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Our Goal

Program 
Analyzer 

Source code
Security bugs

Program analyzer must be able to 
understand program properties
(e.g., can a variable be NULL at a 

particular program point? )

Must perform 
control and data 

flow analysis



Do we need to implement control and data flow 
analysis from scratch?
• Most modern compilers already perform several types of such analysis for code 

optimization
▸We can hook into different layers of analysis and customize them
▸We still need to understand the details

• LLVM (http://llvm.org/) is a highly customizable and modular compiler 
framework
▸Users can write LLVM passes to perform different types of analysis
▸Clang static analyzer can find several types of bugs
▸Can instrument code for dynamic analysis 



Compiler Overview

• Abstract Syntax Tree : Source code parsed to produce AST

• Control Flow Graph: AST is transformed to CFG

• Data Flow Analysis: operates on CFG



The Structure of a Compiler
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scanner

parser

checker

code gen

Source code (stream of characters)

stream of tokens

Abstract Syntax Tree (AST) 

AST with annotations (types, declarations)

Machine/byte code



Syntactic Analysis

• Input: sequence of tokens from scanner
• Output: abstract syntax tree
• Actually,

▸parser first builds a parse tree, representation of grammars in a tree-like form. 

▸AST is then built by translating the parse tree

▸parse tree rarely built explicitly; only determined by, say, how parser pushes stuff to stack
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Example

• Source Code
4*(2+3)

• Parser input
NUM(4)  TIMES  LPAR  NUM(2)  PLUS  NUM(3)  RPAR

• Parser output (AST):

7

*

NUM(4) +

NUM(2) NUM(3)



Parse tree for the example: 4*(2+3)
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leaves are tokens

NUM(4)  TIMES  LPAR  NUM(2)  PLUS  NUM(3)  RPAR

EXPR                        

EXPR                         

EXPR                         



Parse Tree

• Representation of grammars in a tree-like form. 

• Is a one-to-one mapping from the grammar to a tree-form.

A parse tree pictorially shows how the start 
symbol of a grammar derives a string in the 

language. … Dragon Book



C Statement: return a + 2

a very formal representation that strictly 
shows how the parser understands the 

statement return a + 2;

Parse Tree



Abstract Syntax Tree (AST)

• Simplified syntactic representations of the source code, and they're most often 
expressed by the data structures of the language used for implementation

• Without showing the whole syntactic clutter, represents the parsed string in a 
structured way, discarding all information that may be important for parsing the 
string, but isn't needed for analyzing it.

ASTs differ from parse trees because superficial 
distinctions of form, unimportant for translation, 
do not appear in syntax trees.. … Dragon Book



C Statement: return a + 2

Abstract Syntax Tree (AST)



Disadvantages of ASTs

• AST has many similar forms
▸E.g., for, while, repeat...until
▸E.g., if, ?:, switch

• Expressions in AST may be complex, nested
▸(x * y) + (z > 5 ? 12 * z : z + 20)

• Want simpler representation for analysis
▸...at least, for dataflow analysis
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int x = 1 // what’s the value of x ? 
// AST traversal can give the answer, right?

What about int x; x = 1; or int x= 0; x += 1;  ?



Control Flow Graph & Analysis
High-level representation
–Control flow is implicit in an AST

Low-level representation:
–Use a Control-flow graph (CFG)

–Nodes represent statements (low-level linear IR)
–Edges represent explicit flow of control



What Is Control-Flow Analysis?

1
2

a := 0
b := a * b

3    L1: c := b/d

4
5
6

if c < x goto L2  
e := b / c
f := e + 1

7    L2: g := f

8
9

h := t - g
if e > 0 goto L3

10  goto L1
11  L3: return

a := 0
b := a * b

e := b / c  
f : e + 1

g := f
h := t – g
If e > 0 ?  

goto return

c := b / d
c < x?

1

3

5

7

1110

Yes No



Basic Blocks

•A basic block is a sequence of straight line code that can be entered 
only  at the beginning and exited only at the end

g := f
h := t – g
If e > 0 ?  

