
CSE543 - Computer Security Page

Prof. Syed Rafiul Hussain
Department of Computer Science and Engineering

Pennsylvania State University

1

CSE543: Computer Security
Module: Web Security

CSE543 - Computer Security Page

Network vs. Web Security

2

CSE543 - Computer Security Page

Web Vulnerabilities	
• Web vulnerabilities surpassed OS vulnerabilities around 2005
‣ The “new” buffer overflow

3

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006

Web (XSS) Buffer Overflow

CSE543 - Computer Security Page

Components of the Web
• Multiple interacting components

4

Clients
(Browsers)

HTTP
Servers

Web
Applications

Backend

CSE543 - Computer Security Page

Web security: the high bits
• The largest distributed system in existence
• Multiple sources of threats, varied threat models
‣ Users
‣ Servers
‣ Web Applications
‣ Network infrastructure
‣ We shall examine various threat models, attacks, and defenses

• Another way of seeing web security is
‣ Securing the web infrastructure such that the integrity, confidentiality, and availability

of content and user information is maintained

5

CSE543 - Computer Security Page

Early Web Systems
• Early web systems provided a click-render-click cycle of acquiring web

content.
‣ Web content consisted of static content with little user interaction.

6

http://a.com/

http://c.com/

http://
b.com/

Webpage

http://
d.com/

http://
e.com/

<body>

CSE543 - Computer Security Page

HTTP: Hyper Text Transfer Protocol
• Browser sends HTTP requests to the server
‣ Methods: GET, POST, HEAD, …
‣ GET: to retrieve a resource (html, image, script, css,…)
‣ POST: to submit a form (login, register, …)
‣ HEAD (a HEAD request could it)

• Server replies with a HTTP response
• Stateless request/response protocol
‣ Each request is independent of previous requests
‣ Statelessness has a significant impact on design and implementation of applications

‣

7

CSE543 - Computer Security Page

Adding State to the Web:Cookies
• Cookies were designed to offload server state to browsers
‣ Not initially part of web tools (Netscape)
‣ Allows users to have cohesive experience
‣ E.g., flow from page to page,

• Someone made a design choice

‣ Use cookies to authenticate and authorize users
‣ E.g. Amazon.com shopping cart, WSJ.com

• Q: What is the threat model?

8

Browser
Server

Enters form data

Response + cookies

Browser
Server

Request + cookies

Returns data

Http is stateless protocol; cookies add state
Cookies

A cookie is a name/value pair
created by a website to store
information on your computer

http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif

CSE543 - Computer Security Page

Cookies
• An example cookie from my browser

Name session-token

Content "s7yZiOvFm4YymG….”

Domain .amazon.com

Path /

Send For Any type of connection

Expires Monday, September 08, 2031 7:19:41 PM

• Stored by the browser and used by the web applications

‣ used for authenticating, tracking, and maintaining specific information about users
‣ e.g., site preferences, contents of shopping carts
‣ data may be sensitive
‣ may be used to gather information about specific users

• Cookie ownership: Once a cookie is saved on your computer, only the website that created the cookie
can read it

9

CSE543 - Computer Security Page

Web Authentication via Cookies
• HTTP is stateless
‣ How does the server recognize a user who has signed in?

• Servers can use cookies to store state on client
‣ After client successfully authenticates, server computes an authenticator and gives it

to browser in a cookie
• Client cannot forge authenticator on his own (session id)

‣ With each request, browser presents the cookie
‣ Server verifies the authenticator

‣

10

CSE543 - Computer Security Page

A Typical Session with Cookies

11

client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof
(malicious clients shouldn’t be able to modify an existing authenticator)

How to design it?

CSE543 - Computer Security Page

Cookie Issues …
• New design choice means
‣ Cookies must be protected

• Against forgery (integrity)
• Against disclosure (confidentiality)

• Cookies not robust against web designer
 mistakes, committed attackers

‣ Were never intended to be
‣ Need the same scrutiny as any other tech.

