
CSE543 - Computer Security Page

Prof. Syed Rafiul Hussain
Department of Computer Science and Engineering

The Pennsylvania State University

1

CSE543 Computer Security
Module: Return-Oriented Programming

CSE543 - Computer Security Page

Anatomy of Control-Flow Exploits
• Two steps in control-flow exploitation
• First -- attacker gets control of program flow (return address,

function pointer)
‣ Stack (buffer), heap, format string vulnerability, …

• Second -- attacker uses control of program flow to launch attacks
‣ E.g., Code injection

• Adversary injects malicious code into victim
• E.g., onto stack or into other data region

‣ How is code injection done?

2

CSE543 - Computer Security Page

Code Injection
• Advantage

• Adversary can install any code they want
• What code do adversaries want?

‣ Defenses
• NX bit - set memory as non-executable (stack)
• W (xor) X - set memory as either writeable or executable, but not both

• What can adversary do to circumvent these defenses and still
execute useful code (for them)?

3

CSE543 - Computer Security Page

Return-to-libc Attacks
• Method

• Overwrite target of indirect call/jmp target to a library routine (e.g., system)
• Return address, function pointer, …

• Advantage
• Get useful function without code injection

• Defenses
• Remove unwanted library functions

• How could an adversary run any exploit they want?
• Topic of today’s lecture

4

CSE543 - Computer Security Page

Return-Oriented Programming
• Arbitrary exploitation without code injection

5

CSE543 - Computer Security Page

Return-Oriented Programming

6

CSE543 - Computer Security Page

ROP Thesis

7

CSE543 - Computer Security Page

Return-to-libc

8

CSE543 - Computer Security Page

ROP vs return-to-libc

9

ROP Example
• Use ESP as program counter

– E.g., Store 5 at address 0x8048000 (without introducing new code)

%eax =
%ebx =

0x8048000 =

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax
ret

pop %ebx
ret

movl %eax, (%ebx)
ret

G2: G2

G3

G1:

G3:

ROP Example
• Use ESP as program counter

– E.g., Store 5 at address 0x8048000 (without introducing new code)

%eax =
%ebx =

0x8048000 =

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax
ret

pop %ebx
ret

movl %eax, (%ebx)
ret

G2: G2

G3

G1:

G3:

5

ROP Example
• Use ESP as program counter

– E.g., Store 5 at address 0x8048000 (without introducing
new code)

%eax =
%ebx =

0x8048000 =

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax
ret

pop %ebx
ret

movl %eax, (%ebx)
ret

G2: G2

G3

G1:

G3:

5

ROP Example
• Use ESP as program counter

– E.g., Store 5 at address 0x8048000 (without introducing
new code)

%eax =
%ebx =

0x8048000 =

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax
ret

pop %ebx
ret

movl %eax, (%ebx)
ret

G2: G2

G3

G1:

G3:

5

ROP Example
• Use ESP as program counter

– E.g., Store 5 at address 0x8048000 (without introducing
new code)

%eax =
%ebx =

0x8048000 =

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax
ret

pop %ebx
ret

movl %eax, (%ebx)
ret

G2: G2

G3

G1:

G3:

5

0x8048000

ROP Example
• Use ESP as program counter

– E.g., Store 5 at address 0x8048000 (without introducing
new code)

%eax =
%ebx =

0x8048000 =

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax
ret

pop %ebx
ret

movl %eax, (%ebx)
ret

G2: G2

G3

G1:

G3:

5

0x8048000

ROP Example
• Use ESP as program counter

– E.g., Store 5 at address 0x8048000 (without introducing
new code)

%eax =
%ebx =

0x8048000 =

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax
ret

pop %ebx
ret

movl %eax, (%ebx)
ret

G2: G2

G3

G1:

G3:

5

0x8048000

ROP Example
• Use ESP as program counter

– E.g., Store 5 at address 0x8048000 (without introducing
new code)

%eax =
%ebx =

0x8048000 =

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax
ret

pop %ebx
ret

movl %eax, (%ebx)
ret

G2: G2

G3

G1:

G3:

5

0x8048000

ROP Example
• Use ESP as program counter

– E.g., Store 5 at address 0x8048000 (without introducing
new code)

%eax =
%ebx =

0x8048000 =

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax
ret

pop %ebx
ret

movl %eax, (%ebx)
ret

G2: G2

G3

G1:

G3:

5

0x8048000

5

CSE543 - Computer Security Page

Machine Instructions

19

CSE543 - Computer Security Page

ROP Execution

20

CSE543 - Computer Security Page

Building ROP Functionality

21

CSE543 - Computer Security Page

Building ROP Functionality

22

CSE543 - Computer Security Page

Building ROP Functionality

23

CSE543 - Computer Security Page

Creating Programs

24

CSE543 - Computer Security Page

Finding Gadgets

25

CSE543 - Computer Security Page

ROP Conclusions

26

CSE543 - Computer Security Page

Control-Flow Integrity
• Goal: Ensure that process control follows source code
‣ Adversary can only choose authorized control-flow sequences

• Build a model from source code that describes legal control flows
‣ E.g., control-flow graph

• Enforce the model on program execution
‣ Instrument indirect control transfers

• Jumps, calls, returns, ...

