
CSE543 - Computer Security Page

Prof. Syed Rafiul Hussain

Department of Computer Science and Engineering

Pennsylvania State University

1

CSE 543: Computer Security�
Module: Hardware Security

CSE543 - Computer Security Page

What is Trust?
• dictionary.com

‣ Firm reliance on the integrity, ability, or character of a person or thing.

• What do you trust?

‣ Trust Exercise

• Do we trust our computers?

2

CSE543 - Computer Security Page

Trust
• “a system that you are forced to trust because you have no choice” -- US

DoD

• “A ‘trusted’ computer does not mean a computer is trustworthy” -- B.
Schneier

3

CSE543 - Computer Security Page

Trusted Computing Base
• Trusted Computing Base (TCB)

‣ Hardware, Firmware, Operating System, etc

• There is always a level at which we must rely on trust

4

CSE543 - Computer Security Page

Trusted Computing Base
• Helps us enforce security

‣ E.g., reference monitor in OS for access control

• Historically, security features have been added to OSes or into programs
directly

‣ But, may be slow and/or complex enforce security

• How about adding security features into the hardware?

‣ May still need support from the OS/compilers

‣ But maybe we don’t have to trust them…

5

CSE543 - Computer Security Page

Buffer Overflows
• Can hardware help prevent buffer overflows from being exploited?

‣ How could it help?

6

CSE543 - Computer Security Page

Buffer Overflows - MPX
• Can hardware help prevent buffer overflows from being exploited?

‣ How could it help?

• One Approach: Intel MPX

‣ Instruction set architecture (ISA) extension

‣ Set bounds registers - update these from a bounds table

‣ Check bounds - check bounds for a pointer

‣ Set status - store error code to enable error handling

• Approach

‣ Store upper and lower bound addresses in bounds register

‣ Use selected bounds register with a pointer use

‣ Pointer must be within bounds

7

CSE543 - Computer Security Page

Buffer Overflows - MPX
• Of course, somebody needs to setup the bounds information and decide

when to check the pointers

‣ And deal with violations when they occur

• Operating systems

‣ Provides support for memory management for bounds table and exception handling

on violation

• Compilers

‣ Instruments the original program to track and check bounds

• Runtime libraries

‣ Initialize MPX and check bounds before library calls

• Ecosystem for Intel MPX is now available although researchers are just
starting to evaluate

8

CSE543 - Computer Security Page

Another Use for MPX
• Paper “LMP: Light-Weighted Memory Protection with Hardware Assistance” in

ACSAC 2016 used MPX for implementing a shadow stack

• A shadow stack compares return values on stack with expected return

values

‣ LMP implements such checks by

• On Call: Copy expected return address to shadow stack

• On Return: Load expected return address into bounds register and compare to actual

return address

‣ To protect the shadow stacks, all stores except those in instrumentation
are prohibited from accessing shadow stack memory by bounds checks

9

CSE543 - Computer Security Page

Control Flow Hijacking
• Can hardware help prevent control flow hijacking using function pointers

(call/jmp) and returns?

‣ How could it help?

10

CSE543 - Computer Security Page

Control Flow Hijacking - PT
• Can hardware help prevent buffer overflows from being exploited?

‣ How could it help?

• One Approach: Intel PT

‣ Record the control flow decisions made by a program at runtime in a trace buffer

‣ Use the trace buffer to evaluate the program control flow to detect errors

• Use for control-flow integrity enforcement

‣ Record trace buffers from execution

‣ Compare indirect call/jmp targets to expected targets

‣ Collect call sites and match returns to expected returns

11

CSE543 - Computer Security Page

An Example

12Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

An Example

48

A

B

Basic Blocks

jmp#D#

jcc#E#

C
call#*rax#

D
jcc#B#

E

ret#

F
syscall#

Trace Packets

PGE A

TNT
Taken

End

Not Taken

TIP F

PGD 0

CSE543 - Computer Security Page

Control Flow Hijacking - PT
• Coarse-grained Policy (any legal target for source)

‣ Check if the targets of indirect control transfers are valid

‣ Requires decoding the trace packets

• Fine-grained Policy (specific targets for source)

‣ Check if the source and destination are a legitimate pair

‣ Requires control-flow recovery

• Shadow Stack

‣ Check if an indirect control transfer is legitimate based on the reconstructed call

stack for entire run

‣ Requires sequential processing

13

CSE543 - Computer Security Page

Untrusted OS?
• Can hardware help protect your programs from compromised operating

systems?

‣ Do you really need to trust the OS?

14

CSE543 - Computer Security Page

Untrusted OS?
• Can hardware help protect your programs from compromised operating

systems?