�����������������������
���������������

��������������������� 12

CSE543 - Computer Security Page

Cookie Design 1: mygorilla.com
• Requirement: authenticate users on site

myschool.com

• Design:
1. set cookie containing hashed username
2. check cookie for hashed username

• Q: Is there anything wrong with this design?

User Server

13

CSE543 - Computer Security Page

Cookie Design 2: mygorilla.com
• Requirement: authenticate users on site

myschool.com

• Design:
1. set cookie containing encrypted username
2. check cookie for encrypted username

• Q: Is there anything wrong with this design?

User Server

14

CSE543 - Computer Security Page

Cookie Design 2: mygorilla.com
• Requirement: authenticate users on site

myschool.com

• Design:
1. set cookie containing encrypted + HMAC’d username
2. check cookie for encrypted + HMAC’d username

• Q: Is there anything wrong with this design?

User Server

15

CSE543 - Computer Security Page

Exercise: Cookie Design
• Design a secure cookie for myschool.com that meets the following

requirements
• Requirements
‣ Users must be authenticated (assume digest completed)
‣ Time limited (to 24 hours)
‣ Unforgeable (only server can create)
‣ Privacy-protected (username not exposed)
‣ Location safe (cannot be replayed by another host)

User Server

16

E{ks, ”host ip : timestamp : username”} + HMAC{ks, “…”}

CSE543 - Computer Security Page

Content from Multiple Sites
• Browser stores cookies from multiple websites
‣ Tabs, mashups, ...

• Q. What is the threat model?
• More generally, browser stores content from multiple websites
‣ HTML pages
‣ Cookies
‣ Flash
‣ Java applets
‣ JavaScript

• How do we isolate content from multiple sites?

17

CSE543 - Computer Security Page

Client Side Scripting
• Web pages (HTML) can embed dynamic contents (code) that can be

executed on the browser

• JavaScript
‣ embedded in web pages and executed inside browser

• Java applets
‣ small pieces of Java bytecodes that execute in browsers

‣

18

CSE543 - Computer Security Page

HTML and Scripting
<html>

 …

 <P>

<script>

var num1, num2, sum

num1 = prompt("Enter first number")

num2 = prompt("Enter second number")

sum = parseInt(num1) + parseInt(num2)

alert("Sum = " + sum)

</script>

• …

• </html>

19

Browser receives content, displays
HTML and executes scripts

Client-side scripting can access
(read/wrtie) the following
resources

• Local files on the client-side
host

• Webpage resources
maintained by the browser:
Cookies, Domain Object
Model (DOM) objects
• steal private information
• control what users see
• impersonate the user

CSE543 - Computer Security Page

Browser as an OS
• Web users visit multiple websites simultaneously
• A browser serves web pages (which may contain programs) from different

web domains
‣ i.e., a browser runs programs provided by mutually untrusted entities
‣ Running code one does not know/trust is dangerous
‣ A browser also maintains resources created/updated by web domains

• Browser must confine (sandbox) these scripts so that they cannot access
arbitrary local resources

• Browser must have a security policy to manage/protect browser-maintained
resources and to provide separation among mutually untrusted scripts

20

CSE543 - Computer Security Page

Same-Origin Policy
• A set of policies for isolating content (scripts and resources) across different

sites (origins)
‣ E.g., evil.org scripts cannot access bank.com resources.

• What is an origin?
‣ site1.com vs site2.com?

• Different hosts are different origins

‣ http://site.com vs https://site.com?
• Different protocols are different origins

‣ http://site.com:80 vs http://site.com:8080?
• Different ports are different origins

‣ http://site1.com vs http://a.site1.com?
• Establishes a hierarchy of origins

21

http://evil.org
http://bank.com
http://site.com
https://site.com
http://site.com:80
http://site.com:8080
http://a.site1.com

CSE543 - Computer Security Page

SOP: What it Controls?
• Same-origin policy applies to the following accesses:
‣ manipulating browser windows
‣ URLs requested via the XmlHttpRequest

• XmlHttpRequest is an API that can be used by web browser scripting languages to transfer XML
and other text data to and from a web server using HTTP, by establishing an independent and
asynchronous communication channel.