• Building basic blocks
▸ Identify leaders
o The first instruction in a procedure, or
o The target of any branch, or
o An instruction immediately following a branch 

(implicit target)
▸ Gobble all subsequent instructions until the next leader



Basic Block Example

1
2

a := 0
b := a * b

3    L1: c := b/d

4
5
6

if c < x goto L2  
e := b / c
f := e + 1

7    L2: g := f

8
9

h := t - g
if e > 0 goto L3

10  goto L1
11  L3: return

Leaders?

Blocks?



Basic Block Example

1
2

a := 0
b := a * b

3    L1: c := b/d

4
5
6

if c < x goto L2  
e := b / c
f := e + 1

7    L2: g := f

8
9

h := t - g
if e > 0 goto L3

10  goto L1
11  L3: return

Leaders?
– {1, 3, 5, 7, 10, 11}

Blocks?
– {1, 2}
– {3, 4}
– {5, 6}
– {7, 8, 9}
– {10}
– {11}



Building a CFG From Basic Block

a := 0
b := a * b

e := b / c  
f : e + 1

g := f
h := t – g
If e > 0 ?  

goto return

c := b / d
c < x?

1

3

5

7

1110

Yes No

Construction
• Each CFG node represents a basic block
• There is an edge from node i to j if
▸ Last statement of block i branches to the first 

statement of j, or
▸ Block i does not end with an unconditional branch 

and is immediately followed in program order by 
block j (fall through)



Looping

preheader

head

tail exit edge

Exit edge

backedge

entry edge

Loop

Why?
backedges indicate that we 
might need to traverse the 
CFG more than once for 
data flow analysis  



Looping

preheader

head

tail exit edge

Exit edge

backedge

entry edge

Loop

Not all loops have preheaders
– Sometimes it is useful to 
create them

Without preheader
node
– There can be 
multiple entry edges

With single 
preheader node
– There is only one 
entry edge



Looping
▸An entering block (or loop predecessor) is a 

non-loop node that has an edge into the loop 
(necessarily the header). If there is only one entering 
block entering block, and its only edge is to the 
header, it is also called the loop’s preheader. 
The preheader dominates the loop without itself 
being part of the loop.

▸A latch is a loop node that has an edge to the 
header.

▸A backedge is an edge from a latch to the header.
▸An exiting edge is an edge from inside the loop to 

a node outside of the loop.  The source of such an 
edge is called an exiting block, its target is an exit 
block.



Dominators

• d dom i if all paths from entry to node i include d

• Strict Dominator (d sdom i)
▸If d dom i, but d != i

• Immediate dominator (a idom b)
▸a sdom b and there does not exist any node c such that a != c, c != b, a dom c, c dom b

• Post dominator (p pdom i)
▸If every possible path from i to exit includes p 



Identifying Natural Loops and Dominators 

• Back Edge
▸A back edge of a natural loop is one whose target dominates its source

• Natural Loop
▸The natural loop of a back edge (m®n), where n  dominates m, is the set of nodes x such 

that n  dominates x and there is a path from x to m not  containing n



Why go through all this trouble?

• Modern languages provide structured control flow
▸Shouldn’t the compiler remember this information rather than throw it  away and then 

re-compute it?

• Answers?
▸We may want to work on the binary code 

▸Most modern languages still provide a goto statement

▸Languages typically provide multiple types of loops. This analysis lets us treat them all
uniformly

▸We may want a compiler with multiple front ends for multiple languages;  rather than 
translating each language to a CFG, translate each language to a canonical IR and then to a
CFG



Data flow analysis

• Derives information about the
dynamic behavior of a program by 
only examining the static code
• Intraprocedural analysis
• Flow-sensitive:  sensitive to the control 

flow in a function

• Examples
– Live variable analysis 
– Constant propagation 
– Common subexpression elimination
– Dead code detection

1  a := 0
2    L1: b := a + 1

3 c := c + b
4 a := b * 2
5 if a < 9 goto L1
6 return c

• How many registers do we need?
• Easy bound: # of used variables (3)
• Need better answer



Data flow analysis

• Statically: finite program
• Dynamically: can have infinitely many paths
• Data flow analysis abstraction

• For each point in the program, combines information of all instances of the 
same program point 



