
CSE543 - Computer Security Page

Prof. Syed Rafiul Hussain

Department of Computer Science and Engineering

The Pennsylvania State University

1

CSE 543: Computer Security�
Module: Safe Programming

CSE543 - Computer Security Page

Avoiding Vulnerabilities
• How do we write programs to avoid mistakes that lead to vulnerabilities?

‣ Prevent memory errors

‣ Detect data handling errors (e.g., truncation)

2

CSE543 - Computer Security Page

Processing String Input
• Major cause of buffer overflows and other memory errors is the processing

of string input

‣ Read input into your program

• read/fread, gets, scanf, and variants

‣ Manipulate string data

• strcpy, strcat, and variants

‣ Comparing and converting strings

• strtok, strcmp, strtol, and variants

• What properties would you like to ensure when you read and manipulate
strings to prevent memory errors?

3

CSE543 - Computer Security Page

Processing String Input
• Major cause of buffer overflows and other memory errors is the processing

of string input

• What properties would you like to ensure when you read and manipulate

strings to prevent memory errors?

‣ Should create a buffer containing a string that is within buffer bounds and

is null terminated

• That is, should be a semantically correct C string

‣ But, how to check for these properties, how to detect failures, and what to

do on failure?

• Many C functions for string processing work slightly differently

4

CSE543 - Computer Security Page

Secure Programming HOWTO
• See David Wheeler’s “Secure Programming HOWTO” documentation and

slides

‣ Detailed guidance on which C library functions to use and which to avoid

‣ And the future of such C library functions

• Particularly for string processing

• Following slides are derived from his documentation and slides

5

CSE543 - Computer Security Page

No Bounds Checking
• Many C library functions do not check bounds

‣ Don’t use these functions

• Functions

‣ gets – reads input without checking.

‣ strcpy – strcpy(dest, src) copies from src to dest

• If src longer than dest buffer, keeps writing!

‣ strcat – strcat(dest, src) appends src to dest

• If strlen(src)+strlen(dest) longer than buffer, keeps writing!

‣ scanf family of input functions

• Many options don’t control max length (e.g., bare “%s”)

6

CSE543 - Computer Security Page

No Bounds Checking
• Many C library functions do not check bounds

‣ Don’t use these functions

• Example: scanf

‣ sscanf(input, “%s”, target);

‣ Moves input to target until null termination of “input”

‣ Regardless of length of buffer allocated for “target”

• Such functions (used this way) are inherently unsafe if they receive
adversary-controlled input

7

CSE543 - Computer Security Page

No Guarantee of Null Term.
• Even functions that provide some degree of bounds checking may fail to

guarantee null termination of input

• Consider strncpy

• char *strncpy(char *DST, const char *SRC, size_t

LENGTH)

‣ Copy string of bytes from SRC to DST

‣ Up to LENGTH bytes; if less, NIL-fills

‣ Scenario: Suppose size of buffer DST is LENGTH and size of SRC is also
LENGTH

‣ then fills buffer DST without null terminator

• In that case, what happens for strlen(DST)?

8

CSE543 - Computer Security Page

Two Main Defense Options
• (1) Bounds check or (2) auto-resize buffer

‣ Include null-termination

• Bounds checking

‣ If reach bound

• (a) Stop processing

• (b) Truncate data

‣ Stop processing can be used for DoS attacks
‣ Truncation can lose valuable data or allow adversary to remove data chosen by

adversary

• E.g., in middle of multibyte (unicode) character

• Ideally, we want notification if inputs is truncated

9

CSE543 - Computer Security Page

Two Main Defense Options
• (1) Bounds check or (2) auto-resize buffer

‣ Include null-termination

• Auto-resize

‣ If reach bound

• (a) Create new buffer of desired size

‣ This is what most other programming languages do

‣ Auto-resize can present some challenges in C/C++ due to manual memory

management

• E.g., When to free a buffer that is no longer large enough to use?

• Code gets a bit more complex

10

CSE543 - Computer Security Page

Bounds Checking Solutions
• Traditional: strncat, strncpy, sprintf, snprintf
‣ First three are hard to use correctly

• strncat/strncpy

‣ Lack of guarantee of null termination

‣ No report of truncation, should it occur

‣ Also, strncpy does dumb things like NULL-fills rest of buffer, incurring often

unnecessary overhead

11

CSE543 - Computer Security Page

Bounds Checking Solutions
• Traditional: strncat, strncpy, sprintf, snprintf
‣ First three are hard to use correctly

• sprintf

‣ Use format string to express bounds checks

‣ "%.10s" means “<= 10 bytes” (notice “.”)

