CSE543 - Computer Security



Network vs. Web Security PennState

CSE543 - Computer Securit Page 2




Web Vulnerabilities (@) pennstate

* Web vulnerabilities surpassed OS vulnerabilities around 2005

» The “new’ buffer overflow

25

20

15

10

2001 2002 2003 2004 2005 2006

— Web (XSS) — Buffer Overflow

CSE543 - Computer Securit Page 3




Components of the Web (@) Pennstate

* Multiple interacting components

Qvi upi

Web
Applications

™~

MySsQo

Servers

w!

Backend




Web security: the high bits @) pennstate

* The largest distributed system in existence

* Multiple sources of threats, varied threat models

»  Users

» Servers

»  Web Applications

» Network infrastructure

»  We shall examine various threat models, attacks, and defenses
* Another way of seeing web security is

» Securing the web infrastructure such that the integrity, confidentiality, and availability

of content and user information is maintained

CSE543 - Computer Securit Page 5




Early Web Systems @) pennstate

* Early web systems provided a click-render-click cycle of acquiring web
content.

» Web content consisted of static content with little user interaction.

Webpage

http://a.com/<img>

http:// http://c.com/ AIgEl
e.com/ <imas d.com/
<IMG> J <IMG>

CSE543 - Computer Securit Page ©6




HTTP: Hyper Text Transfer Protocol (§&) Pennstate

* Browser sends HT TP requests to the server
» Methods: GET, POST, HEAD, ...
» GET: to retrieve a resource (html, image, script, css,...)

» POST: to submit a form (login, register, ...)
» HEAD (a HEAD request could it)

» Server replies with a HT TP response
» Stateless request/response protocol

» Each request is independent of previous requests

» Statelessness has a significant impact on design and implementation of applications
»

CSE543 - Computer Securit Page 7




Adding State to the Web:Cookies (@) Pennstate

» Cookies were designed to offload server sta

FOwsers
Enters form data

» Not initially part of web tools (Netscape) 4

. . Response + cookies
» Allows users to have cohesive experienc

» E.g., flow from page to page, Request + cookies

»  Someone made a design choice

Returns data

» Use cookies to authenticate and authoriAe users

Cookies
» E.g.Amazon.com shopping cart,WS].com A cookie is a name/value pair

+ Q:What is the threat model? created by a website to store
| ' information on your computer

CSE543 - Computer Securit Page 8



http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif

C O O kl eS @ PennState

* An example cookie from my browser

Name session-token

Content "s7yZiOvFm4YymG...”

Domain .amazon.com

Path /

Send For Any type of connection

Expires Monday, September 08,2031 7:19:41 PM

» Stored by the browser and used by the web applications
» used for authenticating, tracking, and maintaining specific information about users
» e.g., site preferences, contents of shopping carts
» data may be sensitive

» may be used to gather information about specific users

* Cookie ownership: Once a cookie is saved on your computer, only the website that created the cookie
can read it

CSE543 - Computer Securit Page 9




Web Authentication via Cookies () Pennstate

e« HT TP is stateless

» How does the server recognize a user who has signed in!?

* Servers can use cookies to store state on client

» After client successfully authenticates, server computes an authenticator and gives it
to browser in a cookie

* Client cannot forge authenticator on his own (session id)

» With each request, browser presents the cookie

» Server verifies the authenticator

CSE543 - Computer Securit Page 10




A Typical Session with Cookies (@) pennstare

client server

Verify that this
client is authorized

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof
(malicious clients shouldn’t be able to modify an existing authenticator)

How to design it?

CSE543 - Computer Securit

Page 11



Cookie Issues ... (@) pennstate

*  New design choice means

»  Cookies must be protected
* Against forgery (integrity)

7
(<

* Against disclosure (confidentiality)

» Cookies not robust against web designer
mistakes, committed attackers

»  Were never intended to be
» Need the same scrutiny as any other tech.

2IRIEIEREEEEREEREERIEEREREREEEE[E
2] R R R R )

-

-

-

-

D&
|
|
|
R
|
|
|
|
DI
|

CSE543 - Computer Securit



Cookie Design 1: mygorilla.com (@) Pennstate

* Requirement: authenticate users on site

myschool.com

* Design:
|. set cookie containing hashed username

2. check cookie for hashed username

User P o Server

* Q:ls there anything wrong with this design!?

