

CSE 543: Computer Security Module: Access Control

Prof. Syed Rafiul Hussain Department of Computer Science and Engineering The Pennsylvania State University

CSE543 - Computer Security

Access Control

- Method for restricting the operations that processes may perform on a computer system
 - aka Authorization

www.shutterstock.com - 142087618

Access Control

Why do you need access control?

www.shutterstock.com - 142087618

A Brief History

- Early computing systems had no isolation
 - Shared memory space
 - Shared file space
- Some physical limitations made this OK
 - Batch processing
 - Load the tape/disk for the application
 - Network? What network?
- In the mid-60s people started to work on 'multiuser' or 'time-sharing' systems
 - What about a bug?
 - What about my data?

Multiprogrammed Systems

- Multics project
 - AT&T, MIT, Honeywell, etc.
 - General purpose, multi-user system
 - Comprehensive security
 - Hardware protection
 - Subject labeling
 - Permission management
- UNIX project
 - Spin-off of Multics project
 - When AT&T left
 - A stripped-down multiuser system

Access Control

- Why do you need access control?
 - Protection
 - Prevent errors oops, I overwrote your files
 - Security
 - Prevent unauthorized access under all conditions

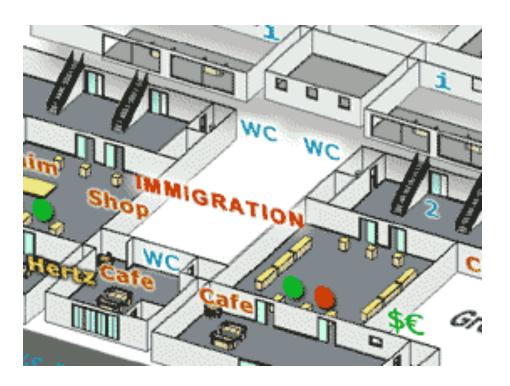
www.shutterstock.com - 142087618

Access Control

- What is needed for "security"?
 - Protect the process limit others' access to your resources
 - Confine the process limit your access to others' resources

www.shutterstock.com - 142087618

Page 7


ity"? ers' access to your resources ir access to others' resources

Security Policies

- A security policy specifies the rules of security
 - operation of a system
 - Example: Airport Policy
 - Take off your shoes ullet
 - No bottles that could contain > 3 ozs \bullet
 - Empty bottles are OK? \bullet
 - You need to put your things through X-ray machine lacksquare
 - Laptops by themselves, coat off
 - Go through the metal detector \bullet
- Goal: prevent on-airplane (metal) weapon, flammable liquid, dangerous objects ... (successful?)

Some statement of secure procedure or configuration that parameterizes the

Control Access

- An identity permits access to resources
- In computer security this is called
 - Access control
 - Authorization
- In authorization, we talk about:
 - Subjects (for whom an action is performed)
 - Objects (upon what an action is performed)
 - Operations (the type of action performed)
- Authorization limits a subject's access perform an operation on an object - The combination of object and operations allowed are called a permission

Access Control Policy

- What is access control policy?
 - on an object
- Authorize
 - Subject: Process
 - Object: Resource that is security-sensitive
 - Operations: Actions taken using that resource
- An object+operations is called a permission
 - Sets of permissions for subjects and objects in a system is called an access control policy

