
9

C H A P T E R 2

Access Control Fundamentals
An access enforcement mechanism authorizes requests (e.g., system calls) from multiple subjects (e.g.,
users, processes, etc.) to perform operations (e.g., read, write, etc.) on objects (e.g., files, sockets, etc.).
An operating system provides an access enforcement mechanism. In this chapter, we define the
fundamental concepts of access control: a protection system that defines the access control specifi-
cation and a reference monitor that is the system’s access enforcement mechanism that enforces this
specification. Based on these concepts, we provide an ideal definition for a secure operating system.
We use that definition to evaluate the operating systems security of the various systems examined
in this book.

2.1 PROTECTION SYSTEM
The security requirements of a operating system are defined in its protection system.

Definition 2.1. A protection system consists of a protection state, which describes the operations that
system subjects can perform on system objects, and a set of protection state operations, which enable
modification of that state.

A protection system enables the definition and management of a protection state. A protection
state consists of the specific system subjects, the specific system objects, and the operations that those
subjects can perform on those objects. A protection system also defines protection state operations that
enable a protection state to be modified. For example, protection state operations are necessary to
add new system subjects or new system objects to the protection state.

2.1.1 LAMPSON’S ACCESS MATRIX
Lampson defined the idea that a protection state is represented by an access matrix, in general, [176].

Definition 2.2. An access matrix consists of a set of subjects s ∈ S, a set of objects o ∈ O, a set of
operations op ∈ OP , and a function ops(s, o) ⊆ OP , which determines the operations that subject
s can perform on object o. The function ops(s, o) is said to return a set of operations corresponding
to cell (s, o).

Figure 2.1 shows an access matrix. The matrix is a two-dimensional representation where the
set of subjects form one axis and the set of objects for the other axis. The cells of the access matrix
store the operations that the corresponding subject can perform on the corresponding object. For
example, subject Process 1 can perform read and write operations on object File 2.



10 CHAPTER 2. ACCESS CONTROL FUNDAMENTALS

File 1 File 2 File 3 Process 1 Process 2
Process 1 Read Read, Write Read, Write Read -
Process 2 - Read Read, Write - Read

Figure 2.1: Lampson’s Access Matrix

If the subjects correspond to processes and the objects correspond to files, then we need
protection state operations to update the protection state as new files and processes are created. For
example, when a new file is created, at least the creating process should gain access to the file. In
this case, a protection state operation create_file(process, file) would add a new column
for the new file and add read and write operations to the cell (process, f ile).

Lampson’s access matrix model also defines operations that determine which subjects can
modify cells. For example, Lampson defined an own operation that defines ownership operations
for the associated object. When a subject is permitted for the own operation for an object o, that
subject can modify the other cells associated with that object o. Lampson also explored delegation
of ownership operations to other subjects, so others may manage the distribution of permissions.

The access matrix is used to define the protection domain of a process.

Definition 2.3. A protection domain specifies the set of resources (objects) that a process can access
and the operations that the process may use to access such resources.

By examining the rows in the access matrix, one can see all the operations that a subject is
authorized to perform on system resources. This determines what information could be read and
modified by a processes running on behalf of that subject. For a secure operating system, we will
want to ensure that the protection domain of each process satisfies system security goals (e.g., secrecy
and integrity).

A process at any time is associated with one or more subjects that define its protection domain.
That is, the operations that it is authorized to perform are specified by one or more subjects. Sys-
tems that we use today, see Chapter 4, compose protection domains from a combination of subjects,
including users, their groups, aliases, and ad hoc permissions. However, protection domains can
also be constructed from an intersection of the associated subjects (e.g., Windows 2000 Restricted
Contexts [303]). The reason to use an intersection of subjects’ permissions is to restrict the protec-
tion domain to permissions shared by all, rather than giving the protection domain subjects extra
permissions that they would not normally possess.

Because the access matrix would be a sparse data structure in practice (i.e., most of the cells
would not have any operations), other representations of protection states are used in practice. One
representation stores the protection state using individual object columns, describing which subjects
have access to a particular object.This representation is called an access control list or ACL.The other
representation stores the other dimension of the access matrix, the subject rows. In this case, the



2.1. PROTECTION SYSTEM 11

objects that a particular subject can access are stored. This representation is called a capability list or
C-List.

