It

CSE543 - Computer Security



Programming ) pennstate

* Why do we write programs?

» Function

* What functions do we enable via our programs!
» Some we want -- some we don’t need

» Adversaries take advantage of such “hidden” function

CSE543 - Computer Securit



Some Attack Categories (@) Pennsiace

 Control-flow Attacks

» Adversary directs program control-flow

* E.g.,, return address overwrite through buffer overflow

 Data Attacks

» Adversary exploits flaw to read/modify unexpected data

* E.g., critical variable overwrite through buffer overflow
* Code Injection Attacks

» Adversary tricks the program into executing their input
* E.g.,SQL injection attacks

» Other types of attacks on unauthorized access (later)
» See CWE (http://cwe.mitre.org/)

CSE543 - Computer Securit Page 3



http://cwe.mitre.org/

Memory Errors @) pennsiate

* Many attacks are possible because some programming languages allow
memory errors

» C and C++ for example

* A memory error occurs when the program allows an access to a variable to
read/write to memory beyond what is allocated to that variable

» E.g., read/write beyond the end of a string

» Access memory next to the string

* Memory errors may be exploited to change the program’s control-flow or
data-flow or to allow injection of code

CSE543 - Computer Securit Page 4




A Simple Program (@) pennstate

void myfunc ()

{

char string[1l6];

printf ("Enter a string\n");

scanf (“"%s”, string);

printf (“You entered: %s\n”, string);

}

int main ()

{

myfunc () ;

}

CSE543 - Computer Securit



What Happened? @ PennState

* Brief refresher on program address space

» Stack -- local variables n
» Heap -- dynamically allocated (malloc, free)

» Data -- global, uninitialized variables

» Text -- program code

CSE543 - Computer Securit



What Happened??

» Stack Layout

@ PennState

main() parameters(argc, argv)

return address

\/
U
S
$=d
wn
saved frame pointer
main() local vars
I

myfunc() parameters (void)
return address

. saved frame pointer

kseo myfunc() local vars
' string[16]

CSE543 - Computer Securit Page 7




@ PennState

Exploiting Buffer Overflow

» Stack Layout

main() parameters(argc, argv)
return address
saved frame pointer
main() local vars
myfunc() parameters (void)

return address

saved frame pointer

myfunc() local vars
string[16]

CSE543 - Computer Securit Page 8




Prevent Code Injection (@) Pennsiate

* What if we made the stack non-executable?
» AMD NX-bit
» More general:W (xor) X

myfunc() parameters (void)

pc of ‘eturn address

argum <avard frame pointer

myfunc() local vars
string[16]

CSE543 - Computer Securit



Protect the Return Address &) pennstate

BN v-ld'd1 main() parameters(argc, argv)

» “Canary” on the stack

return address » Random value placed

saved frame pointer between the local vars and
the return address

main() local vars

» If canary is modified,
myfunc() parameters (void) program is stopped

return address « Have we solved buffer

)
CANARY overflows!

saved frame pointer

myfunc() local vars
string[16]

CSE543 - Computer Securit



Canary Shortcomings

e Stack

CSE543 - Computer Securit

main() parameters(argc, argv)
return address

saved frame pointer

main() local vars

myfunc() parameters (void)

return address

(S/AN N VAR (

saved frame pointer

myfunc() local vars
string[16]

oy OV

@ PennState

Other local variables?
Frame pointers!?

Anything left
unprotected on stack
can be used to launch

attacks

Not possible to protect
everything

Varargs
Structure members

Performance



A Simple Program (@) pennstate

int authenticated = 0;
char packet[1000];

while ('authenticated) {
PacketRead (packet) ;
1f (Authenticate (packet))
authenticated = 1;

}
1f (authenticated)

ProcessPacket (packet) ;

CSE543 - Computer Securit Page 12




A Simple Program (@) pennstate

int authenticated = 0;
char packet[1000];

while (lauthenticated) { What if packet is only
Pecketnesd (pachet) ;] 1004 bytes?

1f (Authenticate (packet))
authenticated = 1; myfunc() parameters

}
i1f (authenticated)

ProcessPacket (packet) ; CANARY

return address

saved frame pointer

int authenticated

char packet[1000]

CSE543 - Computer Securit



Overflow of Local Variables (@) pennstate

* Don’t need to modify return address

» Local variables may affect control

* What kinds of local variables would impact control?
»  Ones used in conditionals (example)

» Function pointers

* What can you do to prevent that!?