• “%10s” sets minimum (!) length

‣ Or can use “*” to pass bounds value as an argument

• sprintf(dest, "%.*s", maxlen, src);

• maxlen holds the maximum bytes to copy (still need “.”)

‣ Does not appear to ensure null termination

‣ Or inform on truncation

• Hard to use all these things correctly
12

CSE543 - Computer Security Page

Bounds Checking Solutions
• Traditional: strncat, strncpy, sprintf, snprintf
‣ First three are hard to use correctly

• snprintf

‣ int snprintf(char *s, size_t n, const char * format, ...);

‣ Writes output to buffer “s” up to n chars (bounds check)

‣ Always writes \0 at end if n>=1 (null termination)

‣ Returns “length that would have been written” or negative if error (enable checking

for truncation or errors)

• Example

‣ len = snprintf(buf, buflen, "%s", original_value);

‣ if (len < 0 || len >= buflen) … // handle error/truncation

13

CSE543 - Computer Security Page

Bounds Checking Solutions
• What if you want to bounds check, null-terminate string, detect truncation,

and …

‣ limit the number of bytes read?

‣ snprintf reads to end of input string normally

• Can use snprintf with precision specifier
‣ len = snprintf(dest, destsize, "%.*s", (int) srcsize, src)

‣ if (len < 0 || len >= buflen) … // handle error/truncation

‣ Can be a bit quirky though

‣ Need the “(int)”

14

CSE543 - Computer Security Page

Bounds Checking Solutions
• Future: more streamlined bounds checking solutions

• strlcpy and strlcat
‣ Simpler, full-featured bounds checking

‣ Always null-terminates, if dest has any space (have to leave room, but can specify)

‣ strlcpy doesn’t null-fill, unlike strncpy (good!)

‣ Easy to detect if terminates “in the middle”

‣ Returns “bytes would have written” like snprintf

15

CSE543 - Computer Security Page

Auto-resize Solutions
• Versions of printf that support auto-resize
• asprintf and vasprintf
‣ analogs of sprintf and vsprintf, but auto-allocate a new string

• Simple to use and do not terminate results in middle because it resizes the
string buffer

• Example

‣ char *result;

‣ asprintf(&result, “x=%s and y=%s\n", x, y);

‣ Allocate memory for “result” based on size of resulting (no pun intended)
string

‣ You will have to free that yourself

16

CSE543 - Computer Security Page

Auto-resize Solutions
• Resizing is also supported for other unsafe functions to avoid memory errors

• scanf family of functions

• Use the “%m” qualifier to allocate buffer dynamically to hold the input

• Example

‣ char *result;

‣ sscanf(input, “%ms”, &result);

• Again, you must free the auto-allocated memory

‣ Only if the sscanf was successful

17

CSE543 - Computer Security Page

Auto-resize Solutions
• Resizing is also supported for other unsafe functions to avoid memory errors

• getline function

• Works in a manner analogous to scanf family

‣ No qualifier necessary though

• Example

‣ FILE *stream;

‣ char *line = NULL;

‣ size_t len = 0;

‣ while ((nread = getline(&line, &len, stream)) != -1) {

• /* operate on “line” */

• Will only auto-allocate when more space is needed

18

CSE543 - Computer Security Page

String Conversion
• Converting strings to integers may be prone to integer overflows and other

problems

• atoi vs. strtol (and similar)

• atoi just does conversion as best it can

• strtol can record errors

long res = strtol("83459299999999999K997", &end, 10);

if (errno != 0)

 { printf("Conversion error, %s\n", strerror(errno)); }

else if (*end)

 { printf("Converted partially: %i, non-convertible part: %s\n", res, end); }

else

 { printf("Converted successfully: %i\n", res); }

19

CSE543 - Computer Security Page

Take Away
• Lots of memory errors occur due to sloppy string handling

• Even if you think you are doing the right thing (e.g., strncpy and strncat), you

are prone to flaws

‣ Due to truncation and/or lack of null-termination

• No reason to fall victim to simple errors

‣ Although still have to compute bounds correctly for checking in some cases

• Should start using safe string handling functions NOW

• Also, use “assert” for error checking

20