CSE543 - Computer Securit Page 13




Cookie Design 2: mygorilla.com (@) Pennstate

* Requirement: authenticate users on site

myschool.com

* Design:
1. set cookie containing encrypted username

2. check cookie for encrypted username

User P o Server

* Q:ls there anything wrong with this design!?

CSE543 - Computer Securit Page 14




Cookie Design 2: mygorilla.com (@) Pennstate

* Requirement: authenticate users on site

myschool.com

* Design:
1. set cookie containing encrypted + HMAC’d username
2. check cookie for encrypted + HMAC'd username

User P o Server

* Q:ls there anything wrong with this design!?

CSE543 - Computer Securit Page 15




Exercise: Cookie Design (@) pennstate

* Design a secure cookie for myschool.com that meets the following
requirements

* Requirements

» Users must be authenticated (assume digest completed)
» Time limited (to 24 hours)

» Unforgeable (only server can create)

» Privacy-protected (username not exposed)

» Location safe (cannot be replayed by another host)

User P o Server

E{ks,” host_ip : timestamp : username” } + HMAC {ks, “...”"}

CSE543 - Computer Securit Page 16




Content from Multiple Sites (@) pennstate

* Browser stores cookies from multiple websites

» Tabs, mashups, ...
 Q.What is the threat model?

* More generally, browser stores content from multiple websites
» HTML pages
» Cookies

» Flash

» Java applets

» JavaScript

* How do we isolate content from multiple sites!?

CSE543 - Computer Securit Page 17




Client Side Scripting (@) pennstate

* Web pages (HTML) can embed dynamic contents (code) that can be
executed on the browser

» JavaScript

» embedded in web pages and executed inside browser

* |ava applets

» small pieces of Java bytecodes that execute in browsers

4

CSE543 - Computer Securit Page 18




HTML and Scripting (§8) Pennstate

<html> Browser receives content, displays
HTML and executes scripts

<p>
Sscript> Client-side scripting can access
var num |, num2, sum (read/wrtie) the following
num| = prompt("Enter first number") resources
num2 = prompt("Enter second number") * Local files on the client-side
sum = parselnt(numl) + parselnt(num?2) host
alert("Sum =" + sum) . We.bpa.ge FESOUNEEs
maintained by the browser:
</script> Cookies, Domain Object
‘ Model (DOM) objects
* </html> * steal private information

* control what users see
* impersonate the user

CSE543 - Computer Securit Page 19




Browser as an OS @) pennsiate

* Web users visit multiple websites simultaneously

* A browser serves web pages (which may contain programs) from different
web domains

» i.e.,,a browser runs programs provided by mutually untrusted entities
» Running code one does not know/trust is dangerous

» A browser also maintains resources created/updated by web domains

* Browser must confine (sandbox) these scripts so that they cannot access
arbitrary local resources

* Browser must have a security policy to manage/protect browser-maintained
resources and to provide separation among mutually untrusted scripts

CSE543 - Computer Securit Page 20




Same-0rigin Policy (@) pennstate

» A set of policies for isolating content (scripts and resources) across different
sites (origins)

» E.g., evil.org scripts cannot access bank.com resources

* What is an origin!? g
» sitel.com vs site2.com!? ‘/eg T eson
» Different hosts are different origins %@ e,
» http://site.com vs https://site.com? QL S

* Different protocols are different origins

» http://site.com:80 vs http://site.com:8080?

* Different ports are different origins

www.site-b.com

» http://sitel.com vs http://a.sitel.com?

 Establishes a hierarchy of origins

CSE543 - Computer Securit Page 21



http://evil.org
http://bank.com
http://site.com
https://site.com
http://site.com:80
http://site.com:8080
http://a.site1.com

SOP: What it Controls? (&) pennstate

* Same-origin policy applies to the following accesses:
» manipulating browser windows
» URLs requested via the XmlHttpRequest

» XmlHttpRequest is an API that can be used by web browser scripting languages to transfer XML

and other text data to and from a web server using HT TP, by establishing an independent and
asynchronous communication channel.

