
CSE543 - Computer Security Page

Prof. Syed Rafiul Hussain
Department of Computer Science and Engineering

The Pennsylvania State University

1

CSE 543: Computer Security
Module: Future Secure Programming

CSE543 - Computer Security Page

Programmer’s Problem
• What does “program for security” mean?
• Have you ever “programmed for security”?
• When do you start consider security when you
program?

• What do you try to do to make your code secure?
• When do you know you are done making your code
secure?

2

CSE543 - Computer Security Page

Programmer’s Problem
• Implement a program
‣ Without creating vulnerabilities

• What is a vulnerability?

3

CSE543 - Computer Security Page

Software Vulnerabilities
• Vulnerability combines
‣ A flaw
‣ Accessible to an adversary
‣ Who can exploit that flaw

• Which would you focus on to prevent vulnerabilities?

4

CSE543 - Computer Security Page

Buffer Overflow Detection
• For C code where
‣ char dest[LEN]; int n;

‣ ...

‣ n = input();

‣ ...

‣ strncpy(dest, src, n);

• Can this code cause a buffer overflow?

5

CSE543 - Computer Security Page

Runtime Analysis
• One approach is to run the program to determine how it behaves
• Analysis Inputs

‣ Input Values - command line arguments
‣ Environment - state of file system, environment variables, etc.

• Question

‣ Can any input value in any environment cause a vulnerability (e.g., exploit a buffer
overflow)?

• What are the limitations of runtime analysis?

6

CSE543 - Computer Security Page

Fuzz Testing
• Dynamic software testing technique …

‣ Run the software

• Where invalid, unlikely, and/or random inputs are provided to the program …

‣ See what happens

• To detect crashes, exceptions, etc.

‣ Which may be indicate of flaws that can be exploited
‣ How would this detect a buffer overflow?

• Fuzz testing is “black-box testing” — do not need to examine the program code to run

• Research in grey/white-box testing, but industry uses fuzzing

7

CSE543 - Computer Security Page

Static Analysis
• Explore all possible executions of a program
‣ All possible inputs
‣ All possible states

8

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Static Analysis
•  Explore all possible executions of a program!

‣  All possible inputs !

‣  All possible states!

8

CSE543 - Computer Security Page

Runtime Analysis

9Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Static Analysis
•  Provides an approximation of behavior!

•  �Run in the aggregate�!

‣  Rather than executing on ordinary states!

‣  Finite-sized descriptors representing a collection of states!

•  �Run in non-standard way�!

‣  Run in fragments!

‣  Stitch them together to cover all paths!

•  Runtime testing is inherently incomplete, but static
analysis can cover all paths!

10

CSE543 - Computer Security Page

Runtime Analysis

10Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Static Analysis Example
•  Descriptors represent the sign of a value!

‣  Positive, negative, zero, unknown!

•  For an expression, c = a * b!

‣  If a has a descriptor pos!

‣  And b has a descriptor neg!

•  What is the descriptor for c after that instruction?!

•  How might this help?!

11

CSE543 - Computer Security Page

Runtime Analysis

11Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Descriptors
•  Choose a set of descriptors that !

‣  Abstracts away details to make analysis tractable!

‣  Preserves enough information that key properties hold!

•  Can determine interesting results!

•  Using sign as a descriptor!

‣  Abstracts away specific integer values (billions to four)!

‣  Guarantees when a*b = 0 it will be zero in all executions!

•  Choosing descriptors is one key step in static analysis !

12

CSE543 - Computer Security Page

Buffer Overflow Static Analysis
• For C code where
‣ char dest[LEN]; int n;

‣ n = input();

‣ strncpy(dest, src, n);

• Static analysis will try all paths of the program that impact variable n and flow to strncpy

‣ May be complex in general because
• Paths: Exponential number of program paths
• Interprocedural: n may be assigned in another function
• Aliasing: n’s memory may be accessed from many places

• What descriptor values do you care about for n?