Liveness Analysis

Definition
• A variable is live at a particular point in the program if its value at that  

point will be used in the future (dead, otherwise).
▸ To compute liveness at a given point, we need to look into the

future
Motivation:  Register Allocation
▸ A program contains an unbounded number of variables
▸ Must execute on a machine with a bounded number of registers
▸ Two variables can use the same register if they are never in use at the 

same  time (i.e, never simultaneously live).
–Register allocation uses liveness information



Control Flow Graph

• Let’s consider CFG where nodes 
contain program statement 
instead of basic block.
• Example

1. a := 0
2. L1: b := a + 1
3. c:= c + b
4. a := b * 2
5. if  a < 9 goto L1
6. return c 

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes



Liveness by Example

• Live range of b
• Variable b is read in line 4, so b is 

live on 3->4 edge
• b is also read in line 3, so b is live 

on (2->3) edge
• Line 2 assigns b, so value of b on 

edges (1->2) and (5->2) are not 
needed. So b is dead along those 
edges.

• b’s live range is (2->3->4)

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes



Liveness by Example

• Live range of a
• (1->2) and (4->5->2)
• a is dead on (2->3->4)

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes



Terminology

• Flow graph terms
• A CFG node has out-edges that lead 

to successor nodes and in-edges 
that  come from predecessor nodes

• pred[n] is the set of all predecessors 
of node n

• succ[n] is the set of all successors of 
node n

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes

Examples
– Out-edges of node 5: (5®6) and (5®2)

– succ[5] = {2,6}
– pred[5] = {4}
– pred[2] = {1,5}



Uses and Defs

Def (or definition)
–An assignment of a value to a variable
–def[v] = set of CFG nodes that define variable v
–def[n] = set of variables that are defined at node n

Use
–A read of a variable’s value
–use[v] = set of CFG nodes that use variable v
–use[n] = set of variables that are used at node n

More precise definition of liveness
– A variable v is live on a CFG edge if
(1)$ a directed path from that edge to a use of v 

(node in use[v]), and
(2)that path does not go through any def of v (no 

nodes in def[v])

a = 0

a < 9

Ï def[v]

Î use[v]

v live



The Flow of Liveness

• Data-flow
• Liveness of variables is a property 

that flows  through the edges of 
the CFG

• Direction of Flow
• Liveness flows backwards through 

the CFG,  because the behavior at 
future nodes  determines liveness 
at a given node

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes



Liveness at Nodes

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes

a = 0

Just before computation

Just after computation

Two More Definitions
– A variable is live-out at a node if it is live on any
out edges

– A variable is live-in at a node if it is live on any in 
edges



Computing Liveness

• Generate liveness: If a variable is in use[n],  it is live-in at node n

• Push liveness across edges:
▸ If a variable is live-in at a node n
▸ then it is live-out at all nodes in pred[n]

• Push liveness across nodes:
▸If a variable is live-out at node n and not in def[n]
▸then the variable is also live-in at n

• Data flow Equation: in[n] = use[n] È (out[n] – def[n])

out[n] = È in[s] 
s Î succ[n]



Solving Dataflow Equation

for each node n in CFG
in[n] = ∅; out[n] = ∅

repeat
for each node n in CFG

in’[n] = in[n]
out’[n] = out[n]
in[n] = use[n] ∪ (out[n] – def[n])
out[n] = ∪ in[s] 

s ∈ succ[n]
until in’[n]=in[n] and out’[n]=out[n] for all n

Initialize solutions

Save current results

Solve data-flow equation

Test for convergence



Computing Liveness Example

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes



Iterating Backwards: Converges Faster

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes



Liveness Example: Round1

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes

A variable is live at a particular point in the program if its value 
at that  point will be used in the future (dead, otherwise). Nod

e
use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a



Liveness Example: Round1

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No

Yes

Nod
e

use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

in: c

in: ac

out: c

in: bc

out: ac

in: bc

out: bc

in: ac

out: bc

in: c

out: ac



Liveness Example: Round1

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No

Yes

Nod
e

use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

in: c

in: ac

out: ac

in: bc

out: ac

in: bc

out: bc

in: ac

out: bc

in: c

out: ac



Conservative Approximation

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No YesSolution X:
- From the previous slide



Conservative Approximation

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes

Solution Y:
Carries variable d uselessly 
– Does Y lead to a correct program?