Check whether a process is authorized to perform perform operations

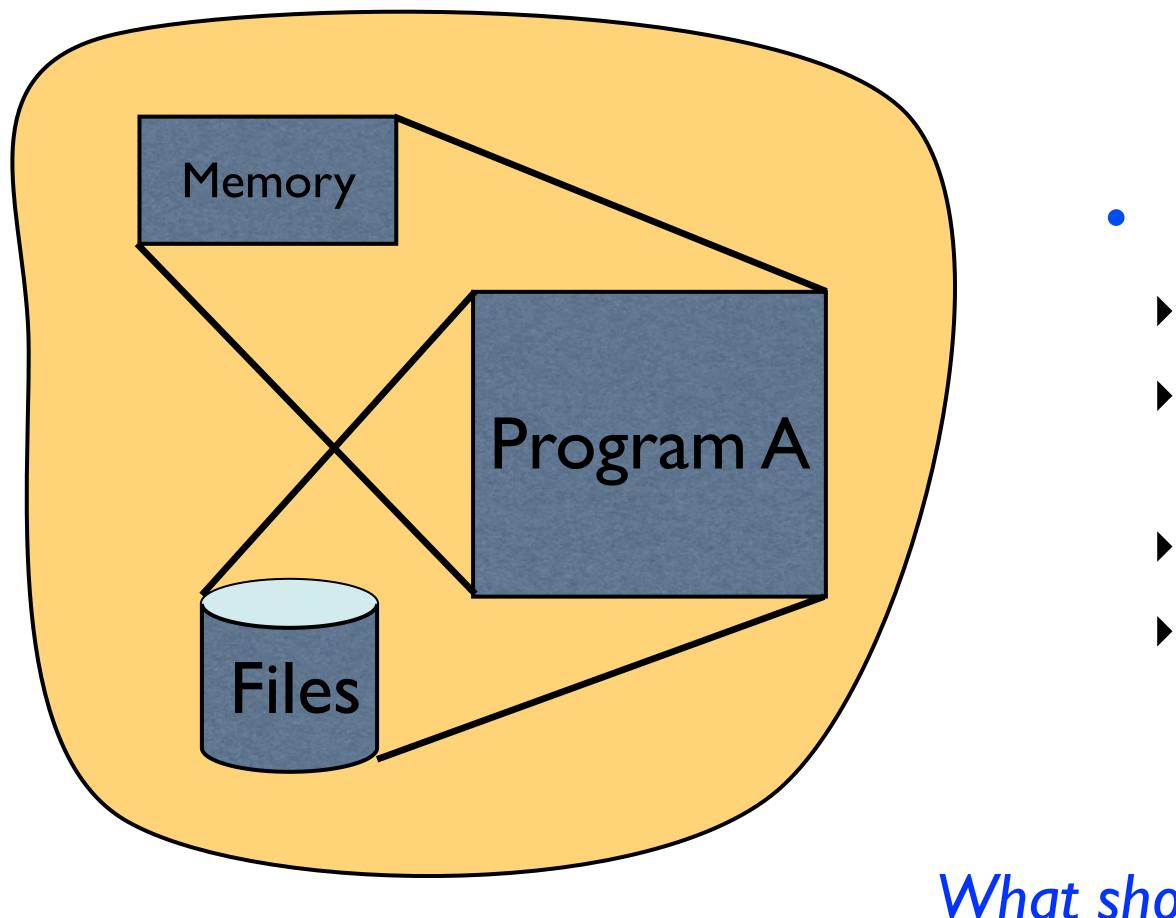
Access Control Policy

- Access control policy determines perform for a set of objects
- It answers the questions
 - E.g., do you have the permission to read /etc/passwd
 - Does Alice have the permission to view the CSE website?
 - Do students have the permission to share project data?
 - Does Dr. Hussain have the permission to change your grades?

An Access Control Policy answers these questions

Page 11

Access control policy determines what operations a particular subject can


Access Control Concepts

- Subjects are the active entities that do things •
 - E.g., you, Alice, students, Prof. Jaeger
- Objects are passive things that things are done to
 - E.g., /etc/passwd, CSE website, project data, grades
- **Operations** are actions that are taken
 - E.g., read, view, share, change

Protection Domains

Protection domain

What should the protection domain of each process be? Policy is defined with respect to the protection domain it governs.

• The protection domain is a term for describing the totality of permissions available to an individual process

- Protection domain includes
 - Process memory
 - File system permissions many things are files in UNIX
 - network resources
 - Etc.

Access Policy Model

- A protection system answers authorization queries using a protection state (S), which can be modified by protection state methods (M)
 - Authorization query: Can subject perform requested operation on object? Y/N
- A protection state (S) relates subjects, objects, and operations to authorization query results
 - ► E.g., in mode bits, ACLs, ... the policy
- A protection state methods (M) can change the protection state (i.e., policy) Add/remove rights for subjects to perform operations on objects — change the
 - policy

Specifying Policy

- Problem identify subjects, objects, and operations And authorized permissions for subjects

 - And rules for switching between subjects
- Finer policy is better for security and functionality, but is harder to write and manage

Protection Domains

- Balance function and security
- Functionality
 - Operations to get the job done
- Security
 - Prevent operations that may lead to compromise
- Challenge: Figuring out and specifying authorized operations for each process

The Access Matrix

- An access matrix is one way to represent a protection state.
 - Conceptual
- Columns are objects, subjects are rows.
 - To determine if S_i has right to access object O_i , find the appropriate entry.
 - Often entries list the set of operations permitted for that subject-object pair
- The access matrix represents O(|S|*|O|) rules

Page 17

0, 02 **S**_I Ν S_2 Ν Ν **S**₃ Y Ν

The Access Matrix

- Suppose the private key file for J • is object O₁
 - Only J can read
- Suppose the public key file for J is object O_2
 - All can read, only J can modify
- Suppose all can read and write from object O₃
- What's the access matrix?