There are advantages and disadvantages to both the C-List and ACL representations of
protection states. For the ACL approach, the set of subjects and the operations that they can perform
are stored with the objects, making it easy to tell which subjects can access an object at any time.
Administration of permissions seems to be more intuitive, although we are not aware of any studies
to this effect. C-Lists store the set of objects and operations that can be performed on them are
stored with the subject, making it easy to identify a process’s protection domain. The systems in use
today, see Chapter 4, use ACL representations, but there are several systems that use C-Lists, as
described in Chapter 10.

2.1.2 MANDATORY PROTECTION SYSTEMS
This access matrix model presents a problem for secure systems: untrusted processes can tamper with
the protection system. Using protection state operations, untrusted user processes can modify the
access matrix by adding new subjects, objects, or operations assigned to cells. Consider Figure 2.1.
Suppose Process 1 has ownership over File 1. It can then grant any other process read or write
(or potentially even ownership) access over File 1. A protection system that permits untrusted
processes to modify the protection state is called a discretionary access control (DAC) system. This is
because the protection state is at the discretion of the users and any untrusted processes that they
may execute.

The problem of ensuring that particular protection state and all possible future protection states
derivable from this state will not provide an unauthorized access is called the safety problem [130] 1.
It was found that this problem is undecidable for protection systems with compound protection state
operations, such as for create_file above which both adds a file column and adds the operations
to the owner’s cell. As a result, it is not possible, in general, to verify that a protection state in such a
system will be secure (i.e., satisfy security goals) in the future. To a secure operating system designer,
such a protection system cannot be used because it is not tamperproof; an untrusted process can
modify the protection state, and hence the security goals, enforced by the system.

We say that the protection system defined in Definition 2.1 aims to enforce the requirement
of protection: one process is protected from the operations of another only if both processes behave
benignly. If no user process is malicious, then with some degree of certainly, the protection state will
still describe the true security goals of the system, even after several operations have modified the
protection state. Suppose that a File 1 in Figure 2.1 stores a secret value, such as a private key in
a public key pair [257], and File 2 stores a high integrity value like the corresponding public key.
If Process 1 is non-malicious, then it is unlikely that it will leak the private key to Process 2
through either File 1 or File 2 or by changing the Process 2’s permissions to File 1. However,
if Process 1 is malicious, it is quite likely that the private key will be leaked. To ensure that the

1For a detailed analysis of the safety problem see Bishop’s textbook [29].



12 CHAPTER 2. ACCESS CONTROL FUNDAMENTALS

secrecy of File 1 is enforced, all processes that have access to that file must not be able to leak the
file through the permissions available to that process, including via protection state operations.

Similarly, the access matrix protection system does not ensure the integrity of the public key
file File 2, either. In general, an attacker must not be able to modify any user’s public key because
this could enable the attacker to replace this public key with one whose private key is known to the
attacker. Then, the attacker could masquerade as the user to others. Thus, the integrity compromise
of File 2 also could have security ramifications. Clearly, the access matrix protection system cannot
protect File 2 from a malicious Process 1, as it has write access to File 2. Further, a malicious
Process 2 could enhance this attack by enabling the attacker to provide a particular value for the
public key. Also, even if Process 1 is not malicious, a malicious Process 2 may be able to trick
Process 1 into modifying File 2 in a malicious way depending on the interface and possible
vulnerabilities in Process 1. Buffer overflow vulnerabilities are used in this manner for a malicious
process (e.g.,Process 2) to take over a vulnerable process (e.g.,Process 1) and use its permissions
in an unauthorized manner.

Unfortunately, the protection approach underlying the access matrix protection state is naive
in today’s world of malware and connectivity to ubiquitous network attackers. We see in Chapter 4
that today’s computing systems are based on this protection approach, so they cannot be ensure
enforcement of secrecy and integrity requirements. Protection systems that can enforce secrecy and
integrity goals must enforce the requirement of security: where a system’s security mechanisms can enforce
system security goals even when any of the software outside the trusted computing base may be malicious.
In such a system, the protection state must be defined based on the accurate identification of the
secrecy and integrity of user data and processes, and no untrusted processes may be allowed to perform
protection state operations. Thus, the dependence on potentially malicious software is removed, and
a concrete basis for the enforcement of secrecy and integrity requirements is possible.