‣ Do you really need to trust the OS?

• What do you need to do to protect your process from the OS?

15

CSE543 - Computer Security Page

Untrusted OS?
• Can hardware help protect your programs from compromised operating

systems?

‣ Do you really need to trust the OS?

• What do you need to do to protect your process from the OS?
Use OS services safely
‣ Memory management

‣ Device access

‣ Scheduling (availability)

• Ideally, protect secrecy and integrity of application data when using memory
and device resources

16

CSE543 - Computer Security Page

Intel SGX
• Can hardware help protect your programs from compromised operating

systems?

‣ Do you really need to trust the OS?

• One Approach: Intel SGX
‣ Define a protected memory “enclave” to run programs

‣ Load and run your programs in that enclave

‣ Use OS as a untrusted server of resources (encrypted memory and system

resources)

• For a program that processes secret data

‣ Load program and keys into enclave

‣ Read encrypted data from system

‣ Decrypt and process that data

17

CSE543 - Computer Security Page

Intel Software Guard Ext

18

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 13

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 3, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

� Enclaves are isolated memory regions of code and
data

� One part of physical memory (RAM) is reserved for
enclaves
� It is called Enclave Page Cache (EPC)
� EPC memory is encrypted in the main memory (RAM)
� Trusted hardware consists of the CPU-Die only
� EPC is managed by OS/VMM

SGX Enclaves

RAM: Random Access Memory
OS: Operating System
VMM: Virtual Machine Monitor (also known as Hypervisor)

CSE543 - Computer Security Page

Intel Software Guard Extension

19Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 17

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 19, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX – Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

1

2

3

Client

SK/PK

Trusted Untrusted

CSE543 - Computer Security Page

Intel Software Guard Extension

20Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 18

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 20, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX – Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

5. Allocate enclave pages

1

2

3

4

4. Create enclave

5

7

Client

SK/PK

Trusted Untrusted

CSE543 - Computer Security Page

Intel Software Guard Extension

21Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 19

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 21, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX – Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

5. Allocate enclave pages 6. Load & Measure App 7. Validate certificate and enclave integrity

1

2

3

4

4. Create enclave

6

5

7

Client

SK/PK

Trusted Untrusted

CSE543 - Computer Security Page

Intel Software Guard Extension

22Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 20

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 22, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX – Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

5. Allocate enclave pages 6. Load & Measure App 7. Validate certificate and enclave integrity

1

2

3

4

4. Create enclave

6

5

8. Generate enclave K key

7

9. Protect enclave

8
K

Client

SK/PK

Trusted Untrusted

CSE543 - Computer Security Page

Untrusted OS vs SGX
• Challenges in running an environment that

‣ (1) Does not trust the OS

‣ (2) Yet uses the OS services

• Memory management (e.g., page fault handling)

• System calls

• What could go wrong?

23

CSE543 - Computer Security Page

Side Channels
• Challenge - Side Channels
• Untrusted operating system can see all the page faults from each enclave

• Untrusted operating system can cause page faults to occur by unmapping

pages

• Researchers have found that such malice can be done on a fine granularity to

enable single-stepping of enclaves

• Provides untrusted operating system with a powerful method for detecting

the operation of enclaves and possibly leaking data based on their operation

24

CSE543 - Computer Security Page

Trusted Platform Module
• The Trusted Platform Module (TPM) provides hardware support for sealed

storage and remote attestation

• What else can it do?

‣ www.trustedcomputinggroup.org

25

http://www.trustedcomputinggroup.org

CSE543 - Computer Security Page

Where are the TPMs?

26

CSE543 - Computer Security Page

TPM Components Architecture

27

Non-Volatile
Storage

Platform
Configuration
Register (PCR)

Attestation
Identity Key

(AIK)

Program
Code

Random
Number

Generator

SHA-1
Engine

Key
Generation

RSA
Engine Opt-In Exec

Engine

I/O

CSE543 - Computer Security Page

Tracking State
• Platform Configuration Registers (PCRs) maintain state values.

• A PCR can only be modified through the Extend operation

‣ Extend(PCR[i], value) :

• PCR[i] = SHA1(PCR[i] . value)

• The only way to place a PCR into a state is  
to extend it a certain number of times with  
specific values

28

BIOS Self Measurement

OS Loader Code

OS Code

Measurement Flow
(Transitive Trust)

CSE543 - Computer Security Page

Secure vs. Authenticated Boot
• Secure boot stops execution if measurements are not correct

• Authenticated boot measures each boot state and lets remote systems
determine if it is correct

• The Trusted Computing Group architecture uses authenticated boot

29

CSE543 - Computer Security Page

Integrity Measurement Problem
• IPsec and SSL provide secure communication

‣ But with whom am I talking?