• used by AJAX

‣ manipulating frames (including inline frames)
‣ manipulating documents (included using the object tag)
‣ manipulating cookies

‣

22

CSE543 - Computer Security Page

Same-Origin Policy
• Principle: Any active code from an origin can read only information stored in

the browser that is from the same origin
‣ Active code: Javascript, VBScript,…
‣ Information: cookies, HTML responses, ...

23

Javascript
Origin A

Javascript
Origin B

Origin A
Data

Origin B
Data

Browser Origin ASOP

Origin B

CSE543 - Computer Security Page

Document Domain
• Scripts from two origins in the same domain may wish to interact
‣ www.example.com and program.example.com

• Any web page may set document.domain to a
‣ “right-hand, fully-qualified fragment of its current host name” (example.com, but not

ample.com)

• Then, all scripts in that domain may share access
‣ All or nothing

• NOTE: Applies “null” for port, so does not actually share with normal
example.com:80

24

http://www.example.com
http://program.example.com
http://example.com
http://ample.com
http://example.com:80

CSE543 - Computer Security Page

SOP Weaknesses
• Complete and partial bypasses exist
‣ Browser bugs
‣ Limitations if site hosts unrelated pages

• Example: Web server often hosts sites for unrelated parties

• http://www.example.com/account/

• http://www.example.com/otheraccount/

• Same-origin policy allows script on one page to access document properties from another

‣ Functionality often requires SOP bypass!
• Many advertisement companies hire people to find and exploit SOP browser bugs for cross-domain

communication

• E.g., JSON with padding (JSONP)

• Cross-site scripting
‣ Execute scripts from one origin in the context of another

25

CSE543 - Computer Security Page

Cross Site Scripting (XSS)
• Recall the basics
‣ scripts embedded in web pages run in browsers
‣ scripts can access cookies

• get private information

‣ and manipulate DOM objects
• controls what users see

‣ scripts controlled by the same-origin policy

• Why would XSS occur
‣ Web applications often take user inputs and use them as part of webpage

26

CSE543 - Computer Security Page

Cross-Site Scripting
• Assume the following is posted to a message board on your favorite website which

will be displayed to everyone:

Hello message board.

<SCRIPT>malicious code</SCRIPT>  
This is the end of my message.

• Now a reasonable ASP (or some other dynamic content generator) uses the input
to create a webpage (e.g., blogger nonsense).

• Anyone who view the post on the webpage can have local authentication cookies
stolen.

• Now a malicious script is running

‣ Applet, ActiveX control, JavaScript…

27

CSE543 - Computer Security Page

Cross-Site Scripting
• Script from attacker is executed in the victim origin’s context
‣ Enabled by inadequate filtering on server-side

• Effects of Cross-Site Scripting
‣ Can manipulate any DOM component on victim.com
‣ Control links on page
‣ Control form fields (e.g. password field) on this page and linked pages.
‣ Can infect other users: MySpace.com worm

• Three types
‣ Reflected
‣ Stored
‣ DOM Injection

28

CSE543 - Computer Security Page

Reflected XSS

29

CSE543 - Computer Security Page

MySpace.com (Samy worm)
• Users can post HTML on their pages
‣ MySpace.com ensures HTML contains no

 <script>, <body>, onclick,

‣ However, attacker find out that a way to include Javascript within CSS tags:
 <div style=“background:url(‘javascript:alert(1)’)”>
‣ And can hide “javascript” as “java\nscript”

• With careful javascript hacking:
‣ Samy’s worm: infects anyone who visits an infected MySpace page … and adds

Samy as a friend.
‣ Samy had millions of friends within 24 hours.