This motivates the definition of a mandatory protection system below.

Definition 2.4. A mandatory protection system is a protection system that can only be modified by
trusted administrators via trusted software, consisting of the following state representations:

• A mandatory protection state is a protection state where subjects and objects are represented by
labels where the state describes the operations that subject labels may take upon object labels;

• A labeling state for mapping processes and system resource objects to labels;

• A transition state that describes the legal ways that processes and system resource objects may
be relabeled.

For secure operating systems, the subjects and objects in an access matrix are represented by
system-defined labels. A label is simply an abstract identifier—the assignment of permissions to a
label defines its security semantics. Labels are tamperproof because: (1) the set of labels is defined
by trusted administrators using trusted software and (2) the set of labels is immutable. Trusted



2.1. PROTECTION SYSTEM 13

administrators define the access matrix’s labels and set the operations that subjects of particular
labels can perform on objects of particular labels. Such protection systems are mandatory access
control (MAC) systems because the protection system is immutable to untrusted processes 2. Since
the set of labels cannot be changed by the execution of user processes, we can prove the security
goals enforced by the access matrix and rely on these goals being enforced throughout the system’s
execution.

Of course, just because the set of labels are fixed does not mean that the set of processes and
files are fixed. Secure operating systems must be able to attach labels to dynamically created subjects
and objects and even enable label transitions.

A labeling state assigns labels to new subjects and objects. Figure 2.2 shows that processes
and files are associated with labels in a fixed protection state. When newfile is created, it must be
assigned one of the object labels in the protection state. In Figure 2.2, it is assigned the secret label.
Likewise, the process newproc is also labeled as unclassified. Since the access matrix does not
permit unclassified subjects with access to secret objects, newproc cannot access newfile. As
for the protection state, in a secure operating system, the labeling state must be defined by trusted
administrators and immutable during system execution.

A transition state enables a secure operating system to change the label of a process or a system
resource. For a process, a label transition changes the permissions available to the process (i.e., its
protection domain), so such transitions are called protection domain transitions for processes. As an
example where a protection domain transition may be necessary, consider when a process executes
a different program. When a process performs an execve system call the process image (i.e., code
and data) of the program is replaced with that of the file being executed. Since a different program
is run as a result of the execve system call, the label associated with that process may need to be
changed as well to indicate the requisite permissions or trust in the new image.

A transition state may also change the label of a system resource. A label transition for a file
(i.e., object or resource) changes the accessibility of the file to protection domains. For example,
consider the file acct that is labeled trusted in Figure 2.2. If this file is modified by a process with
an untrusted label, such as other, a transition state may change its label to untrusted as well.The
Low-Water Mark (LOMAC) policy defines such kind of transitions [101, 27] (see Chapter 5). An
alternative would be to change the protection state to prohibit untrusted processes from modifying
trusted files, which is the case for other policies. As for the protection state and labeling state,
in a secure operating system, the transition state must be defined by trusted administrators and
immutable during system execution.

2Historically, the term mandatory access control has been used to define a particular family of access control models, lattice-based
access control models [271]. Our use of the terms mandatory protection system and mandatory access control system are meant to
include historical MAC models, but our definition aims to be more general. We intend that these terms imply models whose
sets of labels are immutable, including these MAC models and others, which are administered only by trusted subjects, including
trusted software and administrators. We discuss the types of access control models that have been used in MAC systems in
Chapter 5.



14 CHAPTER 2. ACCESS CONTROL FUNDAMENTALS

secret

secret

unclassied

unclassied trusted

trusted

untrusted

untrusted

read read read

read read read

read

read readread

write

write

write

write

write

write

write

File: 

newle

Process: 

newproc

Labeling
State

Process: 

other

File: 

acct

write

Transition
State

Protection
State

Figure 2.2: A Mandatory Protection System: The protection state is defined in terms of labels and is
immutable. The immutable labeling state and transition state enable the definition and management of
labels for system subjects and objects.