Imprecise conservative solutions ⇒ sub-optimal but correct 
programs



Conservative Approximation

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes

Solution Z:
Does not identify c as live in all cases
– Does Z lead to a correct program?

Non-conservative solutions ⇒ incorrect programs



Need for approximation

• Static vs. Dynamic Liveness: b*b is always non-negative, so c >= b is always true 
and a’s value will never be used after node 

No compiler can statically identify 
all infeasible paths



Liveness Analysis Example Summary

• Live range of a
• (1->2) and (4->5->2)

• Live range of b
• (2->3->4) 

• Live range of c
• Entry->1->2->3->4->5->2, 5->6 

You need 2 registers Why?

4.      a = b * 2

2.    b = a + 1

1.    a = 0

3.     c = c + b

5.       a < 9

6. return c

No Yes



Example 2: Reaching Definition



Computing Reaching Definition

• Assumption: At most one definition per node

• Gen[n]: Definitions that are generated by node n (at most one)
• Kill[n]: Definitions that are killed by node n

{y,i}



Data-flow equations for Reaching Definition



Recall Liveness Analysis

• Data-flow Equation for liveness

• Liveness equations in terms of Gen and Kill

Gen: New information that’s added at a node
Kill: Old information that’s removed at a node

Can define almost any data-flow analysis in terms of Gen and Kill



Direction of Flow



Data-Flow Equation for reaching definition



Available Expression

• An expression, x+y, is available at node n if every path from the entry node to 
n evaluates x+y, and there are no definitions of x or y after the last evaluation.



Available Expression for CSE

• Common Subexpression eliminated
▸If an expression is available at a point where it is evaluated, it need not be recomputed



Must vs. May analysis

• May information:  Identifies possibilities
• Must information: Implies a guarantee

May Must

Forward Reaching Definition Available Expression

Backward Live Variables Very Busy Expression



• Testing/Fuzzing
• Static Analysis (Already covered)
• Symbolic Execution
• Concolic Execution
• Formal Verification

Security Analysis Techniques

Automatic test case 
generation

Lower coverage 
Lower false positives 
Higher false negatives

Fuzzing Dynamic 
symbolic execution

Static analysis Program verification

Higher coverage 
Higher false positives 
Lower false negatives



Testing

• Testing: the process of running a program on a set of test cases and c
omparing the actual results with expected results (according to the 
specification). 

▸For the implementation of a factorial function, test cases
could be {0, 1, 5, 10}. What is missing?
▸Can it guarantee correctness? 
• Correctness: For all possible values of n, your factorial program will provide correct 

output.
• Verification: High cost!



Fuzz Testing

Fuzz Testing 
‣ Idea proposed by Bart Miller at Wisconsin in 1988 after experiencing an 
unusual crash while accessing a Unix utility remotely

format.c (line 276): 

... while (lastc != ’\n’) { //reading line

rdc(); } 

input.c (line 27): 
rdc() { 

do { //skipping space and tab
readchar(); 

} while (lastc == ’ ’ || lastc == ’\t’);                 
return (lastc); 

}



Fuzz Testing

Fuzz Testing 
‣ Idea proposed by Bart Miller at Wisconsin in 1988 after experiencing an 
unusual crash while accessing a Unix utility remotely

format.c (line 276): 

... while (lastc != ’\n’) { //reading line

rdc(); } 

input.c (line 27): 
rdc() { 

do { //reading words
readchar(); 

} while (lastc == ’ ’ || lastc == ’\t’);                 
return (lastc); 

}

When end of file, readchar() 
sets lastc to be 0; then the 
program hangs (infinite loop)



• Fuzzing is an automated form of testing that runs code on (semi) random 
and (abnormal) input. 
▸Black Box (based on specification): e.g., input is non-negative
▸White Box (source/binary): e.g., if(x>y and y>z) then … else .

• Mutation-based fuzzing generates test cases by mutating existing test cases.
• Generation-based fuzzing generates test cases based on a model of the input (i.e., a 

specification). It generates  inputs “from scratch” rather than using an initial input and 
mutating.
• Any inputs that crash the program are recorded.

▸Crashes are then sorted, reduced, and bugs are extracted. Bugs are then analyzed individually (is it a 
security vulnerability?).

