
CSE 543: Computer Security

Fall 2022
Project 3: SSH Protocol and MITM Attack

Due: 11:59 pm (eastern time), November 8 , 2022

October 18, 2022

1 Introduction

This project has two main parts. In the first part, you will develop a client-server system that provides
secure file transfer. You will implement the SSH protocol to construct a secure channel between the
client and server over which to perform secure file transfer. You will use the OpenSSL library to
implement the SSH protocol. The SSH protocol produces a symmetric key shared between the client
and server, and you will use the OpenSSL library once again to use that key to transfer the file. In
the second part, you will develop a man-in-the-middle (MITM) attack against the SSH protocol that
you implemented in part 1. You will create a MITM that pretends to be the target server, but instead
opens a secure connection to the client that it can use to read client communications forwarded to the
target server.

The system you produce must run on the Westgate Linux lab machines. These machines are named
e5-cse-135-XX.cse.psu.edu, where XX is a number between 01 and about 40. All these machines should
be identical and already have the OpenSSL library installed. You should SSH into those machines to
verify that your code works. We developed and tested the project code on those machines, so should
work fine, but it is up to you to make sure. You will need to speak to the CSE IT folks
(helpdesk@cse.psu.edu) if you do not have access to those machines.

2 Overview

2.1 Part 1

The main task in part 1 is to implement the SSH protocol as described in the paper (https://
syed-rafiul-hussain.github.io/index.php/teaching/cse543-f22/docs/ssh.pdf). Since any user
is authorized to upload a file in this project, you only have to implement Steps 1-4 of the protocol,
corresponding to messages 1-4 in the ProtoMessageType enumeration in cse543-proto.h. You are
going to use the OpenSSL functions provided to implement the SSH protocol.

2.2 Part 2

The original SSH protocol that you will implement in part 1 is prone to a kind of MITM attack called
Server Spoofing. In this attack, a malicious entity may intercept client communications intended
for a target server to create a MITM connection, where the malicious entity pretends it is the server
to the client and as a client to the target server. Since the SSH protocol does not authenticate that
the public key provided by the server is really associated with the target server to which the client

1

https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f22/docs/ssh.pdf
https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f22/docs/ssh.pdf

is intending to connect, a malicious entity can take advantage of this. The SSH systems take some
measures to prevent this attack outside the crypto protocol. You will extend the server of part1 to
produce a MITM server that performs this server spoofing MITM attack against the (unmodified)
client and (mostly unmodified) server implemented in part 1.

3 Project Tasks

You should first download the zip from https://syed-rafiul-hussain.github.io/index.php/teaching/

cse543-f22/projects/p3/project3.zip. The zip has the initial code for part 1 and part 2. The
project includes source code and a Makefile required for compiling the files. We suggest you perform
the project tasks listed below in the following order.

3.1 Part 1

The initial version of the program includes two functions test_rsa and test_aes that encrypt a
message. These functions demonstrate how to perform symmetric and public key encryption with
OpenSSL library, which should be a big help in the project.

3.1.1 Write the functions to build encrypted messages for sending and decrypted re-
ceived messages

There are two pairs of functions for you to implement: seal_symmetric_key/unseal_symmetric_key
for public key crypto and encrypt_message/decrypt_message. These encryption functions must
perform encryption and produce buffers containing the data necessary for the other party to decrypt.
The decryption functions must extract the necessary information from a sent buffer and perform the
decryption.

3.1.2 Develop the SSH Protocol

Implement the client and server portions of the SSH protocol, as described in the paper (https:
//syed-rafiul-hussain.github.io/index.php/teaching/cse543-f22/docs/ssh.pdf). There are
two functions client_authenticate and server_protocol to be implemented.

3.2 Part 2

Use the client and server you implemented in part1. For this attack, you will run these components
unmodified except for a small modification to one function (receive file) used by the server.

3.2.1 Implement server spoofing attack

In the MITM attack, you will modify the code from the part 2 (see below) to perform the server
spoofing attack.