2.2 REFERENCE MONITOR
A reference monitor is the classical access enforcement mechanism [11]. Figure 2.3 presents a general-
ized view of a reference monitor. It takes a request as input, and returns a binary response indicating
whether the request is authorized by the reference monitor’s access control policy. We identify three
distinct components of a reference monitor: (1) its interface; (2) its authorization module; and (3) its
policy store. The interface defines where the authorization module needs to be invoked to perform
an authorization query to the protection state, a labeling query to the labeling state, or a transition
query to the transition state. The authorization module determines the exact queries that are to be
made to the policy store. The policy store responds to authorization, labeling, and transition queries
based on the protection system that it maintains.

Reference Monitor Interface The reference monitor interface defines where protection system queries
are made to the reference monitor. In particular, it ensures that all security-sensitive operations
are authorized by the access enforcement mechanism. By a security-sensitive operation, we mean an
operation on a particular object (e.g., file, socket, etc.) whose execution may violate the system’s security
requirements. For example, an operating system implements file access operations that would allow
one user to read another’s secret data (e.g., private key) if not controlled by the operating system.
Labeling and transitions may be executed for authorized operations.



2.2. REFERENCE MONITOR 15

Figure 2.3: A reference monitor is a component that authorizes access requests at the reference monitor
interface defined by individual hooks that invoke the reference monitor’s authorization module to submit
an authorization query to the policy store.The policy store answers authorization queries, labeling queries,
and label transition queries using the corresponding states.

The reference monitor interface determines where access enforcement is necessary and the
information that the reference monitor needs to authorize that request. In a traditional UNIX file
open request, the calling process passes a file path and a set of operations. The reference monitor
interface must determine what to authorize (e.g., directory searches, link traversals, and finally
the operations for the target file’s inode), where to perform such authorizations (e.g., authorize
a directory search for each directory inode in the file path), and what information to pass to the
reference monitor to authorize the open (e.g., an inode reference). Incorrect interface design may
allow an unauthorized process to gain access to a file.

Authorization Module The core of the reference monitor is its authorization module. The autho-
rization module takes interface’s inputs (e.g., process identity, object references, and system call
name), and converts these to a query for the reference monitor’s policy store. The challenge for the



16 CHAPTER 2. ACCESS CONTROL FUNDAMENTALS

authorization module is to map the process identity to a subject label, the object references to an
object label, and determine the actual operations to authorize (e.g., there may be multiple oper-
ations per interface). The protection system determines the choices of labels and operations, but
the authorization module must develop a means for performing the mapping to execute the “right”
query.

For the open request above, the module responds to the individual authorization requests from
the interface separately. For example, when a directory in the file path is requested, the authorization
module builds an authorization query. The module must obtain the label of the subject responsible
for the request (i.e., requesting process), the label of the specified directory object (i.e., the directory
inode), and the protection state operations implied the request (e.g., read or search the directory).
In some cases, if the request is authorized by the policy store, the module may make subsequent
requests to the policy store for labeling (i.e., if a new object were created) or label transitions.

Policy Store The policy store is a database for the protection state, labeling state, and transition
state. An authorization query from the authorization module is answered by the policy store.
These queries are of the form {subject_label, object_label, operation_set} and re-
turn a binary authorization reply. Labeling queries are of the form {subject_label, resource}
where the combination of the subject and, optionally, some system resource attributes deter-
mine the resultant resource label returned by the query. For transitions, queries include the
{subject_label, object_label, operation, resource}, where the policy store deter-
mines the resultant label of the resource. The resource may be either be an active entity (e.g., a
process) or a passive object (e.g., a file). Some systems also execute queries to authorize transitions
as well.

2.3 SECURE OPERATING SYSTEM DEFINITION
We define a secure operating system as a system with a reference monitor access enforcement mecha-
nism that satisfies the requirements below when it enforces a mandatory protection system.

Definition 2.5. A secure operating system is an operating system where its access enforcement satisfies
the reference monitor concept [11].

