
CSE 543: Computer Security
Module: Security Analysis Techniques

Prof. Syed Rafiul Hussain
Department of Computer Science and Engineering

The Pennsylvania State University

Our Goal

Program
Analyzer

Source code
Security bugs

Program analyzer must be able to
understand program properties
(e.g., can a variable be NULL at a

particular program point?)

Must perform
control and data

flow analysis

Do we need to implement control and data flow
analysis from scratch?
• Most modern compilers already perform several types of such analysis for code

optimization
▸We can hook into different layers of analysis and customize them
▸We still need to understand the details

• LLVM (http://llvm.org/) is a highly customizable and modular compiler
framework
▸Users can write LLVM passes to perform different types of analysis
▸Clang static analyzer can find several types of bugs
▸Can instrument code for dynamic analysis

Compiler Overview

• Abstract Syntax Tree : Source code parsed to produce AST

• Control Flow Graph: AST is transformed to CFG

• Data Flow Analysis: operates on CFG

The Structure of a Compiler

5

scanner

parser

checker

code gen

Source code (stream of characters)

stream of tokens

Abstract Syntax Tree (AST)

AST with annotations (types, declarations)

Machine/byte code

Syntactic Analysis

• Input: sequence of tokens from scanner
• Output: abstract syntax tree
• Actually,

▸parser first builds a parse tree, representation of grammars in a tree-like form.

▸AST is then built by translating the parse tree

▸parse tree rarely built explicitly; only determined by, say, how parser pushes stuff to stack

6

Example

• Source Code
4*(2+3)

• Parser input
NUM(4) TIMES LPAR NUM(2) PLUS NUM(3) RPAR

• Parser output (AST):

7

*

NUM(4) +

NUM(2) NUM(3)

Parse tree for the example: 4*(2+3)

8

leaves are tokens

NUM(4) TIMES LPAR NUM(2) PLUS NUM(3) RPAR

EXPR

EXPR

EXPR

Parse Tree

• Representation of grammars in a tree-like form.

• Is a one-to-one mapping from the grammar to a tree-form.

A parse tree pictorially shows how the start
symbol of a grammar derives a string in the

language. … Dragon Book

C Statement: return a + 2

a very formal representation that strictly
shows how the parser understands the

statement return a + 2;

Parse Tree

Abstract Syntax Tree (AST)

• Simplified syntactic representations of the source code, and they're most often
expressed by the data structures of the language used for implementation

• Without showing the whole syntactic clutter, represents the parsed string in a
structured way, discarding all information that may be important for parsing the
string, but isn't needed for analyzing it.

ASTs differ from parse trees because superficial
distinctions of form, unimportant for translation,
do not appear in syntax trees.. … Dragon Book

C Statement: return a + 2

Abstract Syntax Tree (AST)

Disadvantages of ASTs

• AST has many similar forms
▸E.g., for, while, repeat...until
▸E.g., if, ?:, switch

• Expressions in AST may be complex, nested
▸(x * y) + (z > 5 ? 12 * z : z + 20)

• Want simpler representation for analysis
▸...at least, for dataflow analysis

15

int x = 1 // what’s the value of x ?
// AST traversal can give the answer, right?

What about int x; x = 1; or int x= 0; x += 1; ?

Control Flow Graph & Analysis
High-level representation
–Control flow is implicit in an AST

Low-level representation:
–Use a Control-flow graph (CFG)

–Nodes represent statements (low-level linear IR)
–Edges represent explicit flow of control

What Is Control-Flow Analysis?

1
2

a := 0
b := a * b

3 L1: c := b/d

4
5
6

if c < x goto L2
e := b / c
f := e + 1

7 L2: g := f

8
9

h := t - g
if e > 0 goto L3

10 goto L1
11 L3: return

a := 0
b := a * b

e := b / c
f : e + 1

g := f
h := t – g
If e > 0 ?

goto return

c := b / d
c < x?

1

3

5

7

1110

Yes No

Basic Blocks

•A basic block is a sequence of straight line code that can be entered
only at the beginning and exited only at the end

g := f
h := t – g
If e > 0 ?