4 Implementation

4.1 Part 1

4.1.1 Create public and private keys

You can create the public and private keys using the OpenSSL system using the following commands:

2

https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f22/projects/p3/project3.zip
https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f22/projects/p3/project3.zip
https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f22/docs/ssh.pdf
https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f22/docs/ssh.pdf

generate key pair - mykey.pem holds private key
openssl genrsa -out mykey.pem 2048

extract public key in basic format - pubkey.pem is in PKCS#8 format
openssl rsa -in mykey.pem -pubout -out pubkey.pem

convert public key to RSA format - rsapub.pem holds public key
openssl rsa -pubin -in pubkey.pem -RSAPublicKey_out > rsapub.pem

4.1.2 Running the Client and Server

The server program will be started by the following command line:
cse543-p1-server <private-key-file> <public-key-file>

where (1) the <private-key-file> is the name of the file that stores the private key for the server
and (2) <public-key-file> is the name of the file that stores the corresponding rsa format public
key for the server.

The client program will be started by the following command line:
cse543-p1 <file-to-transfer> <server-ip-address>

where (1) the <file-to-transfer> is the file path name of the file to transfer from the client to the
server and (2) <server-ip-address> is the IP address of the server host.

Start the server first, as it will wait for connection requests from clients. When a connection request
is received from a client the sequence of steps will be performed.

4.1.3 Perform the SSH protocol

The client will initiate the SSH protocol to produce a symmetric key to be shared by the client and
server.

4.1.4 Transfer the file

The <file-to-transfer> will be sent encrypted and integrity protected from the client to the server.
The server will store the file in a directory called “shared” under the directory from which the server
is run.

4.1.5 Server awaits next request

The client will terminate and the server will await the next request from the next client.

4.2 Part 2

The code for part 2 consists of one new file cse543-p2.c, which replaces the cse543-p1.c file from
part 1. The cse543-p2.c code only differs from the part 1 code only that the interface to start the
server is slightly different (see MITM USAGE in the file). The first two arguments are the MITMs
public and private keys as before. These keys will be different than the target server’s public and
private keys, of course. The third argument is still an IP address, but it is the IP address of the real
(target) server. The fourth argument is the “MITM option” which you should set to 1 to perform the
server spoofing attack. In summary, MITM should run as below:
cse543-p2-server <private_key_file> <public_key_file> <real-server-IP-address> 1

3

4.2.1 Use Your Part 1 Code

The client and target server will be largely unchanged from part 1. You will run MITM with option
“1”. This will invoke server_secure_transfer from part 1. You need to modify that function to
perform the MITM proxy attack, as described below.

4.2.2 Server Spoofing Attack

In this attack, you will modify the code in server secure transfer to perform the SSH protocol as the
server to a part 1 client, but also initiate a new SSH connection to a part 1 server as the client. This
attack emulates the case where a MITM may obtain an IP address for another server or sit between
the client and server on the network. The attack must: (1) construct a SSH connection with the client
sufficient for the client to transfer the file (from part 1); (2) replay the client messages to create a
second SSH connection to another part 1 server; and (3) forward the client’s messages to transfer the
same file to the part 1 server. The easiest way to do that is to start with the server protocol and add
the steps necessary to replay client messages to the part 1 server sufficient to transfer the file. This
should not take a lot of code given what you have for part 1. To test for this, run the client and
MITM server on the same machine, and have the MITM server communicate with the
target server on another machine. Both servers will receive connections listening to the same port
(9165).

5 Deliverable

Please submit a zip containing only two files :- part1/cse543-proto.c and part2/cse543-proto.c.

6 Grading

1. We can build and run what you have submitted without any compilation or runtime errors (50
points).

2. Encrypted communication works (50 points).

3. Generate pseudo random data (50 points).

4. SSH protocol (200 points).

5. Transfer file securely (50 points).

6. Server spoofing attack works (100 points).

4

	Introduction
	Overview
	Part 1
	Part 2

	Project Tasks
	Part 1
	Write the functions to build encrypted messages for sending and decrypted received messages
	Develop the SSH Protocol

	Part 2
	Implement server spoofing attack

	Implementation
	Part 1
	Create public and private keys
	Running the Client and Server
	Perform the SSH protocol
	Transfer the file
	Server awaits next request

	Part 2
	Use Your Part 1 Code
	Server Spoofing Attack

	Deliverable
	Grading