Definition 2.6. The reference monitor concept defines the necessary and sufficient properties of any
system that securely enforces a mandatory protection system, consisting of three guarantees:

1. Complete Mediation: The system ensures that its access enforcement mechanism mediates
all security-sensitive operations.

2. Tamperproof: The system ensures that its access enforcement mechanism, including its pro-
tection system, cannot be modified by untrusted processes.



2.3. SECURE OPERATING SYSTEM DEFINITION 17

3. Verifiable:The access enforcement mechanism, including its protection system,“must be small
enough to be subject to analysis and tests, the completeness of which can be assured” [11].
That is, we must be able to prove that the system enforces its security goals correctly.

The reference monitor concept defines the necessary and sufficient requirements for access
control in a secure operating system [145]. First, a secure operating system must provide complete
mediation of all security-sensitive operations. If all these operations are not mediated, then a security
requirement may not be enforced (i.e., a secret may be leaked or trusted data may be modified by an
untrusted process). Second, the reference monitor system, which includes its implementation and the
protection system, must all be tamperproof. Otherwise, an attacker could modify the enforcement
function of the system, again circumventing its security. Finally, the reference monitor system, which
includes its implementation and the protection system, must be small enough to verify the correct
enforcement of system security goals. Otherwise, there may be errors in the implementation or the
security policies that may result in vulnerabilities.

A challenge for the designer of secure operating system is how to precisely achieve these
requirements.

Complete Mediation Complete mediation of security-sensitive operations requires that all program
paths that lead to a security-sensitive operation be mediated by the reference monitor interface.
The trivial approach is to mediate all system calls, as these are the entry points from user-level
processes. While this would indeed mediate all operations, it is often insufficient. For example, some
system calls implement multiple distinct operations. The open system call involves opening a set of
directory objects, and perhaps file links, before reaching the target file.The subject may have different
permission for each of these objects, so several, different authorization queries would be necessary.
Also, the directory, link, and file objects are not available at the system call interface, so the interface
would have to compute them, which would result in redundant processing (i.e., since the operating
system already maps file names to such objects). But worst of all, the mapping between the file name
passed into an open system call and the directory, link, and file objects may be changed between
the start of the system call and the actual open operation (i.e., by a well-timed rename operation).
This is called a time-of-check-to-time-of-use (TOCTTOU) attack [30], and is inherent to the open
system call.

As a result, reference monitors require interfaces that are embedded in the operating system
itself in order to enforce complete mediation correctly. For example, the Linux Security Modules
(LSM) framework [342] (see Chapter 9), which defines the mediation interface for reference moni-
tors in Linux does not authorize the open system call, but rather each individual directory, link, and
file open after the system object reference (i.e., the inode) has been retrieved. For LSM, tools have
been built to find bugs in the complete mediation demanded of the interface [351, 149], but it is
difficult to verify that a reference monitor interface is correct.



18 CHAPTER 2. ACCESS CONTROL FUNDAMENTALS

Tamperproof Verifying that a reference monitor is tamperproof requires verifying that all the refer-
ence monitor components, the reference monitor interface, authorization module, and policy store,
cannot be modified by processes outside the system’s trusted computing base (TCB) (see Chapter 1).
This also implies that the TCB itself is high integrity, so we ultimately must verify that the entire
TCB cannot be modified by processes outside the TCB. Thus, we must identify all the ways that
the TCB can be modified, and verify that no untrusted processes (i.e., those outside the TCB) can
perform such modifications. First, this involves verifying that the TCB binaries and data files are
unmodified. This can be accomplished by a multiple means, such as file system protections and
binary verification programs. Note that the verification programs themselves (e.g., Tripwire [169])
must also be protected. Second, the running TCB processes must be protected from modification by
untrusted processes. Again, system access control policy may ensure that untrusted processes cannot
communicate with TCB processes, but for TCB processes that may accept inputs from untrusted
processes, they must protect themselves from malicious inputs, such as buffer overflows [232, 318],
format string attacks [305], and return-to-libc [337]. While defenses for runtime vulnerabilities are
fundamental to building tamperproof code, we do not focus on these software engineering defenses
in this book.Some buffer overflow defenses, such as StackGuard [64] and stack randomization [121],
are now standard in compilers and operating systems, respectively.