	Oı	O ₂	O ₃
J	?	?	?
S ₂	?	?	?
S ₃	?	?	?

ACLs and Capabilities

- An access matrix is one way to represent a protection state.
 - Conceptual
- Columns are objects
 - Access control lists define the subjects that can access each object and the operations
- Subjects are rows
 - Capabilities define the objects that can be accessed by each subject - and the operations
- This is how access policies are stored

	Oı	02	03
Sı	Y	Y	Y
S ₂	N	Y	Y
S ₃	Ν	Y	Y

Access Control Problem

- Identify subjects, objects, and operations in each system Minimize effort of parties that specify policies

 - Minimize likelihood of failures
 - Protection failures due to benign errors
 - Security failures due to malicious activities
 - Function failures because programs don't run
- Design an Access Control Model •
 - Subjects Per process or group a set of processes?
 - Objects Per object or group a set of objects or permissions (object/ops)? Rules - How to compose multiple requirements?

Access Control Problem

- You run three programs
 - One from the system passwd
 - One application editor
 - One from the Internet email attachment
- protection? For security?
- How to make specifying access control policies easy?

Homework!

• What access control policies should be assigned to each program? For

Commodity OS Security

 UNIX and Windows Protection Systems policies?

How do they identify subjects/objects to express access control

The UNIX FS access policy

- Really, this is a bit string ACL encoding an access matrix
- E.g.,

 $\xrightarrow{} World$ $\longrightarrow Group$ Owner • And a policy is encoded as "r", "w", "x" if enabled, and "-" if not, e.g.

rwxrw---x

Says owner can read, write and execute, group can read and write, and world can execute only.

Caveats: UNIX Mode Bits

• Access is often not really this easy: you need to have certain rights to parent directories to access a file (execute, for example). The reasons for this are quite esoteric.

- The preceding policy may appear to be contradictory
 - A member of the group does not have execute rights, but members of the world do, SO ...
 - A user appears to be both allowed and prohibited from executing access
 - Not really: these policies are *monotonic* ... the absence of a right does not mean they should not get access at all. If any of your identities have that right in any class (world, group, owner), you are authorized.

rwx rw- --x

UNX UDS

- Processes and files are associated with user IDs (UIDs)
- File UID indicates its owner (who gets owner perms)
 - Group UID also (who gets group perms)
- Process UID indicates the owner of the process
 - Normal user
 - System (root)
 - Now, some special UIDs for some programs
 - Also, a process may run under multiple Group UIDs
- How do we switch UIDs (e.g., run a privileged program)?

UID Transition: Setuid

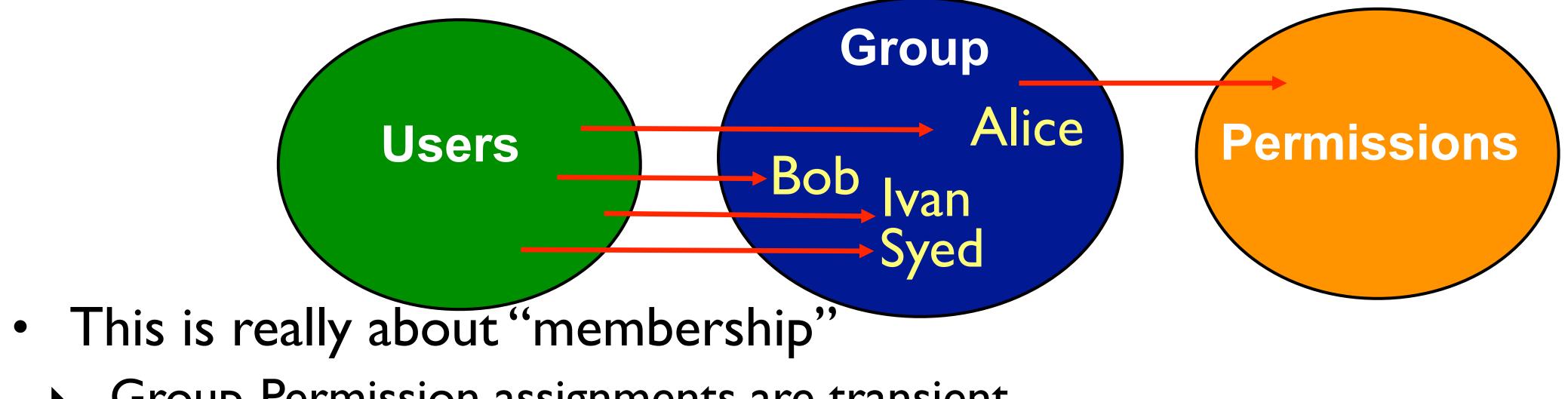
- A special bit in the mode bits
- Execute file
 - Resulting process has the effective (and fs) UID/GID of file owner
- Enables a user to escalate privilege
 - For executing a trusted service
- **Downside**: User defines execution environment
 - e.g., Environment variables, input arguments, open descriptors, etc.
- Service must protect itself or user can gain unauthorized access •
 - UNIX services often run as root UID -- many via setuid!