* used by AJAX
» manipulating frames (including inline frames)

» manipulating documents (included using the object tag)

» manipulating cookies

CSE543 - Computer Securit

Page 22



Same-Origin Policy

@ PennState

* Principle: Any active code from an origin can read only information stored in
the browser that is from the same origin

» Active code: Javascript,VBScript,...

» Information: cookies, HTML responses, ...

CSE543 - Computer Securit

(

Browser

ee LJN_ 7 OriginA
.o s i\, Javascript

SOP T~

O Javascript

f///] >

O Origin B /

Origin A

Origin B

ge 23



DOcument DOmain @ PennState

* Scripts from two origins in the same domain may wish to interact

»  www.example.com and program.example.com

* Any web page may set document.domain to a

»  “right-hand, fully-qualified fragment of its current host name” (example.com, but not
ample.com)

* Then,all scripts in that domain may share access
»  All or nothing

*  NOTE:Applies “null” for port, so does not actually share with normal
example.com:80

CSE543 - Computer Securit Page 24



http://www.example.com
http://program.example.com
http://example.com
http://ample.com
http://example.com:80

SOP Weaknesses (&) rennsta

» Complete and partial bypasses exist

» Browser bugs

» Limitations if site hosts unrelated pages
* Example:Web server often hosts sites for unrelated parties
* http://www.example.com/account/
* http://www.example.com/otheraccount/

» Same-origin policy allows script on one page to access document properties from another

» Functionality often requires SOP bypass!

* Many advertisement companies hire people to find and exploit SOP browser bugs for cross-domain
communication o

+ E.g.,JSON with padding (JSONP)
* Cross-site scripting

» Execute scripts from one origin in the context of another

CSE543 - Computer Securit Page 25




Cross Site Scripting (XSS) (@) ennstate

 Recall the basics

» scripts embedded in web pages run in browsers

» scripts can access cookies

* get private information

» and manipulate DOM objects

 controls what users see

» scripts controlled by the same-origin policy

* Why would XSS occur

» Web applications often take user inputs and use them as part of webpage

CSE543 - Computer Securit Page 26




Cross-Site Scripting (@) pennstate

* Assume the following is posted to a message board on your favorite website which
will be displayed to everyone:

Hello message board.

<SCRIPT>malicious code</SCRIPT>
This is the end of my message.

* Now a reasonable ASP (or some other dynamic content generator) uses the input
to create a webpage (e.g., blogger nonsense).

* Anyone who view the post on the webpage can have local authentication cookies
stolen.

* Now a malicious script is running

»  Applet, ActiveX control, JavaScript...

CSE543 - Computer Securit Page 27




Cross-Site Scripting (@) pennstate

» Script from attacker is executed in the victim origin’s context

» Enabled by inadequate filtering on server-side

» Effects of Cross-Site Scripting
» Can manipulate any DOM component on victim.com
» Control links on page
» Control form fields (e.g. password field) on this page and linked pages.

» Can infect other users: MySpace.com worm

* Three types
» Reflected
» Stored
» DOM Injection

CSE543 - Computer Securit Page 28




Reflected XSS rem

name _GET/| "name
echo "Welcome $name<br>

<form method="get" action="index.php">
<input type="text" name="name" /><br />
<input type="submit" value="submit" />
</form>

(_ Connecting... | = |

@ I localhost/index.php?name=me<script>alert('hi')%3B+<%2Fscript> *® |g' Google CUR A I ¢

CSE543 - Computer Securit Page 29



MySpace.com (Samy worm) @) pennsiac

» Users can post HTML on their pages

» MySpace.com ensures HTML contains no

<script>, <body>, onclick, <a href=javascript://>
» However, attacker find out that a way to include Javascript within CSS tags:
<div style="background:url(’javascript:alert(1l)’)"”>
» And can hide “javascript” as “java\nscript”
* With careful javascript hacking:

» Samy’s worm: infects anyone who visits an infected MySpace page ... and adds
Samy as a friend.

» Samy had millions of friends within 24 hours.