Second, the policy store contains the mandatory protection system which is a MAC system.
That is, only trusted administrators are allowed to modify its states. Unfortunately, access control
policy is deployment-specific, so administrators often will need to modify these states.While admin-
istrators may be trusted they may also use untrusted software (e.g., their favorite editor). The system
permissions must ensure that no untrusted software is used to modify the mandatory protection
system.

Tamperproofing will add a variety of specific security requirements to the system. These
requirements must be included in the verification below.

Verifiable Finally, we must be able to verify that a reference monitor and its policy really enforce
the system security goals. This requires verifying the correctness of the interface, module, and policy
store software, and evaluating whether the mandatory protection system truly enforces the intended
goals. First, verifying the correctness of software automatically is an unsolved problem. Tools have
been developed that enable proofs of correctness for small amounts of code and limited properties
(e.g., [18]), but the problem of verifying a large set of correctness properties for large codebases
appears intractable. In practice, correctness is evaluated with a combination of formal and manual
techniques which adds significant cost and time to development. As a result, few systems have been
developed with the aim of proving correctness, and any comprehensive correctness claims are based
on some informal analysis (i.e., they have some risk of being wrong).

Second, testing that the mandatory protection system truly enforces the intended security goals
appears tractable, but in practice, the complexity of systems makes the task difficult. Because the
protection, labeling, and transition states are immutable, the security of these states can be assessed.



2.4. ASSESSMENT CRITERIA 19

For protection states, some policy models, such as Bell-LaPadula [23] and Biba [27], specify security
goals directly (see Chapter 5), but these are idealizations of practical systems. In practice, a variety
processes are trusted to behave correctly, expanding the TCB yet further, and introducing risk that
the security goals cannot be enforced. For operating systems that have fine-grained access control
models (i.e., lots of unique subjects and objects), specifying and verifying that the policy enforces
the intended security goals is also possible, although the task is significantly more complex.

For the labeling and transition states, we must consider the security impact of the changes
that these states enable. For example, any labeling state must ensure that any label associated with a
system resource does not enable the leakage of data or the modification of unauthorized data. For
example, if a secret process is allowed to create public objects (i.e., those readable by any process),
then data may be leaked. The labeling of some objects, such as data imported from external media,
presents risk of incorrect labeling as well.

Likewise, transition states must ensure that the security goals of the system are upheld as
processes and resources are relabeled. A challenge is that transition states are designed to enable
privilege escalation. For example, when a user wants to update their password, they use an unprivileged
process (e.g., a shell) to invoke privileged code (e.g., the passwd program) to be run with the
privileged code’s label (e.g.,UNIXrootwhich provides full system access).However, such transitions
may be insecure if the unprivileged process can control the execution of the privileged code. For
example, unprivileged processes may be able to control a variety of inputs to privileged programs,
including libraries, environment variables, and input arguments. Thus, to verify that the system’s
security goals are enforced by the protection system, we must examine more than just the protection
system’s states.

2.4 ASSESSMENT CRITERIA
For each system that we examine, we must specify precisely how each system enforces the reference
monitor guarantees in order to determine how an operating system aims to satisfy these guarantees.
In doing this, it turns out to be easy to expose an insecure operating system, but it is difficult to define
how close to “secure” an operating system is. Based on the analysis of reference monitor guarantees
above, we list a set of dimensions that we use to evaluate the extent to which an operating system
satisfies these reference monitor guarantees.

1. Complete Mediation: How does the reference monitor interface ensure that all security-
sensitive operations are mediated correctly?

In this answer, we describe how the system ensures that the subjects, objects, and operations
being mediated are the ones that will be used in the security-sensitive operation. This can be a
problem for some approaches (e.g., system call interposition [3, 6, 44, 84, 102, 115, 171, 250]), in
which the reference monitor does not have access to the objects used by the operating system.
In some of these cases, a race condition may enable an attacker to cause a different object to
be accessed than the one authorized by reference monitor [30].



20 CHAPTER 2. ACCESS CONTROL FUNDAMENTALS

2. Complete Mediation: Does the reference monitor interface mediate security-sensitive oper-
ations on all system resources?