• Building basic blocks
▸ Identify leaders
o The first instruction in a procedure, or
o The target of any branch, or
o An instruction immediately following a branch

(implicit target)
▸ Gobble all subsequent instructions until the next leader

Basic Block Example

1
2

a := 0
b := a * b

3 L1: c := b/d

4
5
6

if c < x goto L2
e := b / c
f := e + 1

7 L2: g := f

8
9

h := t - g
if e > 0 goto L3

10 goto L1
11 L3: return

Leaders?

Blocks?

Basic Block Example

1
2

a := 0
b := a * b

3 L1: c := b/d

4
5
6

if c < x goto L2
e := b / c
f := e + 1

7 L2: g := f

8
9

h := t - g
if e > 0 goto L3

10 goto L1
11 L3: return

Leaders?
– {1, 3, 5, 7, 10, 11}

Blocks?
– {1, 2}
– {3, 4}
– {5, 6}
– {7, 8, 9}
– {10}
– {11}

Building a CFG From Basic Block

a := 0
b := a * b

e := b / c
f : e + 1

g := f
h := t – g
If e > 0 ?

goto return

c := b / d
c < x?

1

3

5

7

1110

Yes No

Construction
• Each CFG node represents a basic block
• There is an edge from node i to j if
▸ Last statement of block i branches to the first

statement of j, or
▸ Block i does not end with an unconditional branch

and is immediately followed in program order by
block j (fall through)

Looping

preheader

head

tail exit edge

Exit edge

backedge

entry edge

Loop

Why?
backedges indicate that we
might need to traverse the
CFG more than once for
data flow analysis

Looping

preheader

head

tail exit edge

Exit edge

backedge

entry edge

Loop

Not all loops have preheaders
– Sometimes it is useful to
create them

Without preheader
node
– There can be
multiple entry edges

With single
preheader node
– There is only one
entry edge

Looping
▸An entering block (or loop predecessor) is a

non-loop node that has an edge into the loop
(necessarily the header). If there is only one entering
block entering block, and its only edge is to the
header, it is also called the loop’s preheader.
The preheader dominates the loop without itself
being part of the loop.

▸A latch is a loop node that has an edge to the
header.

▸A backedge is an edge from a latch to the header.
▸An exiting edge is an edge from inside the loop to

a node outside of the loop. The source of such an
edge is called an exiting block, its target is an exit
block.

Dominators

• d dom i if all paths from entry to node i include d

• Strict Dominator (d sdom i)
▸If d dom i, but d != i

• Immediate dominator (a idom b)
▸a sdom b and there does not exist any node c such that a != c, c != b, a dom c, c dom b

• Post dominator (p pdom i)
▸If every possible path from i to exit includes p

Identifying Natural Loops and Dominators

• Back Edge
▸A back edge of a natural loop is one whose target dominates its source

• Natural Loop
▸The natural loop of a back edge (m®n), where n dominates m, is the set of nodes x such

that n dominates x and there is a path from x to m not containing n

Why go through all this trouble?

• Modern languages provide structured control flow
▸Shouldn’t the compiler remember this information rather than throw it away and then

re-compute it?

• Answers?
▸We may want to work on the binary code

▸Most modern languages still provide a goto statement

▸Languages typically provide multiple types of loops. This analysis lets us treat them all
uniformly

▸We may want a compiler with multiple front ends for multiple languages; rather than
translating each language to a CFG, translate each language to a canonical IR and then to a
CFG

Data flow analysis

• Derives information about the
dynamic behavior of a program by
only examining the static code
• Intraprocedural analysis
• Flow-sensitive: sensitive to the control

flow in a function

• Examples
– Live variable analysis
– Constant propagation
– Common subexpression elimination
– Dead code detection

1 a := 0
2 L1: b := a + 1

3 c := c + b
4 a := b * 2
5 if a < 9 goto L1
6 return c

• How many registers do we need?
• Easy bound: # of used variables (3)
• Need better answer