Fuzzing



Blackbox Fuzzing

• Given a program simply feed random inputs and see whether it exhibits 
incorrect behavior (e.g., crashes)
• Advantage: easy, low programmer cost
• Disadvantage: inefficient

▸Inputs often require structures, random inputs are likely to be malformed 
▸Inputs that trigger an incorrect behavior is a a very small fraction, probably of getting 

lucky is very low 



Fuzzing

• Automatically generate test cases
• Many slightly anomalous test cases are input into a target
• Application is monitored for errors
• Inputs are generally either file based (.pdf, .png, .wav, etc.) or network based 

(http, SNMP, etc.)  

Input generator

Monitor

Test application



Problem detection

• See if program crashed
▸Type of crash can tell a lot (SEGV vs. assert fail)

• Run program under dynamic memory error detector 
(valgrind/purify/AddressSanitizer)
▸Catch more bugs, but more expensive per run.

• See if program locks up
• Roll your own dynamic checker e.g. valgrind skins



Regression vs. Fuzzing

Regression Fuzzing

Definition Run program on many normal 
inputs, look for badness  

Run program on many abnormal 
inputs, look for badness

Goals Prevent normal users from 
encountering errors (e.g.,
assertion failures are bad)

Prevent attackers from 
encountering exploitable errors 
(e.g., assertion failures are often 
ok)



Enhancement 1: Mutation-Based fuzzing

• Take a well-formed input, randomly perturb (flipping bit, etc.)
• Little or no knowledge of the structure of the inputs is assumed 
•Anomalies are added to existing valid inputs 

▸Anomalies may be completely random or follow some heuristics (e.g., remove NULL, 
shift character forward)

• Examples: ZZUF, Taof, GPF, ProxyFuzz, FileFuzz, Filep, etc. 

Seed input Mutated input Run test program

?



Example: fuzzing a PDF viewer

• Google for .pdf (about 1 billion results) 
• Crawl pages to build a corpus 
• Use fuzzing tool (or script) 

▸ Collect seed PDF files 
▸ Mutate that file
▸ Feed it to the program 
▸ Record if it crashed (and input that crashed it) 



Mutation-based fuzzing

• Super easy  to setup and automate
• Little or no file format knowledge is required
• Limited by initial corpus
• May fail for protocols with checksums, those which depend on challenge



Enhancement II: Generation-Based Fuzzing

• Test cases are generated from some description of the input format: RFC, 
documentation, etc.

– Using specified protocols/file format info
– E.g., SPIKE by Immunity

• Anomalies are added to each possible spot in the inputs
• Knowledge of protocol should give better results than random fuzzing

Input spec Generated inputs Run test program

?RFC



Mutation-based vs. Generation-based

• Mutation-based fuzzer
▸Pros: Easy to set up and automate, little to no knowledge of input format required
▸Cons: Limited by initial corpus, may fall for protocols with checksums and other hard 

checks

• Generation-based fuzzers
▸Pros: Completeness, can deal with complex dependencies (e.g., checksum)
▸Cons: writing generators is hard, performance depends on the quality of the spec



How much fuzzing is enough?

• Mutation-based-fuzzers may generate an infinite number of test cases. When has 
the fuzzer run long enough? 
• Generation-based fuzzers may generate a finite number of test cases. What 

happens when they’re all run and no bugs are found? 



Code coverage

• Some of the answers to these questions lie in code coverage 
• Code coverage is a metric that can be used to determine how much code has 

been executed. 
• Data can be obtained using a variety of profiling tools. e.g. gcov, lcov



Line coverage

• Line/block coverage: Measures how many lines of 
source code have been executed. 
• For the code on the right, how many test cases (values 

of pair (a,b)) needed for full(100%) line coverage? 

if( a > 2 ) 
a = 2; 

if( b >2 ) 
b = 2; 



Branch coverage

• Branch coverage: Measures how many branches in code 
have been taken (conditional jmps) 
• For the code on the right, how many test cases needed 

for full branch coverage? 

if( a > 2 ) 
a = 2; 

if( b >2 ) 
b = 2; 



Path coverage

• Path coverage: Measures how many paths have been taken

• For the code on the right, how many test cases needed for 
full path coverage? 

if( a > 2 ) 
a = 2; 

if( b >2 ) 
b = 2; 



Benefits of Code coverage

•Can answer the following questions
– How good is an initial file? 
– Am I getting stuck somewhere? 

if (packet[0x10] < 7) { //hot path
} else { //cold path }
▸How good is fuzzerX vs. fuzzerY
▸Am I getting benefits by running multiple fuzzers? 