• Challenges
‣ Building accurate model
‣ Efficient enforcement

27

28

Software Control Flow Integrity
Techniques, Proofs, & Security Applications

Jay Ligatti summer 2004 intern work with:
Úlfar Erlingsson and Martín Abadi

29

Our Mechanism

FA FB

return
call fp

Acall

Acall+1

B1

Bret

CFG excerpt

nop IMM1

if(*fp != nop IMM1) halt

nop IMM2

if(**esp != nop IMM2) halt

NB: Need to ensure bit patterns for nops
appear nowhere else in code memory

30

More Complex CFGs

Maybe statically all we know is that
FA can call any int int function

FA

FB

call fp

Acall B1

CFG excerpt

C1

FC

nop IMM1

if(*fp != nop IMM1) halt

nop IMM1

Construction: All targets of a computed jump must have
the same destination id (IMM) in their nop instruction

succ(Acall) = {B1, C1}

31

Imprecise Return Information

Q: What if FB can return
 to many functions ?

Bret

Acall+1

CFG excerpt

Dcall+1

FB

FA

return

call FB

FD

call FB

nop IMM2

if(**esp != nop IMM2) halt

nop IMM2

succ(Bret) = {Acall+1, Dcall+1}

CFG Integrity:
Changes to the
PC are only to
valid successor
PCs, per succ().

A: Imprecise CFG

32

No “Zig-Zag” Imprecision

Acall
B1

CFG excerpt

C1

Ecall

Solution I: Allow the imprecision Solution II: Duplicate code
to remove zig-zags

Acall
B1

CFG excerpt

C1A

Ecall C1E

CSE543 - Computer Security Page

CFG Imprecision
• Best reduced by a technique developed in the “HyperSafe” system
‣ “HyperSafe: A Lightweight Approach to Provide Lifetime Hypervisor Control-Flow

Integrity” IEEE Symposium on Security and Privacy, 2010

• On indirect call (forward edge)
‣ Check the proposed target against the set of legal targets from the CFG

• On return (backward edge)
‣ Check the proposed return location against the set of legal return locations from the

CFG

• Tricky to make that efficient (see the paper)

33

CSE543 - Computer Security Page

Shadow Stack
• What should be the target of a return instruction?
‣ Return to caller
‣ But, need a way to protect return value

• Shadow stack
‣ Stack that can only be accessed by trusted code (e.g., software fault isolation)
‣ Off limits to overflows

34

CSE543 - Computer Security Page

CFG Computation
• What should be the target of a call instruction?
‣ Direct call - hard coded, so no problem
‣ Indirect call (function pointer) - would be any legal value for the function pointer

• That is, anywhere it can point

• The “points-to” problem in general, which is undecidable

• So, there are various techniques to over-approximate the target set for each
indirect call

35

CSE543 - Computer Security Page

More Challenges
• Predicting return targets can be hard
‣ Exceptions, signals, and setjmp/longjmp

• Runtime generation of indirect jumps
‣ E.g., dynamically linked libraries

• Indirect jumps using arithmetic operators
‣ E.g., assembly

• Is enforcing fine-grained CFI sufficient
to prevent exploits?

36

CSE543 - Computer Security Page

Recent Result
• Suppose a program is protected by fine-grained CFG on calls and a shadow

stack on returns
• Further suppose that the program contains an “arbitrary write primitive”

(e.g., based on a memory error)
• For these programs, exploits can be generated over 80% of the time, even

against CFI defenses
‣ “Block Oriented Programming: Automating Data-Only Attacks”, ACM CCS 2018

• Exploits follow CFG, but manipulate memory to complete exploit
‣ Called “data-oriented programming”

37

CSE543 - Computer Security Page

Alternatives to CFI?
• What are the fundamental enablers of ROP attacks?

• (1) CFI: violate control flow
• (2) Adversary can choose gadgets

• Can we prevent adversaries from
choosing useful gadgets?

• In general, adversaries can
create/obtain the same binary as
is run by the victim

• But, that need not be the case

38

CSE543 - Computer Security Page

Apply Crypto to Code?
• Can we randomize the program’s execution in such a way that an adversary

cannot select gadgets?
• Given a secret key and a program address space, encrypt the address space

such that
• the probability that an adversary can locate a particular instruction (start of

gadget) is sufficiently low
• and the program still runs correctly and efficiently

• Called address space randomization

39

CSE543 - Computer Security Page

ASLR
• For control-flow attacks, attacker needs absolute addresses
• Address-space Layout Randomization

(ASLR) randomizes base addresses
of memory segments on each
invocation of the program
‣ Attacker cannot predict absolute

addresses

• Heap, stack, data, text, mmap, ...

40

Text

Data

Stack

Heap

???

???

???

???

CSE543 - Computer Security Page

ASLR Implementations
• Linux
‣ Introduced in Linux 2.6.12 (June 2005)
‣ Shacham et al. [2004]:16 bits of randomization defeated by a (remote)

brute force attack in minutes
‣ Reality: ASLR for text segment (PIE) is rarely used

• Only few programs in Linux use PIE
• Enough gadgets for ROP can be found in unrandomized code [Schwartz

2011]

41

CSE543 - Computer Security Page

ASLR Limitations
• Attacks may leak randomization information

• Disclosure attacks
• Use buffer over-read to read unauthorized program memory (extract code or

randomizing state)

• ASLR can be bypassed by information leaks about memory layout
‣ E.g., format string vulnerabilities

• So, what can we do?
‣ How do we avoid leaking the “key”?

42

CSE543 - Computer Security Page

Conclusion
• Control-flow attack defenses operate at two stages
‣ Prevent attacker from getting control

• StackGuard, heap sanity checks, ASLR, shadow stacks, ...

‣ Prevent attacker from using control for malice
• NX, W (xor) X, ASLR, Control Flow Integrity (CFI), ...

• For maximum security, a system may need to use a combination of these
defenses

• Q. Is subverting control-flow the only goal of an attacker?

43