Data flow analysis

• Statically: finite program
• Dynamically: can have infinitely many paths
• Data flow analysis abstraction

• For each point in the program, combines information of all instances of the
same program point

Liveness Analysis

Definition
• A variable is live at a particular point in the program if its value at that

point will be used in the future (dead, otherwise).
▸ To compute liveness at a given point, we need to look into the

future
Motivation: Register Allocation
▸ A program contains an unbounded number of variables
▸ Must execute on a machine with a bounded number of registers
▸ Two variables can use the same register if they are never in use at the

same time (i.e, never simultaneously live).
–Register allocation uses liveness information

Control Flow Graph

• Let’s consider CFG where nodes
contain program statement
instead of basic block.
• Example

1. a := 0
2. L1: b := a + 1
3. c:= c + b
4. a := b * 2
5. if a < 9 goto L1
6. return c

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Liveness by Example

• Live range of b
• Variable b is read in line 4, so b is

live on 3->4 edge
• b is also read in line 3, so b is live

on (2->3) edge
• Line 2 assigns b, so value of b on

edges (1->2) and (5->2) are not
needed. So b is dead along those
edges.

• b’s live range is (2->3->4)

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Liveness by Example

• Live range of a
• (1->2) and (4->5->2)
• a is dead on (2->3->4)

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Terminology

• Flow graph terms
• A CFG node has out-edges that lead

to successor nodes and in-edges
that come from predecessor nodes

• pred[n] is the set of all predecessors
of node n

• succ[n] is the set of all successors of
node n

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Examples
– Out-edges of node 5: (5®6) and (5®2)

– succ[5] = {2,6}
– pred[5] = {4}
– pred[2] = {1,5}

Uses and Defs

Def (or definition)
–An assignment of a value to a variable
–def[v] = set of CFG nodes that define variable v
–def[n] = set of variables that are defined at node n

Use
–A read of a variable’s value
–use[v] = set of CFG nodes that use variable v
–use[n] = set of variables that are used at node n

More precise definition of liveness
– A variable v is live on a CFG edge if
(1)$ a directed path from that edge to a use of v

(node in use[v]), and
(2)that path does not go through any def of v (no

nodes in def[v])

a = 0

a < 9

Ï def[v]

Î use[v]

v live

The Flow of Liveness

• Data-flow
• Liveness of variables is a property

that flows through the edges of
the CFG

• Direction of Flow
• Liveness flows backwards through

the CFG, because the behavior at
future nodes determines liveness
at a given node

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Liveness at Nodes

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

a = 0

Just before computation

Just after computation

Two More Definitions
– A variable is live-out at a node if it is live on any
out edges

– A variable is live-in at a node if it is live on any in
edges

Computing Liveness

• Generate liveness: If a variable is in use[n], it is live-in at node n

• Push liveness across edges:
▸ If a variable is live-in at a node n
▸ then it is live-out at all nodes in pred[n]

• Push liveness across nodes:
▸If a variable is live-out at node n and not in def[n]
▸then the variable is also live-in at n

• Data flow Equation: in[n] = use[n] È (out[n] – def[n])

out[n] = È in[s]
s Î succ[n]

Solving Dataflow Equation

for each node n in CFG
in[n] = ∅; out[n] = ∅

repeat
for each node n in CFG

in’[n] = in[n]
out’[n] = out[n]
in[n] = use[n] ∪ (out[n] – def[n])
out[n] = ∪ in[s]

s ∈ succ[n]
until in’[n]=in[n] and out’[n]=out[n] for all n

Initialize solutions

Save current results

Solve data-flow equation

Test for convergence

Computing Liveness Example

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Iterating Backwards: Converges Faster

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Liveness Example: Round1

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

A variable is live at a particular point in the program if its value
at that point will be used in the future (dead, otherwise). Nod

e
use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

Liveness Example: Round1

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No

Yes

Nod
e

use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

in: c

in: ac

out: c

in: bc

out: ac

in: bc

out: bc

in: ac

out: bc

in: c

out: ac

Liveness Example: Round1

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No

Yes

Nod
e

use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

in: c

in: ac

out: ac

in: bc

out: ac

in: bc

out: bc

in: ac

out: bc

in: c

out: ac

Conservative Approximation

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No YesSolution X:
- From the previous slide

Conservative Approximation

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Solution Y:
Carries variable d uselessly
– Does Y lead to a correct program?