• More info: http://namb.la/popular/tech.html

30

http://MySpace.com

CSE543 - Computer Security Page

Web Systems Evolve ...
• The web has evolved from a document retrieval and rendering to sophisticated

distributed application platform providing:
‣ dynamic content
‣ user-driven content
‣ interactive interfaces
‣ multi-site content
‣

• With new interfaces comes new vulnerabilities ...

31

CSE543 - Computer Security Page

Cross-site Request Forgery
• An XSS attack exploits the trust the browser has in the server to filter input

properly
• A CSRF attack exploits the trust the server has in a browser
‣ Authorized user submits unintended request

• Attacker Maria notices weak bank URL

• Crafts a malicious URL

• Exploits social engineering to get Bob to click the URL

• Can make attacks not obvious

‣ Defense: Referer header
• Bank does not accept request unless referred to (linked from) the bank’s own webpage
• Disadvantage: privacy issues

32

CSE543 - Computer Security Page

CSRF Explained
• More Example:
‣ User logs in to bank.com. Forgets to sign off.
‣ Session cookie remains in browser state

• Then user visits another site containing:
 <form name=F action=http://bank.com/BillPay.php>
 <input name=recipient value=badguy> …

 <script> document.F.submit(); </script>

‣ Browser sends user auth cookie with request
‣ Transaction will be fulfilled

• Problem: The browser is a confused deputy; it is serving both the websites
and the user and gets confused who initiated a request

• https://www.youtube.com/watch?v=5joX1skQtVE&feature=emb_logo

33

https://www.youtube.com/watch?v=5joX1skQtVE&feature=emb_logo

CSE543 - Computer Security Page

HTTP Response Splitting
• Again, due to insufficient server-side filtering
‣ Cookies can be set to arbitrary values to split HTTP response

‣ Can be used for page hijacking through proxy server

34

CSE543 - Computer Security Page

Session Hijacking
• Virtual sessions are implemented in many ways
‣ session ID in cookies, URLs
‣ If I can guess, infer, or steal the session ID, game over
‣ Login page using HTTPS, but subsequent communication is not! Cookies sent

in cleartext
‣ If your bank encodes the session ID in the url, then a malicious attacker can

simply keep trying session IDs until gets a good one.

‣ ... note that if the user was logged in, then the attacker has full control over
that account.

‣ Countermeasure: HTTPS, secure cookie design

35

http://www.mybank.com/loggedin?sessionid=11

http://www.mybank.com/loggedin?sessionid=11

CSE543 - Computer Security Page

Privacy
• Have you ever …
‣ Searched for a product on some website
‣ ... Advertisement for the same product shows up on another website?
‣ Reason: Tracking! Profile users for targeted advertisement

• Study by WSJ found (2012)
‣ 75% of top 1000 sites feature social networking plugins

• Can match users’ identities with web-browsing activities

• abine and UC Berkeley found
‣ Online tracking is 25% of browser traffic

• 20.28% google analytics

• 18.84% facebook

36

http://www.abine.com/

http://www.abine.com/blog/2012/how-facebook-buttons-can-track-you-across-the-web/

CSE543 - Computer Security Page

Privacy
• Tracking is done in following configurations

• “Tracker” code is from
‣ Social networking sites
‣ Analytics
‣ Advertisement agencies
‣ ...

37

Protecting Browser State from Web Privacy Attacks : Jackson et al.

CSE543 - Computer Security Page

Privacy
• Objective of tracking code is to maintain state of users across multiple sites
‣ Build profile of sites visited

• Semi-cooperative tracking done by
‣ Javascript

• e.g., Cached redirect URLs

‣ Web bugs
• 1x1 images

• Ever wondered why email clients have “Display images”?