30

 Secure Channel

 On-Demand / Grid
Secure Domains
B2B Application
Thin-Client

CSE543 - Computer Security Page

Integrity Measurement Problem
• Measure a web server application is loaded correctly

‣ I.e., without malware

‣ What should you measure?

31

 On-Demand / Grid
Secure Domains
B2B Application
Thin-Client

•  IBM logo must not
be moved, added

to, or altered in
any way.

•  Background should
not be modified,

except for quotes,
which use gray
background.

•  Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

blue R204 | G204 | B255

green R223 | G255 | B102

Recommended maximum

•  Copyright: 10pt Arial
Regular, white

Template release: Oct 02

For the latest, go to http://w3.ibm.com/ibm/presentations

Thomas J. Watson Research Center

TCG-based Integrity Measurement Architecture | Usenix Security Symposium 2004 © 2004 IBM Corporation

Optional slide number:
10pt Arial Bold, white

Indications in black = Optional elements

7

Example: Web Server

  Executables
(Program & Libraries)

–  apachectrl, httpd, java, ..

–  mod_ssl.so, mod_auth.so,
mod_cgi.so,..

–  libc-2.3.2.so libjvm.so, libjava.so, …

  Configuration Files

–  httpd.conf, html-pages,

–  httpd-startup, catalina.sh, servlet.jar

  Unstructured Input

–  HTTP-Requests

–  Management Data

Basic Input Output System

Linux GRUB Bootstrap Loader

Linux 2.6.7 System Kernel

e100.ko
…

autofs.ko

 httpd.conf

java.security

java.classes

 apachectrl, httpd

catalina.sh, java,

startup.sh

 Libraries

Module

 User & File I/O

IPC

Network I/O

CSE543 - Computer Security Page

Integrity Measurement Architecture

32

Execution
Flow

Measurement
Flow

Defined by TCG
(Platform specific)

Defined by Grub
(IBM Tokyo Research Lab)

Platform Configuration Registers 0-23

TCG-based
Integrity Measurement Architecture

0-7 4-7 >= 8

CSE543 - Computer Security Page

Collect Hashes

33

Analysis

System-RepresentationSigned TPM Aggregate

 SHA1(Boot Process)
SHA1(Kernel)
SHA1(Kernel Modules)
SHA1(Program)
SHA1(Libraries)
SHA1(Configurations)
SHA1(Structured data)
…

Measurement

System Properties
 ext. Information

(CERT,…)

 Known
Fingerprints

Attested System

 Program

Kernel Kernel
module

Config
data

 Boot-
Process

Data

CSE543 - Computer Security Page

Measurement List

34

/bin/

bash

 Measurement List

 (Kernel-held)

 Memory
Map Schedule

 Traditional execution path

Execve

(*file)
SHA1

 Linux Security Module

SHA1

 Linux Security Module

Integrity
Value

CSE543 - Computer Security Page

Hardware Security Issues

35
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Hardware Security Issues

•  Meltdown and Spectre attacks

‣  Both based on branch prediction and speculative
execution

•  A branch prediction causes a speculative execution to occur that
is only committed when the prediction is correct

‣  But the speculative execution causes measurable side
effects

•  That can enable an adversary to read arbitrary memory from a
victim process

•  Sound solutions require fixes to processors and
updates to ISAs – ad hoc solutions used for now

1

CSE543 - Computer Security Page

Spectre Attack

36
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Spectre Attack

•  Attacker locates a sequence of instructions within a

victim program that would act as a covert channel

‣  From knowledge of victim binary

•  Attacker tricks the CPU to execute these
instructions speculatively and erroneously

‣  Leak victim’s info to measurable channel

•  Cache contents can survive nominal state reversion

•  To make real, use a cache-based side channel, such
as Flush+Reload

70

CSE543 - Computer Security Page

Spectre Attack

37Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Spectre Attack

•  Exploiting Conditional Branches

•  Suppose an adversary controls the value of ‘x’

•  Adversary performs the following sequence

‣  First, invoke the program with legal inputs to train the branch
predictor to speculatively execute the branch to compute ‘y’

‣  Next, invoke the program with an ‘x’ outside bounds of array1
and where array1_size is uncached

‣  The operation will read a value from outside the array, and update
the cache at a memory location based on the value at array1[x]

•  Can learn the value at array1[x] from location of cache update

71

rectness of its initial guess. If the guess was wrong, the
processor discards the (incorrect) speculative execution
by reverting the register state back to the stored check-
point, resulting in performance comparable to idling. In
case the guess was correct, however, the speculative ex-
ecution results are committed, yielding a significant per-
formance gain as useful work was accomplished during
the delay.