* More info:  http://namb.la/popular/tech.html

CSE543 - Computer Securit Page 30



http://MySpace.com

Web Systems Evolve ... (@) pennstate

* The web has evolved from a document retrieval and rendering to sophisticated

distributed application platform providing:
» dynamic content

» user-driven content

» interactive interfaces

» multi-site content
> ...

v — =R \\ \
e : - Py
- N ¢
- - : . LR 2
5 S et Lo - 1:4% —\ Wa A ’
— v Dy S 4 -
.: .- o] FACLL \,‘ )_ - A N vy % ' - _e., -
& . -
(r“-‘\';‘ - J‘ ; 2 T 0 ‘."‘ L o -
. ‘ \ ".‘ a0 L ) = A . - Ny - ‘-‘ _— ~——
- \‘ “' N .v"‘. \- - ' 4 x.
e - - \ D) L
=  g 2 VT i o geull® TR et \ ~
v { S e ~ Ak A— " 0% > / v A
SR T 3 - | - Q > ‘ Y
. % ‘. iy W * 0 ’ A N "y 1
. P ASH) a
; = &

- i A [
7‘- - . " 13
= SN

«

- ~
= .
( L .
Y e .
v [ T 3 ¥
:
!

= g - b

2 B 3 (o Maeld 8
SA vk S 'S = M
15 . '-.
2 -~

0/

—
.

<

| vy
” s
A=

, -
T
i

1
o

* With new interfaces comes new vulnerabilit

CSE543 - Computer Securit Page 31




Cross-site Request Forgery (@) pennstate

* An XSS attack exploits the trust the browser has in the server to filter input
properly
» A CSRF attack exploits the trust the server has in a browser

» Authorized user submits unintended request

¢ AttaCkeI" Mal"ia nOticeS Weal( banl( URL GET http://bank.com/transfer.do?acct=BOB&amount=100 HTTP/1l.1

* Crafts a malicious URL http://bank.com/transfer.do?acct=MARIA&amount=100000

* Exploits social engineering to get Bob to click the URL

<a href="http://bank.com/transfer.do?acct=MARIA&amount=100000">View my Pictures!</a>
* Can make attacks not obvious

<img src="http://bank.com/transfer.do?acct=MARIA&amount=100000" width="1" height="1" border="0">

» Defense: Referer header

* Bank does not accept request unless referred to (linked from) the bank’s own webpage

* Disadvantage: privacy issues

CSE543 - Computer Securit

Page 32



CSRF Explained (@) pennsiate

* More Example:

» User logs in to bank.com. Forgets to sign off.

» Session cookie remains in browser state

* Then user visits another site containing:

<form name=F action=http://bank.com/BillPay.php>

<input name=recipient value=badguy> ..

<script> document.F.submit(); </script>

» Browser sends user auth cookie with request

» Transaction will be fulfilled

* Problem:The browser is a confused deputy; it is serving both the websites
and the user and gets confused who initiated a request

 https://www.youtube.com/watch?v=5joX | skQtVE&feature=emb_logo

CSE543 - Computer Securit Page 33



https://www.youtube.com/watch?v=5joX1skQtVE&feature=emb_logo

HTTP Response Splitting (§8) Pennstate

* Again, due to insufficient server-side filtering

» Cookies can be set to arbitrary values to split HT TP response

String author = request.getParameter (AUTHOR PARAM) ;

Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);

HTTP/1.1 200 OK
HTTP/1.1 200 OK

Set-Cookie: author=Wiley Hacker

Set-Cookie: author=Jane Smith
HTTP/1.1 200 OK

» Can be used for page hijacking through proxy server

CSE543 - Computer Securit Page 34




Session Hijacking (@) pennsiate

* Virtual sessions are implemented in many ways

» session ID in cookies, URLs
» If | can guess, infer, or steal the session |ID, game over

» Login page using HT TPS, but subsequent communication is not! Cookies sent
in cleartext

» If your bank encodes the session ID in the url, then a malicious attacker can
simply keep trying session |Ds until gets a good one.

» ... note that if the pserwasjogged in, thegethe attacker hasifull control over
that account.