Imprecise conservative solutions ⇒ sub-optimal but correct
programs

Conservative Approximation

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Solution Z:
Does not identify c as live in all cases
– Does Z lead to a correct program?

Non-conservative solutions ⇒ incorrect programs

Need for approximation

• Static vs. Dynamic Liveness: b*b is always non-negative, so c >= b is always true
and a’s value will never be used after node

No compiler can statically identify
all infeasible paths

Liveness Analysis Example Summary

• Live range of a
• (1->2) and (4->5->2)

• Live range of b
• (2->3->4)

• Live range of c
• Entry->1->2->3->4->5->2, 5->6

You need 2 registers Why?

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Example 2: Reaching Definition

Computing Reaching Definition

• Assumption: At most one definition per node

• Gen[n]: Definitions that are generated by node n (at most one)
• Kill[n]: Definitions that are killed by node n

{y,i}

Data-flow equations for Reaching Definition

Recall Liveness Analysis

• Data-flow Equation for liveness

• Liveness equations in terms of Gen and Kill

Gen: New information that’s added at a node
Kill: Old information that’s removed at a node

Can define almost any data-flow analysis in terms of Gen and Kill

Direction of Flow

Data-Flow Equation for reaching definition

Available Expression

• An expression, x+y, is available at node n if every path from the entry node to
n evaluates x+y, and there are no definitions of x or y after the last evaluation.

Available Expression for CSE

• Common Subexpression eliminated
▸If an expression is available at a point where it is evaluated, it need not be recomputed

Must vs. May analysis

• May information: Identifies possibilities
• Must information: Implies a guarantee

May Must

Forward Reaching Definition Available Expression

Backward Live Variables Very Busy Expression

• Testing/Fuzzing
• Static Analysis (Already covered)
• Symbolic Execution
• Concolic Execution
• Formal Verification

Security Analysis Techniques

Automatic test case
generation

Lower coverage
Lower false positives
Higher false negatives

Fuzzing Dynamic
symbolic execution

Static analysis Program verification

Higher coverage
Higher false positives
Lower false negatives

Testing

• Testing: the process of running a program on a set of test cases and c
omparing the actual results with expected results (according to the
specification).

▸For the implementation of a factorial function, test cases
could be {0, 1, 5, 10}. What is missing?
▸Can it guarantee correctness?
• Correctness: For all possible values of n, your factorial program will provide correct

output.
• Verification: High cost!

Fuzz Testing

Fuzz Testing
‣ Idea proposed by Bart Miller at Wisconsin in 1988 after experiencing an
unusual crash while accessing a Unix utility remotely

format.c (line 276):

... while (lastc != ’\n’) { //reading line

rdc(); }

input.c (line 27):
rdc() {

do { //skipping space and tab
readchar();

} while (lastc == ’ ’ || lastc == ’\t’);
return (lastc);

}

Fuzz Testing

Fuzz Testing
‣ Idea proposed by Bart Miller at Wisconsin in 1988 after experiencing an
unusual crash while accessing a Unix utility remotely

format.c (line 276):

... while (lastc != ’\n’) { //reading line

rdc(); }

input.c (line 27):
rdc() {

do { //reading words
readchar();

} while (lastc == ’ ’ || lastc == ’\t’);
return (lastc);

}

When end of file, readchar()
sets lastc to be 0; then the
program hangs (infinite loop)

• Fuzzing is an automated form of testing that runs code on (semi) random
and (abnormal) input.
▸Black Box (based on specification): e.g., input is non-negative
▸White Box (source/binary): e.g., if(x>y and y>z) then … else .

• Mutation-based fuzzing generates test cases by mutating existing test cases.
• Generation-based fuzzing generates test cases based on a model of the input (i.e., a

specification). It generates inputs “from scratch” rather than using an initial input and
mutating.
• Any inputs that crash the program are recorded.

