
CSE 543: Computer Security

Fall 2024
Project 3: Implementing Integrity Access Control Monitor

Due: 11:59 pm (eastern time), November 10, 2024

October 28, 2024

1 Introduction

In this project, you will implement a reference monitor that enforces various methods for protecting
integrity of data and process using Mandatory Integrity protection systems. More specifically your
implementation should accommodate the Biba Integrity policy, Windows Mandatory Integrity
Control (MIC) policy and the Low Water-Mark Mandatory Access Control (LOMAC)
policy.

You are already given the project repository with few important missing pieces. First, you will under-
stand the code structure and implementation of the reference monitor. Finally, with your understand-
ing of the integrity access control policies, you will complete the missing pieces in the project with
your own code. How to run and test your code will be explained in the later sections of this handout.

NOTE: Please read the entire report in its entirety before starting any part of the project!

2 Prerequisites

It is necessary to know the three access control policies in detail. Knowledge about how users,
processes and files with different integrity levels interact with and affect each other is required to
successfully complete this project. We have summarized it in the Background section, however, it is
advisable to refer to course slides and other online resources to get a better understanding. If you
have any doubts related to the rules in each policy, you may reach out to the course staff during office
hours or through Canvas/Piazza.

It is advisable to brush up some concepts in C including struct, pointers, malloc/free, typedef and
type casting. The code heavily uses these concepts to set up the platform to handle multiple different
access control policies.

The code heavily uses linked lists. It is highly recommended (if you’re not already comfortable with)
to understand the data structure and its implementations in C before proceeding to understand the
code.

3 Background

The goal of integrity protection is to prevent a system’s processes from receiving untrusted inputs and
files from being updated or read by untrusted processes. However, allowing no interactions between
trusted and untrusted processes at all might prevent many useful interactions from occurring in a

1



system. Therefore, many researchers have in the past come up with different approaches to this
problem by proposing various mandatory access control policies. In this project, we will only focus on
three of them:

Biba Integrity Policy:

• Every Process is assigned an integrity level.

• Every File is assigned an integrity level.

• All the levels in a system form a Lattice structure. In this project, for Biba policy we have a
2-level lattice – Low and High.

• Read Policy: A process/user is allowed to read from a file of the same integrity level or above.
“Read Up”

• Write Policy: A process/user is allowed to write to a file of the same integrity level or below.
“Write Down”

• Exec Policy: Same as Read Policy.

Windows Mandatory Integrity Control (MIC) Policy:

• Every Process is assigned an integrity level.

• Every File is assigned an integrity level.

• All the levels in a system form a Lattice structure. In this project, for MIC policy we have a
3-level lattice - Internet(low), User(high) and System(highest).

• Read Policy: All reads are allowed.

• Write Policy: A process/user is allowed to write to a file of the same integrity level or below.
“Write Down”

• Exec Policy: A process/user is allowed to execute a file of the same integrity level or above.
“Exec Up”

Low Water-Mark Mandatory Access Control (LOMAC) Policy

• Every Process is assigned an integrity Level.

• Every File is assigned an integrity level.

• All the levels in a system form a Lattice structure. In this project, for LOMAC policy we have
a 2-level lattice - Low and High.

• Read Policy: A process’s integrity level is changed to the read file’s level that has the lowest
integrity level.

• Exec Policy: A process’s integrity level is changed to the executed file’s level that has the lowest
integrity level.

• Write Policy: A file’s integrity level is changed to the writing process’s level that has the lowest
integrity level.

4 Code and Compiling

The initial code for the project is provided here: https://classroom.github.com/a/DrCHL8S4. You
are only allowed to edit monitor.c and lattice.c. Editing any other file for the sake of finishing

2

https://classroom.github.com/a/DrCHL8S4


the project might work locally, but for grading your code files will be run in a different environment.
Please refrain from changing any other file apart from these two.

Once you have some changes done in your files, to compile the code run this command:

1 make

The Makefile provided in the project directory will handle all the necessary compiling for your code.
Once compiled, an updated binary is created with the name cse543-p3.

The reference monitor takes in Policy files and Test instruction files as input. As an output, the
reference monitor creates a results file. For example:

1 Input Policy file - ./ policies/biba.policy

2 Input Test file - ./ test_cases/test

3 Output file path - ./ results/biba.results

4

5 Commands to execute the test:

6 ./cse543 -p3 ./ policies/biba.policy ./ test_cases/test ./ results/biba.results

7 ./cse543 -p3 ./ policies/mic.policy ./ test_cases/test ./ results/mic.results

8 ./cse543 -p3 ./ policies/lomac.policy ./ test_cases/test ./ results/lomac.results

We have provided results in the sample results directory. The files provided are:

1 sample_results/biba.sample.results

2 sample_results/mic.sample.results

3 sample_results/lomac.sample.results

Your code works exactly as expected if your output files EXACTLY match the results we have
provided. E.g., your biba.results should match our biba.sample.results exactly. You can use
diff or any other tool to compare your results with the provided sample results.