» Countermeasure: HT TPS, secure cookie design

CSE543 - Computer Securit Page 35



http://www.mybank.com/loggedin?sessionid=11

P r I V a Cy @ PennState

* Have you ever ...

» Searched for a product on some website
» ...Advertisement for the same product shows up on another website!

» Reason: Tracking! Profile users for targeted advertisement

* Study by WSJ found (2012)

» /5% of top 1000 sites feature social networking plugins

» Can match users’ identities with web-browsing activities
» abine and UC Berkeley found

» Online tracking is 25% of browser traffic

Online tracking consumes a :
quarter of your browser’s effort. 20.28%

» 20.28% google analytics
» [8.84% facebook

facebook -
18.84%

http://www.abine.com/

CSE543 - Computer Securit Page 36



http://www.abine.com/blog/2012/how-facebook-buttons-can-track-you-across-the-web/

Privacy

@ PennState

* Tracking is done in following configurations

Protecting Browser State from Web Privacy Attacks : Jackson et al.

NORMAL
r—=—="

| NORMAL |
R —

No tracking

e “Tracker” code is from
» Social networking sites
» Analytics

» Advertisement agencies
> ...

CSE543 - Computer Securit

TRACKER NORMAL
r= - — r= = = "

| NORMAL | | TRACKER |
R — N |

Noncooperative Semicooperative

TRACKER
r= = - "

| TRACKER |
|

Cooperative

Page 37




P r I V a Cy @ PennState

» Obijective of tracking code is to maintain state of users across multiple sites

» Build profile of sites visited

* Semi-cooperative tracking done by
» Javascript
* e.g., Cached redirect URLs
» Web bugs

* Ixl images

* Ever wondered why email clients have “Display images™?

» |Frames

» Cookies
* Traditional, flash, HTML5 LocalStorage, ...

* Tasks: (l) get your tracking code running; (2) store state; (3) send to server

CSE543 - Computer Securit Page 38




Third-Party Cookies (@) pennstate

* A third-party cookie is a cookie from a website different from the website
being viewed
* Browsers can block third-party cookies

» Different browsers have different variations

* Some completely block

* “Do Not Track” - except Chrome
e Limitation

»  Other ways exist to store state (more)

* Canvas fingerprinting NORMAL
* Evercookies [ ————
» “Cookie syncing” | TRACKER |

L___J

* OpenWPM - https://github.com/citp/OpenVVPM

Semicooperative

CSE543 - Computer Securit Page 39



https://github.com/citp/OpenWPM

Unintended Iracking (@) pennstate

» “Data” access not all governed by same-origin policy
» Specified: HTML DOM, cookies

TRACKER
» VVhat about i }
| NORMAL |
* Web caches! S
» Tracking notes time to fetch URL .  colors blues )
a:visited { color: red; }
» If URL in cache, served faster
if (document.getElementById('jones').curren tStyle.color=="red')
o o o document.writeln('<p>Hello! I see you\'ve been to Jones.');
° VISIted IInI(S? document.writeln('Don\'t buy from Jones - their widgets');

document.writeln('are made from recycled babies.<\/p>');

» Mostly fixed in current browsers

» Take-away: Difficult to prevent tracking if any browser state is stored

* o mitigate tracking

» Reset browser regularly, store no state, visit random sites!

CSE543 - Computer Securit Page 40




Browsers @) pennsiate

* Browsers are the new operating systems

* Huge, complex systems that support
» Many document types, structures, e.g., HTML, XML, ...
» Complex rendering, e.g., CSS, CSS 2.0
» Many “program/scripting” languages, e.g., JavaScript
» Dynamic content, e.g., AJAX

» Native code execution, e.g., ActiveX

* Virtualized computers in a single program ...

CSE543 - Computer Securit Page 41




Browser Security @) rennsuae

* We don't have the ability to control this much complexity, so we have to try
other things ...

» Restricting functionality, e.g., NoScript

» Process Isolation, e.g., OF, Chrome

* Read: http://www.google.com/googlebooks/chrome/

TAB 1 TAB 2 TAB 3

http://a.com/<img> http://a.com/<img>

http://a.com/<img>

http://c.com/
<img>

—

( Process 1 } ( Process 2 ) < Process 3 )

Main Browser Process

CSE543 - Computer Securit Page 42



http://www.google.com/googlebooks/chrome/

OP Browser ) pennstate

* What did they do to build a more secure browser?

