

Prof. Syed Rafiul Hussain Department of Computer Science and Engineering The Pennsylvania State University

CSE 543: Computer Security Module: Network Security

Networking...

- Fundamentally about transmitting information between two devices
- Direct communication is now possible between any two devices anywhere (just about)
 - Lots of abstraction involved
 - Lots of network components
 - Standard protocols
 - Wired and wireless
 - Works in protection environment
- What about ensuring security?

Network

TCP/IP Protocol Stack

- Internet Protocol (IP)
 - Internet
- Routing How these packets move from place to place
- Network management
 - everyone's daily activities

Really refers to a whole collection of protocols making up the vast majority of the

Administrators have to maintain the services and infrastructure supporting

Network security: the high bits

- The network is ...
 - ... a collection of interconnected computers
 - ... with resources that must be protected
 - ... from unwanted inspection or modification
 - ... while maintaining adequate quality of service.
- Another way of seeing network security is ...
 - ... securing the networked computers such that the integrity, confidentiality, and availability of the resources is maintained.

Exploiting the network ...

- The Internet is extremely vulnerable to attack
 - it is a huge open system ...
 - which adheres to the end-to-end principle
 - smart end-points, dumb network

• Can you think of any large-scale attacks that would be enabled by this setup?

Types of Addresses in Internet

- layer
 - Associated w/ network interface card (NIC)
 - 48 bits or 64 bits
- IP addresses for the network layer
 - ► 32 bits for IPv4, and I28 bits for IPv6
 - E.g., 128.3.23.3
- IP addresses + ports for the transport layer
 - ► E.g., 128.3.23.3:80

 Domain names for the application/human layer • E.g., www.psu.edu

Page

Media Access Control (MAC) addresses in the network access

Routing and Translation of Addresses

- Translation between IP addresses and MAC addresses
 - Address Resolution Protocol (ARP) for IPv4
 - Neighbor Discovery Protocol (NDP) for IPv6
- Routing with IP addresses
 - TCP, UDP, IP for routing packets, connections
 - Border Gateway Protocol for routing table updates
- Translation between IP addresses and domain names
 - Domain Name System (DNS)

Transmission Control Protocol

- Connection-oriented, preserves order
 - Sender
 - Break data into packets
 - Attach sequence numbers
- Receiver
 - Acknowledge receipt; lost packets are resent
 - Reassemble packets in correct order

TCP Handshake

Page 10

Listening

Store data

Connected

Sequence number prediction

- TCP/IP uses a three-way handshake to establish a connection
 - 1. Client -> Server: Q_C
 - 2.Server -> Client: Q_{S_i} ack(Q_C) where sequence number Q_S is nonce
 - $3.C \rightarrow S: ack(Q_S) \dots$ then send data
- 2. However assume the bad guy does not hear msg 2, if he can guess Q_S , then he can get S to accept whatever data it wants (useful if doing IP authentication, e.g., "rsh")

DoS Vulnerability Caused by Session Hijacking

- Suppose attacker can guess seq. number for an existing connection:
- Attacker can send Reset packet to close connection.
 - Results in DoS.
 - ► Naively, success prob. is 1/2^32 (32-bit seq. #'s).
 - Most systems allow for a large window of acceptable seq. #'s
 - Much higher success probability.
- Attack is most effective against long lived connections, e.g. BGP.

TCP Seq Prediction Attack

- Predict the sequence number used to identify the packets in a TCP connection, and then counterfeit packets.
- Adversary: do not have full control over the network, but can inject packets with fake source IP addresses
 - E.g., control a computer on the local network
- TCP sequence numbers are used for authenticating packets
- Initial seq# needs high degree of unpredictability
 - If attacker knows initial seq # and amount of traffic sent, can estimate likely current values
 - Some implementations are vulnerable

Blind TCP Session Hijacking

- A, B trusted connection
 - Send packets with predictable seq numbers
- E impersonates B to A
 - Opens connection to A to get initial seq number
 - DoS B's queue
 - Sends packets to A that resemble B's transmission
 - E cannot receive, but may execute commands on A

Attack can be blocked if E is outside firewall.

Risks from Session Hijacking

- exchange, DNS zone transfers, etc.
- Inject data into an unencrypted client-to-server traffic, such as ftp file downloads, http responses.
- Spoof IP addresses, which are often used for preliminary checks on firewalls or at the service level.
- Carry out MITM attacks on weak cryptographic protocols.
 - often result in warnings to users that get ignored
- Denial of service attacks, such as resetting the connection.