NOTE: Do not edit any fprintf statements provided in multiple files within the code repository as
it may affect your grade. The test results are directly related to these fprintf statements.

5 Tasks

Most of your efforts would be spent in understanding the way the reference monitor is already imple-
mented in the repository. Then, you need to finish five functions that have missing pieces of code to
complete this assignment successfully. Particularly, the missing pieces of code are marked by:

1 /* YOUR CODE GOES HERE */

There are code comments in most places to help you understand the flow of the program. However,
these are some points to remember:

1. The file lattice.c defines three global lists (doubly linked lists) namely lattice, label mapping

and trans mapping.

2. The file monitor.c defines one global list (doubly linked list) namely system mapping.

3. Every list is made up of elements and each element is of the type element. Definitions and other
utility functions for lists are provided in linked list.c and linked list.h files.

4. The reference monitor accepts policy files that express the protection state (pstates), labeling
state (lstates), and transition state (tstates).

3



5. Adding protection states into the system is handled by the function addLattice and this has
already been implemented for you.

6. Adding labeling and transition states into the system are handled by the functions addLabelPolicy
and addTransPolicy respectively, and you have to implement this function.

You are asked to implement the following functions:

1. addLabelPolicy function in lattice.c

• Assigns a mapping from name to level char based on the policy file’s lstate statements.
This is the labeling state of the reference monitor’s mandatory protection system.

• It is assigned to the global variable label mapping, which is a list of name-level mappings.

• In this function, you just need to find the lattice level object for the level provided from
lattice, create a map object (defined in lattice.h) that assigns the level to the name, and
add a new element (element defined in linked list.h).

2. addTransPolicy function in lattice.c

• Assigns a mapping in a global variable trans mapping, which defines a transform rule for
the reference monitor’s mandatory protection system. It is based on the policy file’s tstate
statements.

• In this function, you need to create a trans object that describes the rule – if a subject level
performs operation op on an object level, then what is the new level of the subject/object.

3. labelProcess function in monitor.c

• Assigns a level to a process named proc using name from mapping.

• At runtime, every new process must be labeled when it starts. This function applies the
labeling state to produce such a label.

• Processes are created in two ways: During login based on authenticated user name and
during process create (fork) based on the parent process name.

• The difference is determined by the mapping passed into this function. You simply have to
retrieve the level associated with that mapping name and create a new level assignment
for this process name proc.

• Runtime level assignments are stored in the global variable system mapping.

4. checkAccess function in monitor.c

• Authorizes operations requested by processes.

• Operations include open, exec, read, and write. All operations are on file names, including
read and write.

• The permissions required for the various operations are specified in execCmds in monitor.c

• From the system mapping list, retrieve the element corresponding to the given process
name.

• From the system mapping list, retrieve the element corresponding to the given file name.

• Extract the level elements from the process element and the file element.

• Write code to check if the given operation on the file by the process is allowed or not based
on the retrieved levels information.

4



• Note that all reads are allowed in MIC policy

5. checkTrans function in monitor.c

• Determines if the level of a particular process or file should be changed based on the tran-
sition state (tstate specifications in the policy).

• From the system mapping list, retrieve the element corresponding to the given process
name.

• From the system mapping list, retrieve the element corresponding to the given file name.

• Retrieve a transition state entry for the combination of subject level, object level, and
operation.

• If found, apply the transition.

6 Questions

1. In Biba policy testing, why do not we let process p2 read the file f1?

2. In MIC policy testing, why do we let process p2 read the file f1?

3. In MIC policy testing, why do not we let process p11 execute the file f1?

4. In LOMAC policy testing, why do we let process p11 execute the file f1?

5. In LOMAC policy, process p2 is able to write to file f3 sometimes. But other times it is denied
to write. Explain all such occurrences and reason out.

7 Deliverables

All tasks in this project need to be completed individually without any help. Please commit your
changes relatively frequently so that we can see your work clearly. Do not forget to push changes to the
remote repository in Github! You can get as low as zero points if we do not see any confirmation of your
work. Do not attempt to falsify time stamps, this may be viewed as an academic integrity violation!
Finally, include “report.pdf” in your Github repository containing answers to project questions in
Section 6.

In your Canvas submission, please indicate the GIT commit number corresponding to the final sub-
mission. You should also specify your github username. The submission format in plain text

<your github username>:GIT commit

For example, mustbastani:936c332e7eb7feb5cc751d5966a1f67e8089d331

8 Grading

The assignment is worth 100 points total broken down as follows.

1. Biba Policy: 10 points for Policy setup. 15 points for Test case traces.

2. MIC Policy: 10 points for Policy setup. 15 points for Test case traces.

3. LOMAC Policy: 10 points for Policy setup. 15 points for Test case traces.

4. Questions 1–5: 5 points each.

5


	Introduction
	Prerequisites
	Background
	Code and Compiling
	Tasks
	Questions
	Deliverables
	Grading