12

CSE543 - Computer Security Page

Limitations of Static Analysis
• Scalability

‣ Can be expensive to reason about all executions of complex programs
• False positives

‣ Overapproximation means that executions that are not really possible may be found
• Accuracy

‣ Alias analysis and other imprecision may lead to false negatives
‣ Sound methods (no false negatives) can exacerbate scalability and false positives

problems
• Bottom line: Static analysis often must be directed

13

CSE543 - Computer Security Page

Preventing Vulnerabilities
• What can the programmer do to secure their program?

14

CSE543 - Computer Security Page

Information Flow Control
• What is it?
‣ Simple security & ★-property

•

15Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Denning’s Lattice Model
•  Formalizes information flow models!

‣  FM = {N, P, SC, /, >}

•  Shows that the information flow model instances form a lattice!

‣  N are objects, P are processes,!

‣  {SC, >} is a partial ordered set,!

‣  SC, the set of security classes is finite,!

‣  SC has a lower bound, !

‣  and / is a lub operator!

•  Implicit and explicit information flows!

•  Semantics for verifying that a configuration is secure!

•  Static and dynamic binding considered!

•  Biba and BLP are among the simplest models of this type

CSE543 - Computer Security Page

Information Flow Control
• What is it?
‣ Simple security & ★-property

•

16Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Implicit and explicit flows
•  Explicit!

‣  Direct transfer to b from a (e.g., b = a)!

•  Implicit!

‣  Where value of b may depend on value of a indirectly (e.g., if a = 0, then b
= c)!

•  Model covers all programs!

‣  Statement S!

‣  Sequence S1, S2!

‣  Conditional c: S1, …, Sm!

•  Implicit flows only occur in conditionals!

CSE543 - Computer Security Page

Information Flow Control
• What is it?
‣ Simple security & ★-property

•

17Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Semantics

•  Program is secure if:!

‣  Explicit flow from S is secure!

‣  Explicit flow of all statements in a sequence are secure
(e.g., S1; S2)!

‣  Conditional c: S1, …, Sm is secure if:!

•  The explicit flows of all statements S1, …, Sm are secure!

•  The implicit flows between c and the objects in Si are secure!

CSE543 - Computer Security Page

Build on Type Safety
• A type-safe language

maintains the semantics
of types.
E.g., can’t add int’s
to Object’s.

• Type-safety is
compositional.
A function promises
to maintain type safety.

18

Example 1
Object obj;
int i;
obj = obj + i;

Example 2
String proc_obj(Object o);
...
main()
{
 Object obj;
 String s = proc_obj(obj);

...
}

X

CSE543 - Computer Security Page

Labeling Types

• Key insight:
label types with security levels

• Security-typing is compositional

19

Example 1
int{high} h1,h2;
int{low} l;
l = 5;
h2 = l;
h1 = h2 + 10;
l = h2 + l;

Example 2
String{low}
proc_obj(Object{high} o);
...
main()
{
 Object{high} obj;
 String{low} s;
 s = proc_obj(obj);
 ...
}

X

CSE543 - Computer Security Page

Implicit Flows

20

intLow mydata = 0;

intLow mydata2 = 0;

if (testHigh)

 mydata = 1;

else

 mydata = 2;

mydata2 = 0;

printLow(mydata2);

printLow(mydata);

…

Static (virtual) tagging

Causes type error
at compile-time

mydata contains information
about test so it can no longer be
Low,but mydata2 is outside the

conditional, so it is untainted by test

CSE543 - Computer Security Page

Retrofitting for Security
• Take the code written in a language of the programmers’ choice (for functionality) and retrofit with

security code (mostly-automated)
• Consider authorization bypass vulnerabilities

‣ In these vulnerabilities, programmers forget to add code to control access to program resources

21

Resource manager!

!!

Resource user!

Operation request! Response!

Authorization policy!

Reference monitor!

Allowed?! YES/NO!

Authorization Hooks!

‹Alice, /etc/passwd, File_Read›!

What!is!authoriza,on?!!

CSE543 - Computer Security Page

What Should a Programmer Do?
• How would you ensure that all accesses to all security-sensitive window objects in the X

Server are authorized?