▸Crashes are then sorted, reduced, and bugs are extracted. Bugs are then analyzed individually (is it a
security vulnerability?).

Fuzzing

Blackbox Fuzzing

• Given a program simply feed random inputs and see whether it exhibits
incorrect behavior (e.g., crashes)
• Advantage: easy, low programmer cost
• Disadvantage: inefficient

▸Inputs often require structures, random inputs are likely to be malformed
▸Inputs that trigger an incorrect behavior is a a very small fraction, probably of getting

lucky is very low

Fuzzing

• Automatically generate test cases
• Many slightly anomalous test cases are input into a target
• Application is monitored for errors
• Inputs are generally either file based (.pdf, .png, .wav, etc.) or network based

(http, SNMP, etc.)

Input generator

Monitor

Test application

Problem detection

• See if program crashed
▸Type of crash can tell a lot (SEGV vs. assert fail)

• Run program under dynamic memory error detector
(valgrind/purify/AddressSanitizer)
▸Catch more bugs, but more expensive per run.

• See if program locks up
• Roll your own dynamic checker e.g. valgrind skins

Regression vs. Fuzzing

Regression Fuzzing

Definition Run program on many normal
inputs, look for badness

Run program on many abnormal
inputs, look for badness

Goals Prevent normal users from
encountering errors (e.g.,
assertion failures are bad)

Prevent attackers from
encountering exploitable errors
(e.g., assertion failures are often
ok)

Enhancement 1: Mutation-Based fuzzing

• Take a well-formed input, randomly perturb (flipping bit, etc.)
• Little or no knowledge of the structure of the inputs is assumed
•Anomalies are added to existing valid inputs

▸Anomalies may be completely random or follow some heuristics (e.g., remove NULL,
shift character forward)

• Examples: ZZUF, Taof, GPF, ProxyFuzz, FileFuzz, Filep, etc.

Seed input Mutated input Run test program

?

Example: fuzzing a PDF viewer

• Google for .pdf (about 1 billion results)
• Crawl pages to build a corpus
• Use fuzzing tool (or script)

▸ Collect seed PDF files
▸ Mutate that file
▸ Feed it to the program
▸ Record if it crashed (and input that crashed it)

Mutation-based fuzzing

• Super easy to setup and automate
• Little or no file format knowledge is required
• Limited by initial corpus
• May fail for protocols with checksums, those which depend on challenge

Enhancement II: Generation-Based Fuzzing

• Test cases are generated from some description of the input format: RFC,
documentation, etc.

– Using specified protocols/file format info
– E.g., SPIKE by Immunity

• Anomalies are added to each possible spot in the inputs
• Knowledge of protocol should give better results than random fuzzing

Input spec Generated inputs Run test program

?RFC

Mutation-based vs. Generation-based

• Mutation-based fuzzer
▸Pros: Easy to set up and automate, little to no knowledge of input format required
▸Cons: Limited by initial corpus, may fall for protocols with checksums and other hard

checks

• Generation-based fuzzers
▸Pros: Completeness, can deal with complex dependencies (e.g., checksum)
▸Cons: writing generators is hard, performance depends on the quality of the spec

How much fuzzing is enough?

• Mutation-based-fuzzers may generate an infinite number of test cases. When has
the fuzzer run long enough?
• Generation-based fuzzers may generate a finite number of test cases. What

happens when they’re all run and no bugs are found?

Code coverage

• Some of the answers to these questions lie in code coverage
• Code coverage is a metric that can be used to determine how much code has

been executed.
• Data can be obtained using a variety of profiling tools. e.g. gcov, lcov

Line coverage

• Line/block coverage: Measures how many lines of
source code have been executed.
• For the code on the right, how many test cases (values

of pair (a,b)) needed for full(100%) line coverage?

if(a > 2)
a = 2;

if(b >2)
b = 2;

Branch coverage

• Branch coverage: Measures how many branches in code
have been taken (conditional jmps)
• For the code on the right, how many test cases needed

for full branch coverage?

if(a > 2)
a = 2;

if(b >2)
b = 2;

Path coverage

• Path coverage: Measures how many paths have been taken

• For the code on the right, how many test cases needed for
full path coverage?

if(a > 2)
a = 2;

if(b >2)
b = 2;

Benefits of Code coverage

•Can answer the following questions
– How good is an initial file?
– Am I getting stuck somewhere?

if (packet[0x10] < 7) { //hot path
} else { //cold path }
▸How good is fuzzerX vs. fuzzerY
▸Am I getting benefits by running multiple fuzzers?