• Inject data into an unencrypted server-to-server traffic, such as an e-mail

SYN Flooding

SYN Flooding

- Attacker sends many connection requests
 - Spoofed source addresses
- Victim allocates resources for each request
 - Connection requests exist until timeout
- Old implementations have a small and fixed bound on half-open connections • Resources exhausted => requests rejected
- No more effective than other channel capacity-based attack today

Sequence Number Prediction (fixes)

- The only way you really fix this problem to stop making the sequence numbers predictable:
 - Randomize them -- you can use DES or some other mechanism to generate them randomly
 - There is an entire sub-field devoted to the creation and management of randomness in OSes
- Also, you could look for inconsistencies in timing information Assumption: the adversary has different timing
- - OK, may be helpful, but far from definitive

What's Changed?

Sequence Number Under A Second Zhiyun Qian, Z. Morley Mao, Yinglian Xie In Proceedings of ACM Conference on Computer and Communications Security (CCS) 2012, Raleigh, NC.

- Off-Path TCP Sequence Number Inference Attack -- How Firewall Middleboxes Reduce Security In Proceedings of IEEE Security and Privacy (Oakland) 2012, San Francisco, CA.
- Still have TCP sequence number attacks

Collaborative TCP Sequence Number Inference Attack -- How to Crack

Zhiyun Qian, Z. Morley Mao

Internet Control Message Protocol (ICMP)

- ICMP is used as a control plane for IP messages
 - Ping (connectivity probe)
 - Destination Unreachable (error notification)
 - Time-to-live exceeded (error notification)
- These are largely indispensable tools for network management and control
 - Error notification codes can be used to reset connections without any authentication
- Solution: verify/sanity check sources and content
 - ICMP "returned packets"
- Real solution: filter most of ICMP, ignore it

The "ping of death" ...

- In 1996, someone discovered that many operating systems, routers, etc. could be crashed/rebooted by sending a single malformed packet
 - ▶ It turns out that you can send a IP packet larger than 65,535 (2¹⁶), it would crash the system
 - The real reason lies in the way fragmentation works
 - It allows somebody to send a packet bigger than IP allows which blows up most fixed buffer size implementations
 - ... and dumps core, blue screen of death, etc.
 - Note: this is not really ICMP specific, but easy (try it)
 - % ping -1 65555 your.host.ip.address
- This was a popular pastime of early hackers

Smurf DoS Attack

- Send ping request to broadcast addr (ICMP Echo Req)
- Lots of responses:
- victim
- Ping reply stream can overload victim

Prevention: reject external packets to broadcast address

• Every host on target network generates a ping reply (ICMP Echo Reply) to

Address Resolution Protocol (ARP)

- Protocol used to map IP address onto the physical layer addresses (MAC)
 - I) ARP request: who has x.x.x.x?

2) ARP response: me!

- Policy: last response in wins
- Used to forward packets on the appropriate interfaces by network devices
 - Also used for IP over other LAN technologies, e.g. IEEE 802.11
 - Each host maintains a table of IP to MAC addresses Q:Why would you want to spoof an IP address?

ARP Spoofing (Poisoning)

- Send fake or 'spoofed' ARP messages to an Ethernet LAN.
- To have other machines associate IP addresses with the attacker's MAC

Defenses

- static ARP table
- DHCP Certification (use access control to ensure that hosts only use the IP addresses assigned to them, and that only authorized DHCP servers are accessible).
- Detection: Arpwatch (sending email when updates occur),

ARP poisoning

- Attack: replace good entries with your own
- Leads to
 - Session hijacking
 - Man-in-the-middle attacks
 - Denial of service, etc.
- Lots of other ways to abuse ARP.
- Nobody has really come up with a good solution
 - Except smart switches, routers that keep track of MACs
- However, some not worried

 - If adversary is in your perimeter, you are in big trouble You should validate the source of each packet independently (e.g., via IPsec)

POP/SMTP/FTP

- Post office protocol mail retrieval
 - Passwords passed in the clear (duh)
 - Solution: SSL, SSH, Kerberos
- Simple mail transport protocol (SMTP) email
 - Nothing authenticated: SPAM
 - Nothing hidden: eavesdropping
 - Solution: SMTP AUTH
- File Transfer protocol file retrieval
 - Passwords passed in the clear (duh)
 - Solution: SSL, SSH, Kerberos

DNS - The domain name system

- DNS maps between IP address (12.1.1.3) and domain and host names (ada.cse.psu.edu)
 - How it works: the "root" servers redirect you to the top level domains (TLD) DNS servers, which redirect you to the appropriate sub-domain, and recursively
 - Note: there are 13 "root" servers that contain the TLDs for .org, .edu, and country specific registries (.fr, .ch)

Domain Name System

Hierarchical Name Space

- Each host stores mapping between hostnames and IP addresses
- Local hosts file (e.g. /etc/hosts):
- 127.0.0.1 localhost
- 152.14.93.88 cse.psu.edu
- 158.130.69.163 www.cis.upenn.edu
- 18.9.22.169 www.mit.edu
- Q: Does this scale?