* (1) Decompose the browser into multiple processes

* Called “Privilege Separation”

* What are the permissions of a set of processes forked from the same parent!?

CSE543 - Computer Securit Page 43




OP Browser ) pennstate

* What did they do to build a more secure browser?

* (1) Decompose the browser into multiple processes

* Called “Privilege Separation”

* What are the permissions of a set of processes forked from the same parent!?
Same as parent

* (2) Need different policy for each process

* Multiple subjects in the access control policy

* What browser processes are trusted to manage the permissions?

CSE543 - Computer Securit Page 44




OP Browser ) pennstate

* What did they do to build a more secure browser?

* (1) Decompose the browser into multiple processes

* Called “Privilege Separation”

* What are the permissions of a set of processes forked from the same parent!?
Same as parent

* (2) Need different policy for each process

* Multiple subjects in the access control policy
* What browser processes are trusted to manage the permissions? None
* (3) Need mandatory access control

* Subjects cannot escape confined “protection domain™

CSE543 - Computer Securit Page 45




OP Browser ) pennstate

* How do you determine what parts of the browser should be a “subject™ and
identify the permissions to be assigned to that subject!?

* One subject (client)
* Code that requires the same permissions to run
* E.g,a particular web page

* Another subject (server)
* Code that manages the same permissions

* E.g., Ul, network, and storage subsystems

* How do we determine the permission assignments!?

CSE543 - Computer Securit Page 46




OP Browser ) pennstate

* How do you determine what parts of the browser should be a “subject™ and
identify the permissions to be assigned to that subject!?

* One subject (client)
* Code that requires the same permissions to run
* E.g,a particular web page
* Another subject (server)
* Code that manages the same permissions
* E.g., Ul, network, and storage subsystems
* How do we determine the permission assignments!?
* Least privilege

 |Information flow

CSE543 - Computer Securit Page 47




Applications/Plugins (@) Pennstate

* A pluginis a simply a program used by a browser to process content

» MIME type maps content to plugin
» Like any old application (e.g., RealAudio)

» Newer browsers have autoinstall features

* Plugins are sandboxed, but have been circumvented in various ways

» Interesting design point - Google Chrome allows “native” plugins but still preserves
(some) security!

* Native Client sandbox for running compiled C/C++ code

* Moral: beware of plugins

CSE543 - Computer Securit Page 48




SOClaI Englneerlng PennState

» Attacks another weak point -- users!
» Phishing

» Lure users using bait (fishing) to steal valuable information

» Common technique: mimic original site and use similar URL

c www.aol.com vs www.aol.com

* Combine with other techniques e.g., turn off address bar

“ o) ses : Eval
Citibank E-mail verification - Message (HTML) =Joed (@ Welcome to Citi - Microsoft Internet Explorer B
File Edit View Insert Format Tools Actions Help File Edit View Favorites Tools Help ,',' i
CoReply €FdReply to Al 4 Forward Yy YX - o . : A : . 2
& & = & o Bac! > ‘ﬂ @ N P ) Search ¢ Favorites @ Meda &4 (- =
From: support@citibank.com Sent: Wed 25/02/2004 14:44 — : : : .
Tor o Erowta oo coma | dress | @] https://web da-us citibank com/signin/citfi/scripts/email_verfy jsp EI @ Go

Cc:

Dear Citibank Member,

Cl tl . veyﬂri!nail address

This email was sent by the Citibank server to verify vour E-mail
address. You must complete this process by clicking on the link
below and entering in the small window your Citibank ATM/Debit
Card number and PIN that you use on ATM.

Please verify your e-mail by submiting your log-in information.

