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Anatomy of Control-Flow Exploits
• Two steps in control-flow exploitation
• First -- attacker gets control of program flow (return address, 

function pointer)
‣ Stack (buffer), heap, format string vulnerability, …

• Second -- attacker uses control of program flow to launch attacks
‣ E.g., Code injection

• Adversary injects malicious code into victim
• E.g., onto stack or into other data region

‣ How is code injection done?
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Code Injection
• Advantage

• Adversary can install any code they want
• What code do adversaries want?

‣ Defenses 
• NX bit - set memory as non-executable (stack)
• W (xor) X - set memory as either writeable or executable, but not both 

• What can adversary do to circumvent these defenses and still 
execute useful code (for them)?
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Return-to-libc Attacks
• Method

• Overwrite target of indirect call/jmp target to a library routine (e.g., system)
• Return address, function pointer, …

• Advantage
• Get useful function without code injection

• Defenses 
• Remove unwanted library functions 

• How could an adversary run any exploit they want?
• Topic of today’s lecture
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Return-Oriented Programming
• Arbitrary exploitation without code injection
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Return-Oriented Programming
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ROP Thesis
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Return-to-libc
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ROP vs return-to-libc
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ROP Example
• Use ESP as program counter

– E.g., Store 5 at address 0x8048000 (without introducing new code)

%eax =
%ebx =

0x8048000 =

Registers Memory

Code Stack

G1 

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax 
ret

pop %ebx 
ret

movl %eax, (%ebx) 
ret

G2: G2

G3

G1:

G3:
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Machine Instructions
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ROP Execution
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Building ROP Functionality
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Building ROP Functionality
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Building ROP Functionality
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Creating Programs
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Finding Gadgets
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ROP Conclusions
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Control-Flow Integrity
• Goal: Ensure that process control follows source code
‣ Adversary can only choose authorized control-flow sequences

• Build a model from source code that describes legal control flows
‣ E.g., control-flow graph

• Enforce the model on program execution
‣ Instrument indirect control transfers

• Jumps, calls, returns, ...  

• Challenges
‣ Building accurate model
‣ Efficient enforcement
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Software Control Flow Integrity 
Techniques, Proofs, & Security Applications

Jay Ligatti summer 2004 intern work with: 
Úlfar Erlingsson and Martín Abadi
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Our Mechanism

FA FB

return
call fp

Acall

Acall+1

B1

Bret

CFG excerpt

nop IMM1

if(*fp != nop IMM1) halt

nop IMM2

if(**esp != nop IMM2) halt

NB: Need to ensure bit patterns for nops 
appear nowhere else in code memory
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More Complex CFGs

Maybe statically all we know is that  
FA can call any int     int function

FA

FB

call fp

Acall B1

CFG excerpt

C1

FC

nop IMM1

if(*fp != nop IMM1) halt

nop IMM1

Construction: All targets of a computed jump must have 
the same destination id (IMM) in their nop instruction

succ(Acall) = {B1, C1}
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Imprecise Return Information

Q: What if FB can return 
     to many functions ?

Bret

Acall+1

CFG excerpt

Dcall+1

FB

FA

return

call FB

FD

call FB

nop IMM2

if(**esp != nop IMM2) halt

nop IMM2

succ(Bret) = {Acall+1, Dcall+1}

CFG Integrity: 
Changes to the 
PC are only to 
valid successor 
PCs, per succ().

A: Imprecise CFG
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No “Zig-Zag” Imprecision

Acall
B1

CFG excerpt

C1

Ecall

Solution I: Allow the imprecision Solution II: Duplicate code 
to remove zig-zags

Acall
B1

CFG excerpt

C1A

Ecall C1E
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CFG Imprecision
• Best reduced by a technique developed in the “HyperSafe” system
‣ “HyperSafe: A Lightweight Approach to Provide Lifetime Hypervisor Control-Flow 

Integrity” IEEE Symposium on Security and Privacy, 2010

• On indirect call (forward edge)
‣ Check the proposed target against the set of legal targets from the CFG 

• On return (backward edge)
‣ Check the proposed return location against the set of legal return locations from the 

CFG

• Tricky to make that efficient (see the paper)
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Shadow Stack
• What should be the target of a return instruction?
‣ Return to caller
‣ But, need a way to protect return value

• Shadow stack
‣ Stack that can only be accessed by trusted code (e.g., software fault isolation)
‣ Off limits to overflows
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CFG Computation
• What should be the target of a call instruction?
‣ Direct call - hard coded, so no problem
‣ Indirect call (function pointer) - would be any legal value for the function pointer

• That is, anywhere it can point

• The “points-to” problem in general, which is undecidable

• So, there are various techniques to over-approximate the target set for each 
indirect call
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More Challenges
• Predicting return targets can be hard
‣ Exceptions, signals, and setjmp/longjmp

• Runtime generation of indirect jumps
‣ E.g., dynamically linked libraries

• Indirect jumps using arithmetic operators
‣ E.g., assembly

• Is enforcing fine-grained CFI sufficient 
to prevent exploits?
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Recent Result
• Suppose a program is protected by fine-grained CFG on calls and a shadow 

stack on returns
• Further suppose that the program contains an “arbitrary write primitive” 

(e.g., based on a memory error)
• For these programs, exploits can be generated over 80% of the time, even 

against CFI defenses
‣ “Block Oriented Programming: Automating Data-Only Attacks”,  ACM CCS 2018

• Exploits follow CFG, but manipulate memory to complete exploit
‣ Called “data-oriented programming”
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Alternatives to CFI?
• What are the fundamental enablers of ROP attacks?

• (1) CFI: violate control flow
• (2) Adversary can choose gadgets

• Can we prevent adversaries from  
choosing useful gadgets?

• In general, adversaries can  
create/obtain the same binary as  
is run by the victim

• But, that need not be the case
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Apply Crypto to Code?
• Can we randomize the program’s execution in such a way that an adversary 

cannot select gadgets?
• Given a secret key and a program address space, encrypt the address space 

such that 
• the probability that an adversary can locate a particular instruction (start of 

gadget) is sufficiently low
• and the program still runs correctly and efficiently

• Called address space randomization
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ASLR
• For control-flow attacks, attacker needs absolute addresses
• Address-space Layout Randomization  

(ASLR) randomizes base addresses  
of memory segments on each  
invocation of the program
‣ Attacker cannot predict absolute  

addresses

• Heap, stack, data, text, mmap, ...

40
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ASLR Implementations
• Linux
‣ Introduced in Linux 2.6.12 (June 2005)
‣ Shacham et al. [2004]:16 bits of randomization defeated by a (remote) 

brute force attack in minutes 
‣ Reality: ASLR for text segment (PIE) is rarely used

• Only few programs in Linux use PIE
• Enough gadgets for ROP can be found in unrandomized code [Schwartz 

2011]
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ASLR Limitations
• Attacks may leak randomization information

• Disclosure attacks
• Use buffer over-read to read unauthorized program memory (extract code or 

randomizing state)

• ASLR can be bypassed by information leaks about memory layout
‣ E.g., format string vulnerabilities

• So, what can we do?
‣ How do we avoid leaking the “key”?
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Conclusion
• Control-flow attack defenses operate at two stages
‣ Prevent attacker from getting control

• StackGuard, heap sanity checks,  ASLR, shadow stacks, ... 

‣ Prevent attacker from using control for malice
• NX, W (xor) X,  ASLR, Control Flow Integrity (CFI), ... 

• For maximum security, a system may need to use a combination of these 
defenses

• Q. Is subverting control-flow the only goal of an attacker?
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