Domain Name System (DNS)

- Created in 1983
- Distributed translation service between hostnames and IP addresses
- http://cse.psu.edu →

http://152.14.93.88

Domain Name System

Domain Name Servers

- Top-level domain (TLD) servers:
 - responsible for com, org, net, edu, etc, and all top-level country domains, e.g. uk, fr, ca, JP.
 - Network Solutions maintains servers for ".com"
- Authoritative DNS servers:
 - organization's DNS servers, providing authoritative hostname to IP mappings for organization's servers.
 - gives authoritative results for hostnames that have been configured via zone records can be maintained by organization or service provider
- Local Name Server
 - does not strictly belong to hierarchy
 - each ISP (residential ISP, company, university) has one.

DNS Resolving

- When host makes DNS query, query is sent to its local DNS server.
 - acts as proxy, forwards query into hierarchy.
- Two resolving schemes:
 - Iterative, and
 - Recursive.

Everything Inside a DNS Packet

"Glue" information

- name server (NS record)
 - the authoritative servers for .net
 - authoritative name server within a domain or DNS zone
- It will also give you the A (resource) record for the authoritative servers you were directed to
 - avoid looking them up
 - This is known as the "glue" records

Suppose you ask a name server for a record and it redirects you to another

• e.g., if you ask a root for a NS (name server) record for NET, it returns NS records for

An NS record (or nameserver record) is a DNS record that contains the name of the

```
O.NET referrals
/* Authority section */
NET.
                            GTLD-SERVERS.NET
                        NS C.GTLD-SERVERS.NET.
                        NS M.GTLD-SERVERS.NET.
                ection - "glue" records */
B.GTLD-SERVERS.net. IN A 192.33.14.30
C.GTLD-SERVERS.net. IN A 192.26.92.30
M.GTLD-SERVERS.net. IN A 192.55.83.30
```


Caching

- DNS responses are cached
 - Quick response for repeated translations
- Negative results are also cached
 - Save time for nonexistent sites, e.g. misspelling
- Cached data periodically times out
 - Each record has a TTL field

DNS Vulnerabilities

- Nothing is authenticated, so really the game is over
 - You cannot really trust what you hear ...
 - But, many applications are doing just that.
 - Spoofing of DNS is really dangerous
- Moreover, DNS is a catalog of resources
 - Zone-transfers allow bulk acquisition of DNS data
 - ... and hence provide a map for attacking the network
- Lots of opportunity to abuse the system
 - Relies heavily on caching for efficiency -- cache pollution
 - Once something is wrong, it can remain that way in caches for a long time (e.g., it takes a long time flush)
 - Data may be corrupted before it gets to authoritative server

A Cache Poisoning Attack

- All requests have a unique query ID
- The nameserver/resolver uses this information to match up requests and responses
- If an adversary can guess the query ID, then it can forge the responses and pollute the DNS cache
 - 16-bit query IDs (not hard)
 - Some servers increment IDs (or use other bad algo.)
 - First one in wins!!!
- Note: If you can observe the traffic going to a name server, you can pretty much arbitrarily own the Internet for the clients it serves.

DNS Cache Poisoning: Racing to Respond First

DNS Resolution

Page 41

DNS Resolution

IP for www.neighborhoodbank.com

QID=601 IP: <u>192.168.1.100</u>

neighborhoodbank.com

ns.neighborhoodbank.com

www.neighborhoodbank.com

Client

DNS Cache Poisoning: Racing to

User Side Attack - Pharming

- Exploit DNS poisoning attack
 - Change IP addresses to redirect URLs to fraudulent sites
 - Potentially more dangerous than phishing attacks
 - Why?
- DNS poisoning attacks have occurred:
 - in Australia.
 - online pharmacy

January 2005, the domain name for a large New York ISP, Panix, was hijacked to a site

In November 2004, Google and Amazon users were sent to Med Network Inc., an

DNS Cache Poisoning

- Attacker wants his IP address returned for a DNS query
- could reply first, with his own IP
- What is supposed to prevent this?
 - Transaction ID
 - I6-bit random number
 - The real server knows the number, because it was contained in the query
 - The attacker has to guess