‣ IFrames
‣ Cookies

• Traditional, flash, HTML5 LocalStorage, …

• Tasks: (1) get your tracking code running; (2) store state; (3) send to server

38

CSE543 - Computer Security Page

Third-Party Cookies
• A third-party cookie is a cookie from a website different from the website

being viewed
• Browsers can block third-party cookies
‣ Different browsers have different variations

• Some completely block

• “Do Not Track” - except Chrome

• Limitation
‣ Other ways exist to store state (more)

• Canvas fingerprinting

• Evercookies

• “Cookie syncing”

• OpenWPM - https://github.com/citp/OpenWPM

39

https://github.com/citp/OpenWPM

CSE543 - Computer Security Page

Unintended Tracking
• “Data” access not all governed by same-origin policy
‣ Specified: HTML DOM, cookies
‣ What about

• Web caches?
‣ Tracking notes time to fetch URL

‣ If URL in cache, served faster

• Visited links?
‣ Mostly fixed in current browsers

• Take-away: Difficult to prevent tracking if any browser state is stored
• To mitigate tracking
‣ Reset browser regularly, store no state, visit random sites!

40

CSE543 - Computer Security Page

Browsers
• Browsers are the new operating systems
• Huge, complex systems that support
‣ Many document types, structures, e.g., HTML, XML, ...
‣ Complex rendering, e.g., CSS, CSS 2.0
‣ Many “program/scripting” languages, e.g., JavaScript
‣ Dynamic content, e.g., AJAX
‣ Native code execution, e.g., ActiveX

• Virtualized computers in a single program ...
41

CSE543 - Computer Security Page

Browser Security
• We don’t have the ability to control this much complexity, so we have to try

other things ...
‣ Restricting functionality, e.g., NoScript
‣ Process Isolation, e.g., OP, Chrome

• Read: http://www.google.com/googlebooks/chrome/

42

Process 1

http://a.com/

http://c.com/

http://
b.com/

TAB 1

http://
d.com/

http://
e.com/

<body>

Process 2

http://a.com/

http://c.com/

http://
b.com/

TAB 2

http://
d.com/

http://
e.com/

<body>

Process 3

http://a.com/

http://c.com/

http://
b.com/

TAB 3

http://
d.com/

http://
e.com/

<body>

Main Browser Process

http://www.google.com/googlebooks/chrome/

CSE543 - Computer Security Page

OP Browser
• What did they do to build a more secure browser?
• (1) Decompose the browser into multiple processes

• Called “Privilege Separation”

• What are the permissions of a set of processes forked from the same parent?

43

CSE543 - Computer Security Page

OP Browser
• What did they do to build a more secure browser?
• (1) Decompose the browser into multiple processes

• Called “Privilege Separation”

• What are the permissions of a set of processes forked from the same parent?
Same as parent

• (2) Need different policy for each process
• Multiple subjects in the access control policy

• What browser processes are trusted to manage the permissions?

44

CSE543 - Computer Security Page

OP Browser
• What did they do to build a more secure browser?
• (1) Decompose the browser into multiple processes

• Called “Privilege Separation”

• What are the permissions of a set of processes forked from the same parent?
Same as parent

• (2) Need different policy for each process
• Multiple subjects in the access control policy

• What browser processes are trusted to manage the permissions? None
• (3) Need mandatory access control

• Subjects cannot escape confined “protection domain”

45

CSE543 - Computer Security Page

OP Browser
• How do you determine what parts of the browser should be a “subject” and

identify the permissions to be assigned to that subject?
• One subject (client)

• Code that requires the same permissions to run
• E.g., a particular web page

• Another subject (server)
• Code that manages the same permissions
• E.g., UI, network, and storage subsystems

• How do we determine the permission assignments?