ATM/Debit Card
This is done for vour protection - because some of our members (CIN) / Card #
no longer have access to their email addresses and we must

verify it. Expiration Date |01 £| / 2004sz

To verify your E-mail address and access yvour bank account, PIN

click on the link below:

https://web.da-us.citibank.com/signin/citifi’'scripts/email verifvisp

Amemberof crtigrougt
i Z Citigroup Privacy Promise citi
Thank you for using Citibank Terms & Conditions Citi.com
Copyright ® 2003 Citicorp
£&] Done ® Internet

CSE543 - Computer Securit Page 49



http://www.aol.com
http://www.ao1.com

Drive by downloads (@) pennstate

» Using a deceptive means to get someone to install something on their own
(spyware/adware)

Dy u want ta install and run “[after t'nq

enhts Pr cisionT ime )‘Dat Manaaqer, free COoh

GAINd _thdde ads that display l] t
ime/date, a d il GAIN-brande dad s se Iect dbased oh

webs'lesu view? Click here to read o ents.

Click Yes to accept” signed o 3!2?.-"2003?49 PM nd
distribute dby

The Gator Corporation

Publisher authenticity verified by YeriSign Class 3 Code
Signing 2001-4 C&

Caution: The Gator Corporation asserts that this content is

safe. You should only install/view this content if you trust
The Gator Corporation to make that assertion.

[ Always trust content from The Gator Corporation

Yes | MNo More Info

» Often appears as an error message on the browser

» Sometimes, user does not click anything at all!

» Concern: extortion-ware -- pay us $ to unencrypt your data
* Used to demand $ for uninstall of annoying software

“biggest cybersecurity threat” - Kaspersky
Answer: Back up stuff externally that you really want!

CSE543 - Computer Securit

Page 50



Web Applications: Injection (@) pennstate

 Attacker that can inject arbitrary inputs into the system can control it in
subtle ways

» interpreter injection - if you can get PHP to “eval” your input, then you can run
arbitrary code on the browser ...

» e.g., leak cookies to remote site (e.g., session hijacking)

SINPUT = “Alice\;mail ($to, S$subject, Sbody);”
» filename injection - if you can control what a filename is in the application, then you

can manipulate the host

* Poorly constructed applications build filename based on user input or input URLs, e.g., hidden
POST fields

» Examples: Directory traversal, PHP file inclusion

* e.g., change temporary filename input to ~/.profile

<FORM METHOD=POST ACTION="../cgi-bin/mycgi.pl">
<INPUT TYPE="hidden" VALUE="~/.profile" NAME="TOGFILE">
</FORM>

CSE543 - Computer Securit Page 51




SQL Injection &) Pennsiate

* An injection that exploits the fact that many inputs to web applications are

» under control of the user

» used directly in SQL queries against back-end databases

* Bad form inserts escaped code into the input ...

xUserId = getRequestStrlng("UserId ) ;

txtS "SELECT * FRO ers WHERE Id = " + xUserI
* This vulnera Pty became one of the most wide y exploited a nd’ costly in web

history.

» Industry reported as many as |16% of websites were vulnerable to SQL injection in
2007

» This may be inflated, but has been an ongoing problem.

CSE543 - Computer Securit Page 52




SQL Injection &) Pennsiate

* An injection that exploits the fact that many inputs to web applications are

» under control of the user

» used directly in SQL queries against back-end databases

* Bad form inserts escaped code into the input ...

SELECT email, login, last name
FROM user table

* This vulnerability"B&&anmteidne of thkthdsewidelysexploited and costly in web
history.

» Industry reported as many as |16% of websites were vulnerable to SQL injection in
2007

» This may be inflated, but has been an ongoing problem.

CSE543 - Computer Securit Page 53




Preventing Web System Attacks (&) pennstate

* Largely just applications
> In as much as application are secure
> Command shells, interpreters, are dangerous

* Broad Approaches
> Validate input (also called input sanitization)

> Limit program functionality
* Don’t leave open ended-functionality

> Execute with limited privileges
> Input tracking, e.g., taint tracking
> Source code analysis, e.g., c-cured

CSE543 - Computer Securit Page 54




Conclusion @ PennState

* VWVeb security has to consider threat models involving several
parties

> Web browsers
> Web servers
> Web applications
> Users
> Third-party sites
> Other users
» Security is so difficult in the web because it was largely retrofitted
444

CSE543 - Computer Securit Page 55