• When the resolver asks nsl.google.com for www.google.com, the attacker

DNS Cache Poisoning

- Responding before the real nameserver
 - and provide a fake response.
 - query
 - predicted
 - fixed by using random transaction IDs

An attacker can guess when a DNS cache entry times out and a query has been sent,

The fake response will be accepted only when its 16-bit transaction ID matches the

CERT reported in 1997 that BIND uses sequential transaction ID and is easily

Kaminsky DNS Vulnerability

- Query a random host in a victim zone, e.g., I234.cse.psu.edu
- **2.**Spoof responses* as before, but delegate authority to some server which you own.
- I. The glue records you give make you authoritative **3.**You now own the domain.
- 4. <u>unixwiz.net/techtips/lguide-kaminsky-dns-vuln.html</u>

*the original attack exploited poor ID selection

Kaminski Fixes

- Make the ID harder to guess (randomized ports)
 - Amplified ID space from 2¹⁶ to 2²⁷
- Prevent foreign requests from being processed
 - E.g., filter requests from outside domain
- Observe and filter conflicting requests
 - E.g., if you see a lot of bogus looking requests, be careful
- All of this treats the symptoms, not the disease.
 - Lack of authenticated values
 - patient, you can mount these attacks.

Thus, if you can observe request traffic, prevent legitimate responses, or are just plain

DNSSEC

- A standard-based (IETF) solution to security in DNS
 - Prevents data spoofing and corruption
 - Public key based solution to verifying DNS data
 - Authenticates
 - Communication between servers
 - DNS data
 - content
 - existence
 - non-existence
 - Public keys (a bootstrap for PKI?)

		Toola Helb		
🜏 🕞 🥝 🔵 🙆	http://secreg.r	ilnetlabs.nl/c	gi-bii 🚽 🖸	
←Linux	·			
				(
make secure	block key rol	lover ch	ange secc	whois notify
tools zone list	ing forms	procedure	s about	
Secure zon	es in .nl			
NL public KE	Y			
GagwQJoIrjlAYKx I5tSSPPs sxrVnQ)	4CEn3hPwElUlVko ==	523		
Current statu	s of the sec	ure .nl :	zones	
Current statu Zone	s of the sec	c ure .nl : Key id	zones Key alg	
Current statu Zone <u>disi.nl</u>	s of the sec Status active	Key id	ZONES Key alg RSA/SHA1	
Current statu Zone disi.nl freeswan.nl	s of the sec Status active active	Key id 61952 17807	XONES Key alg RSA/SHA1 RSA/SHA1	
Current statu Zone disi.nl freeswan.nl xtdnet.nl	s of the sec Status active active active	Key id 61952 17807 16310	XONES Key alg RSA/SHA1 RSA/SHA1 RSA/SHA1	
Current statu Zone disi.nl freeswan.nl xtdnet.nl ct.nl	s of the sec Status active active active active	Key id 61952 17807 16310 35861	XONES Key alg RSA/SHA1 RSA/SHA1 RSA/SHA1 RSA/SHA1	
Current statu Zone disi.nl freeswan.nl xtdnet.nl ct.nl openfortress.nl fnl.nl	s of the sec Status active active active active active processing	Key id 61952 17807 16310 35861 42325 16217	XONES Key alg RSA/SHA1 RSA/SHA1 RSA/SHA1 RSA/SHA1 RSA/MD5 RSA/SHA1	
Current statu	Status Active Active Active Active Active Active processing	Key id 61952 17807 16310 35861 42325 16217	Xey alg RSA/SHA1 RSA/SHA1 RSA/SHA1 RSA/SHA1 RSA/MD5 RSA/SHA1	
Current statu	active active active active active active processing	Key id 61952 17807 16310 35861 42325 16217	Xey alg RSA/SHA1 RSA/SHA1 RSA/SHA1 RSA/SHA1 RSA/MD5 RSA/SHA1	

DNSSEC Mechanisms

- Securing the DNS records
 - Each domain signs their "zone" with a private key
 - Public keys published via DNS
 - Indirectly signed by parent zones
 - Ideally, you only need a self-signed root, and follow keys down the hierarchy

DNSSEC Mechanisms

- TSIG : transaction signatures protect DNS operations
 - Zone loads, some server to server requests (master -> slave), etc.
 - Time-stamped signed responses for dynamic requests
 - A misnomer -- it currently uses shared secrets for TSIG (HMAC) or do real signatures using public key cryptography
- SIGO: a public key equivalent of TSIG
 - Works similarly, but with public keys
 - Not as popular as TSIG

Note: these mechanisms assume clock sync. (NTP)