46

CSE543 - Computer Security Page

OP Browser
• How do you determine what parts of the browser should be a “subject” and

identify the permissions to be assigned to that subject?
• One subject (client)

• Code that requires the same permissions to run
• E.g., a particular web page

• Another subject (server)
• Code that manages the same permissions
• E.g., UI, network, and storage subsystems

• How do we determine the permission assignments?
• Least privilege
• Information flow

47

CSE543 - Computer Security Page

Applications/Plugins
• A plugin is a simply a program used by a browser to process content
‣ MIME type maps content to plugin
‣ Like any old application (e.g., RealAudio)
‣ Newer browsers have autoinstall features

• Plugins are sandboxed, but have been circumvented in various ways
‣ Interesting design point - Google Chrome allows “native” plugins but still preserves

(some) security!
• Native Client sandbox for running compiled C/C++ code

• Moral: beware of plugins

48

CSE543 - Computer Security Page

Social Engineering
• Attacks another weak point -- users!
• Phishing
‣ Lure users using bait (fishing) to steal valuable information
‣ Common technique: mimic original site and use similar URL

• www.aol.com vs www.ao1.com

• Combine with other techniques e.g., turn off address bar

49

http://www.aol.com
http://www.ao1.com

CSE543 - Computer Security Page

Drive by downloads
• Using a deceptive means to get someone to install something on their own

(spyware/adware)

‣ Often appears as an error message on the browser

‣ Sometimes, user does not click anything at all!

‣ Concern: extortion-ware -- pay us $ to unencrypt your data
• Used to demand $ for uninstall of annoying software

‣ “biggest cybersecurity threat” - Kaspersky

• Answer: Back up stuff externally that you really want!
50

CSE543 - Computer Security Page

Web Applications: Injection
• Attacker that can inject arbitrary inputs into the system can control it in

subtle ways
‣ interpreter injection - if you can get PHP to “eval” your input, then you can run

arbitrary code on the browser ...
‣ e.g., leak cookies to remote site (e.g., session hijacking)

‣ filename injection - if you can control what a filename is in the application, then you
can manipulate the host

• Poorly constructed applications build filename based on user input or input URLs, e.g., hidden
POST fields
‣ Examples: Directory traversal, PHP file inclusion

• e.g., change temporary filename input to ~/.profile

51

$INPUT = “Alice\;mail($to, $subject, $body);”

<FORM METHOD=POST ACTION="../cgi-bin/mycgi.pl">
<INPUT TYPE="hidden" VALUE="~/.profile" NAME="LOGFILE">
</FORM>

CSE543 - Computer Security Page

SQL Injection
• An injection that exploits the fact that many inputs to web applications are
‣ under control of the user
‣ used directly in SQL queries against back-end databases

• Bad form inserts escaped code into the input ...

• This vulnerability became one of the most widely exploited and costly in web
history.
‣ Industry reported as many as 16% of websites were vulnerable to SQL injection in

2007
‣ This may be inflated, but has been an ongoing problem.

52

xUserId = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = " + xUserId;

CSE543 - Computer Security Page

SQL Injection
• An injection that exploits the fact that many inputs to web applications are
‣ under control of the user
‣ used directly in SQL queries against back-end databases

• Bad form inserts escaped code into the input ...

• This vulnerability became one of the most widely exploited and costly in web
history.
‣ Industry reported as many as 16% of websites were vulnerable to SQL injection in

2007
‣ This may be inflated, but has been an ongoing problem.

53

SELECT email, login, last_name
 FROM user_table
 WHERE email = 'x'; DROP TABLE members; --';

CSE543 - Computer Security Page

Preventing Web System Attacks
• Largely just applications
‣ In as much as application are secure
‣ Command shells, interpreters, are dangerous

• Broad Approaches
‣ Validate input (also called input sanitization)
‣ Limit program functionality

• Don’t leave open ended-functionality
‣ Execute with limited privileges
‣ Input tracking, e.g., taint tracking
‣ Source code analysis, e.g., c-cured

54

CSE543 - Computer Security Page

Conclusion
• Web security has to consider threat models involving several

parties
‣ Web browsers
‣ Web servers
‣ Web applications
‣ Users
‣ Third-party sites
‣ Other users

• Security is so difficult in the web because it was largely retrofitted
• zzz

55