CSE543 - Computer Securit



A Simple Program (@) pennstate

int authenticated = 0;
char *packet = (char *)malloc(1000) ;

while ('authenticated) { What if we allocate the

PacketRead (packet) ; | packet buffer on the heap?

1f (Authenticate (packet))
authenticated = 1;

}
1f (authenticated)

ProcessPacket (packet) ;

CSE543 - Computer Securit Page 15




Heap Overflows (§8) Pennstate

* Overflows on heap also possible

char *packet = malloc(1000)

PaCket [ 1 OOO ] — ! M ! ; prev_size ae Si70 0f the previous chunk
. - S.‘{e of this chunk |’4§‘ bytes),
» “Classical” heap overflow corrupts ot —— wth PREL_ NS b
metadata

» Heap metadata maintains chunk size,
previous and next pointers, ...

+— S22 of the previous chunk

Size of this chunk (45 bytes),
with PREV _INUSE bit set

* Heap metadata is inline with
heap data

buff2

» And waits for heap management : 4,
functions (malloc, free) to p (40 Dytes) 1
write corrupted metadata to S
target locations

CSE543 - Computer Securit Page 16




Heap Overflows (§8) Pennstate

* Heap allocators maintain a doubly-linked list of allocated and free chunks
 malloc() and £ree() modify this list

Chunksl, 2, and 3 are joined by a doubly-linked list
/_\ /’—_\

ps | sz | f&~ bk\&hunk'l ps | sz \fd/))k\gt\unk2 ps | sz [ | bk |chunk3

B B

\___/ \../
Chunk2 may be unlinked by rewriting 2 pointers

/ \
ps | sz fa/ﬂw1 ps | sz | fd | bk |chunk2| | ps }ﬂ,bk chunk3
J 1 — =L
Chunk2 is now unlinked
/-—_\
ps | sz fd//bk\gl:lunk‘l ps sz\\fd//bk chunk3
\—-/

http://www.sans.edu/student-files/presentations/heap overflows notes.pdf

CSE543 - Computer Securit Page 17



http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

Heap Overflows (§8) Pennstate

* free() removes a chunk from allocated list

chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk

* By overflowing chunk2, attacker controls bk and fd

» Controls both where and what data is written!

* Arbitrarily change memory (e.g., function pointers)

Chunksl, 2, and 3 are joined by a doubly-linked list
/_\ /’_\

[T i L~ N

ps | sz | fd~ bk\C\hunk1 ps | sz \fd//))kc\hunKZ ps | sz \fd/))k chunk3

\/ \_/

Chunk2 may be unlinked by rewriting 2 pointers
/ \

ps | sz fd/ﬁ@hu\nld ps | sz | fd | bk |chunk?2 p?}\fd bk lchunk3

//
e —

Chunk2 is now unlinked

P i

= N

ps | sz | fd” bk\C\hunk'l ps | sz [d | bk ([chunk3

-

\_/

CSE543 - Computer Securit Page 18




Heap Overflows (§8) Pennstate

* free() removes a chunk from allocated list

chunk2->bk->fd = chunk2->fd v[chunkl1+8]= chunk3
chunk2->fd->bk = chunk2->bk v[chunk3+12] = chunkl

* By overflowing chunk2, attacker controls bk and fd

» Controls both where and what data is written!

* Arbitrarily change memory (e.g., function pointers)

Chunksl, 2, and 3 are joined by a doubly-linked list
/_\ /’_\

[T i L~ N

ps | sz | fd~ bk\C\hunk1 ps | sz \fd//))kc\hunKZ ps | sz \fd/))k chunk3

\/ \_/

Chunk2 may be unlinked by rewriting 2 pointers
/ \

ps | sz fd/ﬁ@hu\nld ps | sz | fd | bk |chunk?2 p?}\fd bk lchunk3

//
e —

Chunk2 is now unlinked

P i

= N

ps | sz | fd” bk\C\hunk'l ps | sz [d | bk ([chunk3

-

\_/

CSE543 - Computer Securit Page 19




Heap Overflows (§8) Pennstate

* By overflowing chunk2, attacker controls bk and fd

» Controls both where and what data is written!

* Assign chunk2->fd to value to want to write
* Assign chunk2->bk to address X (where you want to write)

 Less an offset of the fd field in the structure

* Free() removes a chunk from allocated list

chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk

* What’s the result?