From a security perspective, speculative execution in-
volves executing a program in possibly incorrect ways.
However, as processors are designed to revert the results
of an incorrect speculative execution on their prior state
to maintain correctness, these errors were previously as-
sumed not to have any security implications.

1.1 Our Results

Exploiting Speculative Execution. In this paper, we
show a new class of microarchitectural attacks which we
call Spectre attacks. At a high level, Spectre attacks trick
the processor into speculatively executing instructions
sequences that should not have executed during correct
program execution. As the effects of these instructions
on the nominal CPU state will be eventually reverted, we
call them transient instructions. By carefully choosing
which transient instructions are speculatively executed,
we are able to leak information from within the victim’s
memory address space.

We empirically demonstrate the feasibility of Spectre
attacks by using transient instruction sequences in order
to leak information across security domains.

Attacks using Native Code. We created a simple vic-
tim program that contains secret data within its memory
access space. Next, after compiling the victim program
we searched the resulting binary and the operating sys-
tem’s shared libraries for instruction sequences that can
be used to leak information from the victim’s address
space. Finally, we wrote an attacker program that ex-
ploits the CPU’s speculative execution feature in order to
execute the previously-found sequences as transient in-
structions. Using this technique we were able to read the
entire victim’s memory address space, including the se-
crets stored within it.

Attacks using JavaScript. In addition to violating pro-
cess isolation boundaries using native code, Spectre at-
tacks can also be used to violate browser sandboxing, by
mounting them via portable JavaScript code. We wrote a
JavaScript program that successfully reads data from the
address space of the browser process running it.

1.2 Our Techniques

At a high level, a Spectre attack violates memory isola-
tion boundaries by combining speculative execution with

data exfiltration via microarchitectural covert channels.
More specifically, in order to mount a Spectre attack,
an attacker starts by locating a sequence of instructions
within the process address space which when executed
acts as a covert channel transmitter which leaks the vic-
tim’s memory or register contents. The attacker then
tricks the CPU into speculatively and erroneously exe-
cuting this instruction sequence, thereby leaking the vic-
tim’s information over the covert channel. Finally, the at-
tacker retrieves the victim’s information over the covert
channel. While the changes to the nominal CPU state
resulting from this erroneous speculative execution are
eventually reverted, changes to other microarchitectural
parts of the CPU (such as cache contents) can survive
nominal state reversion.

The above description of Spectre attacks is general,
and needs to be concretely instantiated with a way
to induce erroneous speculative execution as well as
with a microarchitectural covert channel. While many
choices are possible for the covert channel compo-
nent, the implementations described in this work use a
cache-based covert channel using Flush+Reload [37] or
Evict+Reload [28] techniques.

We now proceed to describe our techniques for induc-
ing and influencing erroneous speculative execution.

Exploiting Conditional Branches. To exploit condi-
tional branches, the attacker needs the branch predictor
to mispredict the direction of the branch, then the pro-
cessor must speculatively execute code that would not be
otherwise executed which leaks the information sought
by the attacker. Here is an example of exploitable code:

if (x < array1_size)
y = array2[array1[x] * 256];

In this example, the variable x contains attacker-
controlled data. The if statement compiles to a branch
instruction, whose purpose is to verify that the value
of x is within a legal range, ensuring that the access to
array1 is valid.

For the exploit, the attacker first invokes the relevant
code with valid inputs, training the branch predictor to
expect that the if will be true. The attacker then invokes
the code with a value of x outside the bounds of array1
and with array1 size uncached. The CPU guesses
that the bounds check will be true, the speculatively exe-
cutes the read from array2[array1[x] * 256] using
the malicious x. The read from array2 loads data into
the cache at an address that is dependent on array1[x]
using the malicious x. The change in the cache state is
not reverted when the processor realizes that the specu-
lative execution was erroneous, and can be detected by
the adversary to find a byte of the victim’s memory. By
repeating with different values of x, this construct can be
exploited to read the victim’s memory.

2

CSE543 - Computer Security Page

Meltdown Attack

38Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Meltdown

•  Meltdown has some similarities

•  Uses the speculative execution of the above code with an
illegal address in ‘data’ to read arbitrary kernel memory

•  Adversary performs the following sequence

‣  Set data to a kernel memory address

‣  The cache entry corresponding to probe_array(data*4096) will be
updated based on the value at ‘data’

•  Flush+Reload to detect

•  Can leak entire kernel memory

72

1 raise_exception();
2 // the line below is never reached
3 access(probe_array[data * 4096]);

Listing 1: A toy example to illustrate side-effects of out-
of-order execution.