Enhancement III: Coverage-guided gray-box fuzzing

• Special type of mutation-based fuzzing
▸Run mutated inputs on instrumented program and measure code coverage
▸Search for mutants that result in coverage increase
▸Often use genetic algorithms, i.e., try random mutations on test corpus and only add 

mutants  to the corpus if coverage increases
▸Examples:  AFL, libfuzzer



American Fuzzy Lop (AFL)

Input 
queue

Seed 
inputs

Next input

Mutation

Execute 
against 

instrumented
target

branch/edg
e coverage 
increased?

Add mutant 
to the queue

Periodically calls the 
queue without 

affecting total coverage  



Data-flow-guided fuzzing

• Intercept the data flow, analyze the inputs of comparisons
▸Incurs extra overhead

• Modify the test inputs, observe the effect on comparisons
• Prototype implementations in libFuzzer and go-fuzz



Static Analysis

• Limitation of dynamic testing:
▸We cannot find all vulnerabilities in a program

• Can we build a technique that identifies *all* vulnerabilities?
▸Turns out that we can: static analysis

• Explore all possible executions of a program 
▸All possible inputs 
▸All possible states

▸But, it has its own major limitation
• Can identify many false positives (not actual vulnerabilities)

▸Can be effective when used carefully



Static Analysis

• Provides an approximation of behavior
• “Run in the aggregate”

▸Rather than executing on ordinary states
▸Finite-sized descriptors representing a collection of states

• “Run in non-standard way”
▸Run in fragments
▸Stitch them together to cover all paths

• Various properties of programs can be tracked
• Control flow, Data flow, Types 
• Which ones will expose which vulnerabilities



Control Flow Analysis

Can we detect code with no return check? 

format.c (line 276): 
while (lastc != ’\n’) 
{ //reading line
rdc(); 
} 

input.c (line 27): 
rdc() { 
do { //reading words

readchar(); } 
while (lastc == ’ ’ || 
lastc == ’\t’);                 

return (lastc); 
}

• To find an execution path that does not check the return value of a 
function
q That is actually run by the program
q How do we do this? Control Flow Analysis



Static vs. Dynamic

• Dynamic
▸Depends on concrete inputs
▸Must run the program
▸Impractical to run all possible executions in most cases

• Static
▸Overapproximates possible input values (sound)
▸Assesses all possible runs of the program at once
▸Setting up static analysis is somewhat of an art form

• Is there something that combines best of both?
▸Can’t quite achieve all these, but can come closer



Symbolic Execution

• Symbolic execution is a method for emulating the execution of a program to 
learn constraints 
▸Assign variables to symbolic values instead of concrete values 
▸Symbolic execution tells you what values are possible for symbolic variables at any 

particular point in your program

• Like dynamic analysis (fuzzing) in that the program is executed in a way – albeit 
on symbolic inputs  
• Like static analysis in that one start of the program tells you what values may 

reach a particular state



Background: SAT
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SATisfying
assignment!

Given a propositional formula in CNF, find if there exists an 
assignment to Boolean variables that makes the formula true:

w1 = (b c) 

w2 = (¬ a ¬ d)

w3 = (¬ b d)

j = w1 w2 w3
A = {a=0, b=1, c=0, d=1}

Ù Ù

clauses

literals

ÚÚ

Ú

Ú



Background: SMT

SMT: Satisfiability Modulo Theories
Input: a first-order formula j over background theory
Output: is j satisfiable?

▸does j have a model?
▸Is there a refutation of j = proof of ¬j?