We describe how the mediation interface described above mediates all security-sensitive op-
erations.

3. Complete Mediation: How do we verify that the reference monitor interface provides com-
plete mediation?

We describe any formal means for verifying the complete mediation described above.

4. Tamperproof: How does the system protect the reference monitor, including its protection
system, from modification?

In modern systems, the reference monitor and its protection system are protected by the
operating system in which they run. The operating system must ensure that the reference
monitor cannot be modified and the protection state can only be modified by trusted computing
base processes.

5. Tamperproof: Does the system’s protection system protect the trusted computing base pro-
grams?

The reference monitor’s tamperproofing depends on the integrity of the entire trusted com-
puting base, so we examine how the trusted computing base is defined and protected.

6. Verifiable: What is basis for the correctness of the system’s trusted computing base?

We outline the approach that is used to justify the correctness of the implementation of all
trusted computing base code.

7. Verifiable: Does the protection system enforce the system’s security goals?

Finally, we examine how the system’s policy correctly justifies the enforcement of the system’s
security goals. The security goals should be based on the models in Chapter 5, such that it is
possible to test the access control policy formally.

While this is undoubtedly an incomplete list of questions to assess the security of a system,
we aim to provide some insight into why some operating systems cannot be secure and provide some
means to compare “secure” operating systems, even ones built via different approaches.

We briefly list some alternative approaches for further examination. An alternative definition
for penetration-resistant systems by Gupta and Gligor [122, 123] requires tamperproofing and com-
plete mediation, but defines “simple enough to verify” in terms of: (1) consistency of system global
variables and objects; (2) timing consistency of condition checks; and (3) elimination of undesirable



2.5. SUMMARY 21

system/user dependencies. We consider such goals in the definition of the tamperproofing require-
ments (particularly, number three) and the security goals that we aim to verify, although we do not
assess the impact of timing in this book in detail. Also, there has been a significant amount of work on
formal verification tools as applied to formal specifications of security for assessing the information
flows among system states [79, 172, 331]. For example, Ina Test and Ina Go are symbolic execution
tools that interpret the formal specifications of a system and its initial conditions, and compare the
resultant states to the expected conditions of those states. As the formal specification of systems and
expectations are complex, such tools have not achieved mainstream usage, but remains an area of
exploration for determining practical methods for verifying systems (e.g., [134, 132]).

2.5 SUMMARY

In this chapter, we define the fundamental terminology that we will use in this book to describe the
secure operating system requirements.

First, the concept of a protection system defines the system component that enforces the access
control in an operating system. A protection system consists of a protection state which describes
the operations that are permitted in a system and protection state operations which describe how
the protection state may be changed. From this, we can determine the operations that individual
processes can perform.

Second, we identify that today’s commercial operating systems use protection systems that fail
to truly enforce security goals. We define a mandatory protection system which will enforce security in
the face of attacks.

Third, we outline the architecture of an access enforcement mechanism that would be imple-
mented by a protection system. Such enforcement mechanisms can enforce a mandatory protection
state correctly if they satisfy the guarantees required of the reference monitor concept.

Finally, we define requirements for a secure operating system based on a reference monitor
and mandatory protection system. We then describe how we aim to evaluate the operating systems
described in this book against those secure operating system requirements.

Such a mandatory protection system and reference monitor within a mediating, tamperproof,
and verifiable TCB constitute the trust model of a system, as described in Chapter 1. This trust
model provides the basis for the enforcement of system security goals. Such a trust model addresses
the system threat model based on achievement of the reference monitor concept. Because the ref-
erence monitor mediates all security-sensitive operations, it and its mandatory protection state are
tamperproof, and both are verified to enforce system security goals, then is it possible to have a
comprehensive security model that enforces a system’s security goals.

Although today’s commercial operating systems fail to achieve these requirements in many
ways, a variety of operating systems designs in the past and that are currently available are working
toward meeting these requirements. Because of the interest in secure operating systems and the
variety of efforts being undertaken, it is more important than ever to determine how an operating



22 CHAPTER 2. ACCESS CONTROL FUNDAMENTALS

system design aims to achieve these requirements and whether the design approaches will actually
satisfy these secure operating system requirements.