<instr.>

<instr.>
...

<instr.>

[Exception]

E
X

E
C

U
T

E
D

E
X

E
C

U
T

E
D

O
U

T
O

F

O
R

D
E

R

<instr.>

<instr.>

<instr.>

EXCEPTION

HANDLER

<instr.>

<instr.>

[Terminate]

Figure 3: If an executed instruction causes an exception,
diverting the control flow to an exception handler, the
subsequent instruction must not be executed anymore.
Due to out-of-order execution, the subsequent instruc-
tions may already have been partially executed, but not
retired. However, the architectural effects of the execu-
tion will be discarded.

of whether this exception is raised due to a memory ac-
cess, e.g., by accessing an invalid address, or due to any
other CPU exception, e.g., a division by zero, the control
flow continues in the kernel and not with the next user
space instruction.

Thus, our toy example cannot access the array in the-
ory, as the exception immediately traps to the kernel and
terminates the application. However, due to the out-of-
order execution, the CPU might have already executed
the following instructions as there is no dependency on
the exception. This is illustrated in Figure 3. Due to the
exception, the instructions executed out of order are not
retired and, thus, never have architectural effects.

Although the instructions executed out of order do not
have any visible architectural effect on registers or mem-
ory, they have microarchitectural side effects. During the
out-of-order execution, the referenced memory is fetched
into a register and is also stored in the cache. If the out-
of-order execution has to be discarded, the register and
memory contents are never committed. Nevertheless, the
cached memory contents are kept in the cache. We can
leverage a microarchitectural side-channel attack such
as Flush+Reload [35], which detects whether a specific
memory location is cached, to make this microarchitec-
tural state visible. There are other side channels as well
which also detect whether a specific memory location
is cached, including Prime+Probe [28, 24, 26], Evict+
Reload [23], or Flush+Flush [10]. However, as Flush+
Reload is the most accurate known cache side channel

0 50 100 150 200 250
200

300

400

500

Page

A
cc

es
s

ti
m

e
[c

y
cl

es
]

Figure 4: Even if a memory location is only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe array shows one cache
hit, exactly on the page that was accessed during the out-
of-order execution.

and is simple to implement, we do not consider any other
side channel for this example.

Based on the value of data in this toy example, a dif-
ferent part of the cache is accessed when executing the
memory access out of order. As data is multiplied by
4096, data accesses to probe array are scattered over
the array with a distance of 4 kB (assuming an 1 B data
type for probe array). Thus, there is an injective map-
ping from the value of data to a memory page, i.e., there
are no two different values of data which result in an ac-
cess to the same page. Consequently, if a cache line of a
page is cached, we know the value of data. The spread-
ing over different pages eliminates false positives due to
the prefetcher, as the prefetcher cannot access data across
page boundaries [14].

Figure 4 shows the result of a Flush+Reload measure-
ment iterating over all pages, after executing the out-of-
order snippet with data = 84. Although the array ac-
cess should not have happened due to the exception, we
can clearly see that the index which would have been ac-
cessed is cached. Iterating over all pages (e.g., in the
exception handler) shows only a cache hit for page 84
This shows that even instructions which are never actu-
ally executed, change the microarchitectural state of the
CPU. Section 4 modifies this toy example to not read a
value, but to leak an inaccessible secret.

4 Building Blocks of the Attack

The toy example in Section 3 illustrated that side-effects
of out-of-order execution can modify the microarchitec-
tural state to leak information. While the code snippet
reveals the data value passed to a cache-side channel, we
want to show how this technique can be leveraged to leak
otherwise inaccessible secrets. In this section, we want
to generalize and discuss the necessary building blocks
to exploit out-of-order execution for an attack.

The adversary targets a secret value that is kept some-
where in physical memory. Note that register contents
are also stored in memory upon context switches, i.e.,

5

CSE543 - Computer Security Page

Spectre vs. Meltdown

39Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Spectre v Meltdown

•  Which is worse?

•  Meltdown exploits a privilege escalation vulnerability in Intel
processors that bypasses kernel memory protections

‣  That is a big channel, but only applies to Intel processors

‣  Also, the KAISER patch has already been proposed to address the
vulnerability being exploited

‣  Can be fixed

•  Spectre applies to AMD, ARM, and Intel

‣  And there is no patch

‣  And there are variants that can be exploited – e.g., via JavaScript

‣  Do need to find some appropriate victim code tho
73