22

CSE543 - Computer Security Page

What Should a Programmer Do?

23Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Program Challenges

A. Identify security-
sensitive resources

•  Programs manipulate many
variables
•  7800 in X Server
•  Of over 400 structures
•  Many, many structure-

member accesses

Program Challenges

Inferring Sensitive Operations

B
Request
Interface

i

C

User A

User B

D

A

F
I

J
H

K

L

E

Program

o1

o2

o3

o4

on

.

.

.

CSE543 - Computer Security Page

What Should a Programmer Do?

24Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Solution

• In servers, client-request determines choices that client

subjects can make in the program

• “Choice”:

‣  Resources: Determine which elements are chosen from

containers.

‣  Operations: Determine which program path

is selected for execution.

Requests make choices

CSE543 - Computer Security Page

What Should a Programmer Do?

25Systems and Internet Infrastructure Security (SIIS) Laboratory Page

o1

o2

o3

o4

B
Request
Interface

i

C
v = Lookup(O,i)

User A

User B

D

A

F
I

J
H

K

L

E

Program

Container
O

Idea: Request Choices
Lookup Function
using tainted variable

CSE543 - Computer Security Page

What Should a Programmer Do?

26Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Idea: Request Choices

o1

o2

o3

o4

B
Request
Interface

i

C
v = Lookup(O,i)

User A

User B

D

A

F
I

J
H

K

L

E

Program

Container
O

Op 1.0

CSE543 - Computer Security Page

What Should a Programmer Do?

27Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Idea: Request Choices

write v

o1

o2

o3

o4

B
Request
Interface

i

C
v = Lookup(O,i)

User A

User B

D

A

F
I

J
H

read v

K

L

E

Program

Container
O

Op 1.0

Control Statement
Predicated on a
tainted variable

CSE543 - Computer Security Page

What Should a Programmer Do?

28Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Idea: Request Choices

write v

o1

o2

o3

o4

B
Request
Interface

i

C
v = Lookup(O,i)

User A

User B

D

A

F
I

J
H

read v

K

L

E

Program

Container
O

Op 1.0

Op1.3Op1.2Op1.1

Choice of
operations

CSE543 - Computer Security Page

What Should a Programmer Do?

29Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Idea: Request Choices

write v

o1

o2

o3

o4

B
Request
Interface

i

C
v = Lookup(O,i)

User A

User B

D

A

F
I

J
H

read v

K

L

E

Program

Container
O

Op 1.0

Op1.3Op1.2Op1.1

Security sensitive
operation

CSE543 - Computer Security Page

Mediate SSOs
• Where should we place authorization hooks?
• Mediate all security-sensitive operations found
‣ Good: Enforce least privilege flexibly
‣ Bad: Maximal number of hooks means…

• Ensure at least one hook per security-sensitive operation

‣ Good: Minimal number of hooks
‣ Bad: Must ensure that all authorized subjects pass…

• Idea: Determine if you have blocked enough

‣ Suppose OP-1 dominates OP-2, then if policy for OP-1 blocks all the
unauthorized subjects for OP-2…

30

CSE543 - Computer Security Page

Future of Secure Programming
• Write your program with functionality in mind
• Determine security policies to be enforced on the program
‣ Semi-automated - e.g., use program analysis to find SSOs

• Use security policies to guide retrofitting of program with security code
automatically

• Can it be done?
‣ Caveat: Some security knowledge is application-specific
‣ Caveat: Cannot retrofit for security from program code alone

31

CSE543 - Computer Security Page

Take Away
• Programming for security is difficult
‣ Programmers create “flaws” that are often accessible and exploitable by adversaries (vulnerabilities)

• Program analysis can find some flaws
‣ Static and dynamic, but limitations for each

• May need to fix program - security types and “choice”
• The future of secure programming may look very different
‣ Now: use favorite language for achieving function and try to add security code without creating flaws

‣ Future: use favorite language for achieving function and retrofit based on a “security program”

32

