pore under National Cybersecurity R&D (NCR)
programme. This work was partially funded by
the Australian Research Council (ARC) through
a Discovery Early Career Researcher Award
(DE190100046).

TBD 2020 7

https://builditbreakit.org/
https://builditbreakit.org/


About the Authors
Marcel Böhme is an ARC DECRA Fellow

and a Senior Lecturer at Monash University in
Australia. Marcel leads his research group with
a reproducibility policy (https://mboehme.github.
io/manifesto), which means that experiment data
and tools are usually published with the peer-
reviewed article to facilitate open science. For
instance, his most recent fuzzer, Entropic, was
integrated into Google’s LibFuzzer and now runs
on more than 25,000 machines every day to
discover security vulnerabilities in more than
300 open source projects. He received his PhD
from the National University of Singapore, is
a member of the ACM, and can be reached at
marcel.boehme@acm.org.

Cristian Cadar is a Professor in the Depart-
ment of Computing at Imperial College London,
where he leads the Software Reliability Group.
His research interests span the areas of soft-
ware engineering, computer systems and soft-
ware security, with a focus on building practi-
cal techniques for improving the reliability and
security of software systems. Cadar has a PhD
in Computer Science from Stanford University,
and undergraduate and Master’s degrees from
the Massachusetts Institute of Technology. He is
a Member of the ACM and IEEE and can be
reached at c.cadar@imperial.ac.uk.

Abhik Roychoudhury is Provost’s Chair Pro-
fessor of Computer Science at the National Uni-
versity of Singapore. His research interests are in
program analysis, software security and trustwor-
thy systems. He is the Director of the National
Satellite of Excellence in Trustworthy Software
Systems at Singapore. He helped set up the Singa-
pore Cybersecurity Consortium, a grouping of 30
Singapore-based companies engaging in research
and translation in cybersecurity. He received his
PhD in Computer Science from Stony Brook
University. He is a senior member of IEEE, and
can be reached at abhik@comp.nus.edu.sg.

REFERENCES
1. Marcel Böhme, Van-Thuan Pham, Abhik Roychoud-

hury. 2016. Coverage-based Greybox Fuzzing as Markov

Chain. ACM Conference on Computer and Communica-

tions Security (CCS’16).

2. Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,

Abhik Roychoudhury. 2016. Directed Greybox Fuzzing.

ACM Conference on Computer and Communications

Security (CCS’17).

3. Jacob Burnim, Sudeep Juvekar, Koushik Sen. WISE:

Automated test generation for worst-case complexity.

International Conference of Software Engineering (ICSE

2009).

4. Sang Kil Cha, Thanassis Avgerinos, Alexandre Re-

bert, David Brumley. 2012. Unleashing Mayhem on Bi-

nary Code. IEEE Symposium on Security and Privacy

(S&P’12).

5. Cristian Cadar, Daniel Dunbar, Dawson Engler. 2008.

KLEE: Unassisted and Automatic Generation of High-

Coverage Tests for Complex Systems Programs.

USENIX Conference on Operating Systems Design and

Implementation (OSDI’08).

6. Cristian Cadar, Koushik Sen. 2013. Symbolic Execution

for Software Testing:Three Decades Later. Communica-

tions of the ACM vol. 56, no. 2 (Feb. 2013).

7. Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim

Leek, Andrea Mambretti,William K. Robertson, Freder-

ick Ulrich, Ryan Whelan. LAVA: Large-Scale Automated

Vulnerability Addition. IEEE Symposium on Security and

Privacy (IEEE S&P 2016).

8. Antonio Filieri, Corina S. Pasareanu, Willem Visser. Reli-

ability Analysis in Symbolic Pathfinder. International Con-

ference of Software Engineering (ICSE 2013).

9. Patrice Godefroid. Fuzzing: Hack, Art and Science. Com-

munications of the ACM, vol. 63, no. 2 (Jan. 2020).

10. Patrice Godefroid, Michael Y. Levin, David Molnar. Auto-

mated White-box Fuzz Testing. Network and Distributed

System Security Symposium (NDSS 2008).

11. Christian Holler, Kim Herzig, Andreas Zeller. Fuzzing

with Code Fragments. USENIX Security Symposium

(USENIX Security 2012).

12. George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,

Michael Hicks. Evaluating Fuzz Testing. ACM Confer-

ence on Computer and Communications Security (CCS

2018).

13. Claire Le Goues, Michael Pradel, Abhik Roychoud-

hury. Automated Program Repair. Communications of the

ACM vol. 62, no. 12 (Dec. 2019).

14. Paul Dan Marinescu, Cristian Cadar. KATCH: High-

Coverage Testing of Software Patches. ACM Symposium

on the Foundations of Software Engineering (ESEC-FSE

2013).

15. Shirin Nilizadeh, Yannic Noller, Corina S. Pasareanu.

DifFuzz: differential fuzzing for side-channel analysis.

International Conference of Software Engineering (ICSE

2019).

8 IEEE Software

https://mboehme.github.io/manifesto
https://mboehme.github.io/manifesto


16. Ajitha Rajan, Subodh Sharma, Peter Schrammel,

Daniel Kroening. Accelerated test execution using GPUs.

Automated Software Engineering Conference (ASE

2014).

17. Eric F. Rizzi, Sebastian Elbaum, Matthew B. Dwyer.

On the Techniques We Create, the Tools We Build,

and Their Misalignments: A Study of KLEE. International

Conference on Software Engineering (ICSE 2016).

18. Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang,

Xiaohai Shi, Xun Jiao, Houbing Song, Yu Jiang, Jia-

Guang Sun. Industry practice of coverage-guided en-

terprise Linux kernel fuzzing. ACM Symposium on the

Foundations of Software Engineering (ESEC-FSE 2019).

19. Nick Stephens, John Grosen, Christopher Salls, Audrey

Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-

taishvili, Christopher Kruegel, Giovanni Vigna. Driller:

Augmenting Fuzzing Through Selective Symbolic Exe-

cution. Network and Distributed System Security Sym-

posium (NDSS 2016).

20. Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gor-

don Fraser, Christian Holler. 2019. The Fuzzing Book.

https://www.fuzzingbook.org/

TBD 2020 9


	Introduction
	Recent Impact

	Challenges
	Automation
	The Human Component
	Fuzzing Theory

	Evaluation and Benchmarks
	Benchmarks
	Measures of Fuzzer Performance
	 Techniques versus Implementations

	Survey
	Awareness and Education
	REFERENCES