Enhancement III: Coverage-guided gray-box fuzzing

• Special type of mutation-based fuzzing
▸Run mutated inputs on instrumented program and measure code coverage
▸Search for mutants that result in coverage increase
▸Often use genetic algorithms, i.e., try random mutations on test corpus and only add

mutants to the corpus if coverage increases
▸Examples: AFL, libfuzzer

American Fuzzy Lop (AFL)

Input
queue

Seed
inputs

Next input

Mutation

Execute
against

instrumented
target

branch/edg
e coverage
increased?

Add mutant
to the queue

Periodically calls the
queue without

affecting total coverage

Data-flow-guided fuzzing

• Intercept the data flow, analyze the inputs of comparisons
▸Incurs extra overhead

• Modify the test inputs, observe the effect on comparisons
• Prototype implementations in libFuzzer and go-fuzz

Static Analysis

• Limitation of dynamic testing:
▸We cannot find all vulnerabilities in a program

• Can we build a technique that identifies *all* vulnerabilities?
▸Turns out that we can: static analysis

• Explore all possible executions of a program
▸All possible inputs
▸All possible states

▸But, it has its own major limitation
• Can identify many false positives (not actual vulnerabilities)

▸Can be effective when used carefully

Static Analysis

• Provides an approximation of behavior
• “Run in the aggregate”

▸Rather than executing on ordinary states
▸Finite-sized descriptors representing a collection of states

• “Run in non-standard way”
▸Run in fragments
▸Stitch them together to cover all paths

• Various properties of programs can be tracked
• Control flow, Data flow, Types
• Which ones will expose which vulnerabilities

Control Flow Analysis

Can we detect code with no return check?

format.c (line 276):
while (lastc != ’\n’)
{ //reading line
rdc();
}

input.c (line 27):
rdc() {
do { //reading words

readchar(); }
while (lastc == ’ ’ ||
lastc == ’\t’);

return (lastc);
}

• To find an execution path that does not check the return value of a
function
q That is actually run by the program
q How do we do this? Control Flow Analysis

Static vs. Dynamic

• Dynamic
▸Depends on concrete inputs
▸Must run the program
▸Impractical to run all possible executions in most cases

• Static
▸Overapproximates possible input values (sound)
▸Assesses all possible runs of the program at once
▸Setting up static analysis is somewhat of an art form

• Is there something that combines best of both?
▸Can’t quite achieve all these, but can come closer

Symbolic Execution

• Symbolic execution is a method for emulating the execution of a program to
learn constraints
▸Assign variables to symbolic values instead of concrete values
▸Symbolic execution tells you what values are possible for symbolic variables at any

particular point in your program

• Like dynamic analysis (fuzzing) in that the program is executed in a way – albeit
on symbolic inputs
• Like static analysis in that one start of the program tells you what values may

reach a particular state

Background: SAT

Information Security 97

SATisfying
assignment!

Given a propositional formula in CNF, find if there exists an
assignment to Boolean variables that makes the formula true:

w1 = (b c)

w2 = (¬ a ¬ d)

w3 = (¬ b d)

j = w1 w2 w3
A = {a=0, b=1, c=0, d=1}

Ù Ù

clauses

literals

ÚÚ

Ú

Ú

Background: SMT

SMT: Satisfiability Modulo Theories
Input: a first-order formula j over background theory
Output: is j satisfiable?

▸does j have a model?
▸Is there a refutation of j = proof of ¬j?