CSE543 - Computer Securit Page 20




Heap Overflows (§8) Pennstate

* By overflowing chunk?2, attacker controls bk and fd

» Controls both where and what data is written!
* Assign chunk2->fd to value to want to write
* Assign chunk2->bk to address X (where you want to write)

 Less an offset of the fd field in the structure

* Free() removes a chunk from allocated list

chunk2->bk->fd = chunk2->fd
=> addrX+8 = wvalue

chunk2->bk->fd = chunk2->fd
addrX->fd = wvalue

If adversary wants to write

value Oxdeadbeef to address
Oxbffffffc, she writes

chunk2->fd = Oxdeadbeef
chunk2->bk = Oxbffffffc - 8

* What’s the result?

* Change a memory address to a new pointer value (in data)

CSE543 - Computer Securit Page 21




OverfIOW Defenses @ PennState

* Address space randomization

» Make it difficult to predict where a particular program variable is stored in memory
» Rather than randomly locate every variable
» A simpler solution is to randomly offset each memory region

* Address space layout randomization (ASLR)
» Stack and heap are located at different base addresses each time the program is run

» NOTE: Always on a page offset, however, so limited in range of bits available for
randomization

* Also, works for buffer overflows

CSE543 - Computer Securit Page 22




Other Heap Attacks @) pennstate

* Heap spraying

» Combat randomization by filling heap with allocated objects containing malicious
code

» Use another vulnerability to overwrite a function pointer to any heap address,
hoping it points to a sprayed object

» Heuristic defenses
—
* e.g., NOZZLE: If heap data is like vereblen —

code, flag attack

e Use-after-free

» Type confusion

shellcode

shellcode
Low Address

CSE543 - Computer Securit Page 23




Heap Overflow Defenses @) rennsiate

* Separate data and metadata
» e.g., OpenBSD’s allocator (Variation of PHKmalloc)

» Sanity checks during heap management

free (chunk2) -->
assert (chunk2->fd->bk == chunk?2)
assert (chunk2->bk->fd == chunk2)

» Added to GNU libc 2.3.5

 Randomization

* Q. What are analogous defenses for stack overflows?

CSE543 - Computer Securit Page 24




Another Simple Program (@) pennstate

int size = BASE SIZE;
char *packet = (char *)malloc(1000);
char *buf = (char *)malloc(1000+BASE SIZE) ;

strcpy (buf, FILE PREFIX) ;

size += Any problem with this
if (sizeW conditional check?

return(-1) B

}

else
strcat (buf, packet);
fd = open (buf) ;

}

CSE543 - Computer Securit Page 25




Integer OverfIOW @ PennState

* Signed variables represent positive and negative values
» Consider an 8-bit integer:-128 to 127
» Weird math: [27+] =777

* This results in some strange behaviors

» size += PacketRead (packet)

*  What is the possible value of size!

y if ( size >= 1000+BASE SIZE ) .. {

* What is the possible result of this condition?

* How do we prevent these errors!?

CSE543 - Computer Securit Page 26




Another Simple Program (@) pennstate

int size = BASE SIZE;
char *packet = (char *)malloc(1000);
char *buf = (char *)malloc(1000+BASE SIZE) ;

strcpy (buf, FILE PREFIX) ;

size += PacketRead (packet);
if ( size < 1000+BASE SIZE) ({

strcat (buf, packet); Any problem with this

printf?

printf (packet) ;

}

CSE543 - Computer Securit Page 27




Format String Vulnerability @) rennsiate

» Attacker control of the format string results in a format string vulnerability

» printf is a very versatile function
* s - dereferences (crash program)
»  printf(“Hello %s”); //expects 2 args
* Jox - print addresses (leak addresses, break ASLR)
»  printf(“Hello 7%x %x %x”); /| expects 4 arguments

* Jn - write to address (arbitrarily change memory)
»  printf ("12345%n", &x); // writes 5 into x

* Never use
» printf(string);
* |Instead, use

» printf(“%s”, string);

CSE543 - Computer Securit Page 28




Ta ke Aw ay @ PennState

* Programs have function

» Adversaries can exploit unexpected functions

* Vulnerabilities due to malicious input

» Subvert control-flow or critical data

* Buffer, heap, integer overflows, format string vulnerabilities
» Injection attacks

* Application-dependent

» |f applicable, write programs in languages that eliminate classes of
vulnerabilities

» E.g, Type-safe languages such as Java

CSE543 - Computer Securit Page 29