Job Functions

- some job function
 - E.g., student, professor, doctor

One could manage this as groups, right? lists

In an enterprise, we don't really do anything as ourselves, we do things as



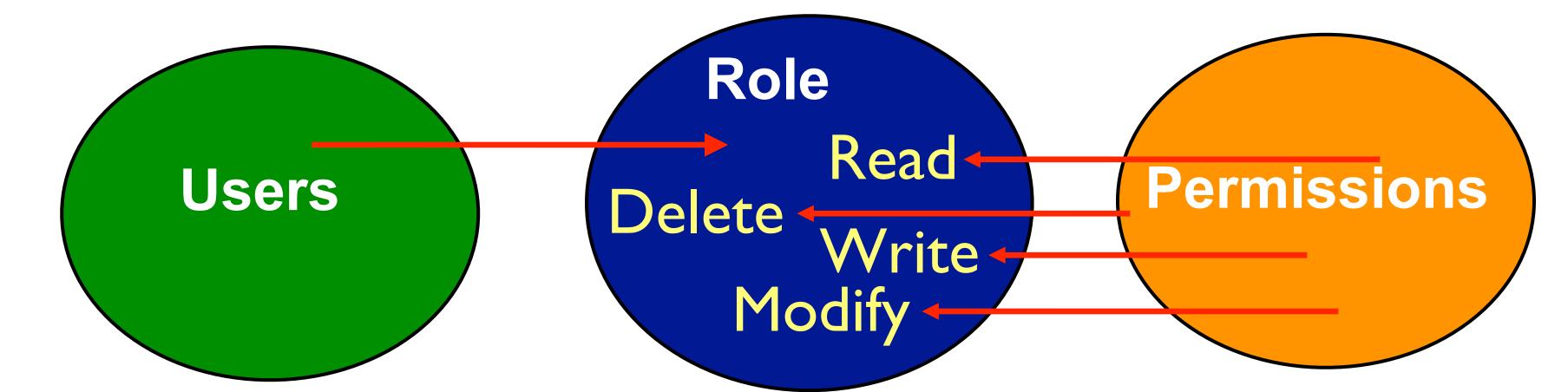
We are assigned to groups all the time, and given similar rights as them, i.e., mailing

Groups

• • •

Group-Permission assignments are transient

Groups are collections of identities who are assigned rights as a collective Important in that it allows permissions to be assigned in aggregates of users



Roles

- or affiliation
- NIST studied the way permissions are assigned and used in the real world, and this is it ...

Important: the permission-role membership is static, the user-role membership is transient

• A role is a collection of privileges/permissions associated with some function

Role Based Access Control

- Most formulations are of the type
 - U: users -- these are the subjects in the system
 - R: roles -- these are the different roles users may assume
 - P: permissions --- these are the rights which can be assumed
- There is a many-to-many relation between:
 - Users and roles
 - Roles and permissions
- Relations define the role-based access control policy

Take Away

- perform
 - For protection from bugs and security from adversaries
 - Operating systems do that by
 - Associating processes with IDs (subjects)
 - Authorizing objects and operations (permissions)
- Approach: Protection system
 - Protection state: Relates subjects to authorized permissions
 - Methods for modifying the protection state
- UNIX and Windows implement protection systems
 - Have different notions of subjects and permissions
 - Trade-off complexity and expressive power
- Compared with role-based access control models

Goal: Define protection states to restrict the operations that each process may