For most SMT solvers: j is a ground formula 
▸Background theories: Arithmetic, Arrays, Bit-vectors, Algebraic Datatypes
▸Most SMT solvers support simple first-order sorts
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Symbolic Execution
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Void func(int x, int
y){

int z = 2 * y;

if(z == x){
if (x > y + 10)

ERROR

}

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

x = a = 0
y = b = 1

2b != a 2b == a

2b == a && 
a <= b + 10

2b == a && 
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

Path constraint z = 2b

Note: Require inputs to be marked as symbolic

Generated
Test inputs
for this path

How does symbolic execution work?



Symbolic Execution
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x = a = 0
y = b = 1

2b != a 2b == a

2b == a && 
a <= b + 10

2b == a && 
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

z = 2b

How does symbolic execution work?

x = a = 0
y = b = 

1

x = a = 2
y = b = 

3

x = a = 5
y = b = 

4
…
…
…

…
…
…

x = a = 2
y = b = 

1x = a = 4
y = b = 

2x = a = -
6

y = b = -
3

x = a = 40
y = b = 20

x = a = 30
y = b = 15

x = a = 48
y = b = 24

……
…

Path constraints represent
equivalence classes of inputs



Symbolic Execution
Void func(int x, int
y){

int z = 2 * y;

if(z == x){

if (x > y + 10)

ERROR

}

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

Symbolic 
Execution

Engine

SMT solver

Path
constraint

Satisfying
Assignment 

High coverage 
test inputs



Symbolic Execution 

• Execute the program with symbolic valued inputs (Goal: good path 
coverage)
• Represents equivalence class of inputs with first order logic formulas (path 

constraints) 
• One path constraint abstractly represents all inputs that induces the program 

execution to go down a specific path 
• Solve the path constraint to obtain one representative input that exercises the 

program to go down that specific path 104



Symbolic Execution

• Instead of concrete state, the program maintains symbolic states, each of which 
maps variables to symbolic values
• Path condition is a quantifier-free formula over the symbolic inputs that 

encodes all branch decisions taken so far
• All paths in the program form its execution tree, in which some paths are 

feasible and some are infeasible 
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Symbolic Execution Tools

• FuzzBALL: 
▸Works on binaries, generic SE engine. Used to, e.g., find PoC exploits given a vulnerability 

condition.
▸KLEE: Instruments through LLVM-based pass, relies on source code. Used to, e.g., nd bugs 

in programs.
▸S2E: Selective Symbolic Execution: automatic testing of large source base, combines KLEE 

with an concolic execution. Used to, e.g., test large source bases (e.g., drivers in kernels) 
for bugs.

• Efficiency of SE tool depends on the search heuristics and search strategy. As 
search space grows exponentially, a good search strategy is crucial for efficiency 
and scalability.



Symbolic Execution Summary

• Symbolic execution is a great tool to find vulnerabilities or to create 
PoC exploits.
• Symbolic execution is limited in its scalability. An efficient search 

strategy is crucial.



Concolic Execution

Void func(int x, int
y){

int z = 2 * y;

if(z == x){
if (x > y + 10)

ERROR

}

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

2b != a 2b == a

2b == a && 
a <= b + 10

2b == a && 
a > b + 10

func(x = a, y = b)

ERROR

Path constraint
z = 2b

Start with x=22, y=7

Solve 2b == a
Start with a=2, b=1

Solve (2b == a) ∧ (a – b> 10)
Start with a=30, b=15



Formal Verification

• Formal verification is the act of using formal methods to proving or disproving the 
correctness of a certain system given its formal specification.
• Formal verification requires a specification and an abstraction mechanism to show that 

the formal specification either holds (i.e., its correctness is proven) or fails (i.e., there is a 
bug).
• Verification is carried out by providing a formal proof on the abstracted mathematical 

model of the system according to the specification. Many different forms of mathematical 
objects can be used for formal verification like finite state machines or formal semantics 
of programming languages (e.g., operational semantics or Hoare logic).



Takeaways

• Testing is simple but only tests for presence of functionality.
• Fuzzing uses test cases to explore other paths, might run forever.
• Static analysis has limited precision (e.g., aliasing).
• Symbolic execution needs guidance when searching through program.
• Formal verification is precise but arithmetic operations can be difficult.
• All mechanisms (except testing) run into state explosion.



Thanks

Thanks to Omar Choowdhury, Suman Jana and Baishakhi Ray 
for some slides.