For most SMT solvers: j is a ground formula
▸Background theories: Arithmetic, Arrays, Bit-vectors, Algebraic Datatypes
▸Most SMT solvers support simple first-order sorts

98

Symbolic Execution

101

Void func(int x, int
y){

int z = 2 * y;

if(z == x){
if (x > y + 10)

ERROR

}

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

x = a = 0
y = b = 1

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

Path constraint z = 2b

Note: Require inputs to be marked as symbolic

Generated
Test inputs
for this path

How does symbolic execution work?

Symbolic Execution

Information Security 102

x = a = 0
y = b = 1

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

z = 2b

How does symbolic execution work?

x = a = 0
y = b =

1

x = a = 2
y = b =

3

x = a = 5
y = b =

4
…
…
…

…
…
…

x = a = 2
y = b =

1x = a = 4
y = b =

2x = a = -
6

y = b = -
3

x = a = 40
y = b = 20

x = a = 30
y = b = 15

x = a = 48
y = b = 24

……
…

Path constraints represent
equivalence classes of inputs

Symbolic Execution
Void func(int x, int
y){

int z = 2 * y;

if(z == x){

if (x > y + 10)

ERROR

}

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

Symbolic
Execution

Engine

SMT solver

Path
constraint

Satisfying
Assignment

High coverage
test inputs

Symbolic Execution

• Execute the program with symbolic valued inputs (Goal: good path
coverage)
• Represents equivalence class of inputs with first order logic formulas (path

constraints)
• One path constraint abstractly represents all inputs that induces the program

execution to go down a specific path
• Solve the path constraint to obtain one representative input that exercises the

program to go down that specific path 104

Symbolic Execution

• Instead of concrete state, the program maintains symbolic states, each of which
maps variables to symbolic values
• Path condition is a quantifier-free formula over the symbolic inputs that

encodes all branch decisions taken so far
• All paths in the program form its execution tree, in which some paths are

feasible and some are infeasible

105

Symbolic Execution Tools

• FuzzBALL:
▸Works on binaries, generic SE engine. Used to, e.g., find PoC exploits given a vulnerability

condition.
▸KLEE: Instruments through LLVM-based pass, relies on source code. Used to, e.g., nd bugs

in programs.
▸S2E: Selective Symbolic Execution: automatic testing of large source base, combines KLEE

with an concolic execution. Used to, e.g., test large source bases (e.g., drivers in kernels)
for bugs.

• Efficiency of SE tool depends on the search heuristics and search strategy. As
search space grows exponentially, a good search strategy is crucial for efficiency
and scalability.

Symbolic Execution Summary

• Symbolic execution is a great tool to find vulnerabilities or to create
PoC exploits.
• Symbolic execution is limited in its scalability. An efficient search

strategy is crucial.

Concolic Execution

Void func(int x, int
y){

int z = 2 * y;

if(z == x){
if (x > y + 10)

ERROR

}

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

ERROR

Path constraint
z = 2b

Start with x=22, y=7

Solve 2b == a
Start with a=2, b=1

Solve (2b == a) ∧ (a – b> 10)
Start with a=30, b=15

Formal Verification

• Formal verification is the act of using formal methods to proving or disproving the
correctness of a certain system given its formal specification.
• Formal verification requires a specification and an abstraction mechanism to show that

the formal specification either holds (i.e., its correctness is proven) or fails (i.e., there is a
bug).
• Verification is carried out by providing a formal proof on the abstracted mathematical

model of the system according to the specification. Many different forms of mathematical
objects can be used for formal verification like finite state machines or formal semantics
of programming languages (e.g., operational semantics or Hoare logic).

Takeaways

• Testing is simple but only tests for presence of functionality.
• Fuzzing uses test cases to explore other paths, might run forever.
• Static analysis has limited precision (e.g., aliasing).
• Symbolic execution needs guidance when searching through program.
• Formal verification is precise but arithmetic operations can be difficult.
• All mechanisms (except testing) run into state explosion.

Thanks

Thanks to Omar Choowdhury, Suman Jana and Baishakhi Ray
for some slides.

