CSE543 - Computer Security

Anatomy of Control-Flow Exploits () Pennstate

* Two steps in control-flow exploitation

* First -- attacker gets control of program flow (return address,
function pointer)

» Stack (buffer), heap, format string vulnerability, ...

* Second -- attacker uses control of program flow to launch attacks
» E.g., Code injection
* Adversary injects malicious code into victim

* E.g, onto stack or into other data region

» How is code injection done!

CSE543 - Computer Securit Page 2

Code Injection (@) ennstate

* Advantage
* Adversary can install any code they want

* What code do adversaries want?

» Defenses

» NX bit - set memory as non-executable (stack)
* W (xor) X - set memory as either writeable or executable, but not both

* What can adversary do to circumvent these defenses and still
execute useful code (for them)?

CSE543 - Computer Securit Page 3

Return-to-libc Attacks @ PennsState
e Method

* Opverwrite target of indirect call/jmp target to a library routine (e.g., system)

* Return address, function pointer, ...

* Advantage

* Get useful function without code injection

e Defenses

* Remove unwanted library functions

* How could an adversary run any exploit they want!?

* Topic of today’s lecture

CSE543 - Computer Securit Page 4

Return-Oriented Programming (@) Pennstate

* Arbitrary exploitation without code injection

Return-oriented Programming:
Exploitation without Code Injection

Erik Buchanan, Ryan Roemer, Stefan Savage, Hovav Shacham
University of California, San Diego

CSE543 - Computer Securit Page 5

Return-Oriented Programming (@) Pennstate

Bad code versus bad behavior

(A
Application
code

/

Problem: this implication is
false!

CSE543 - Computer Securit Page ©6

ROP Thesis () rennsta

any sufficiently large program codebase

I |

arbitrary attacker computation and behavior,
without code injection

(in the absence of control-flow integrity)

CSE543 - Computer Securit Page 7

Return-to-libc @) rennsra

» Divert control flow of exploited program into libc code
system(), printf(),

» No code injection required

» Perception of return-into-libc: limited, easy to defeat
Attacker cannot execute arbitrary code
Attacker relies on contents of libc — remove system()?

» We show: this perception is false.

CSE543 - Computer Securit Page 8

ROP vs return-to-libc (&) pennstate

attacker control of stack

I |

arbitrary attacker computation and behavior
via return-into-libc techniques

(given any sufficiently large codebase to draw on)

ROP Example

* Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing new code)

a1: Pop 7eeax G1 Return Address
ret \
5
: op %ebx
G2: POP 7 -
ret > buf
G3: movl %eax, (%ebx) 0x8048000
ret ca)
%eax = Ox8048000 =

%ebx =

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing new code)

a1: Pop 7eeax G1 Return Address
ret \
5
: op %ebx
G2: POp 7 -
ret s
G3: movl %eax, (%ebx) 0x8048000
ret ca)
%eax= 5 0x8048000 =

%ebx =

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)

a1: Pop Jeax G1 Return Address

ret \
5
: op %eb

G2: POpP 70ebX -
ret o

G3: movl %eax, (%be) 0x8048000
ret o3)

%eax= 5 Ox8048000 =

%ebx =

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)

a1: Pop Jeax G1 Return Address

ret \
5
: op %eb

G2: POpP 70ebX -
ret o

G3: movl %eax, (%be) 0x8048000
ret o3)

%eax= 5 Ox8048000 =

%ebx =

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)

a1: Pop Jeax G1 Return Address

ret \
5
: op %eb

G2: POpP 70ebX -
ret .

G3: movl %eax, (%be) 0x8048000
ret o3)

%eax= 5 Ox8048000 =

%ebx = 0x8048000

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)

a1: Pop Jeax G1 Return Address

ret \
5
: op %eb

G2: POpP 70ebX -
ret .

G3: movl %eax, (%be) 0x8048000
ret o3)

%eax= 5 Ox8048000 =

%ebx = 0x8048000

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)

a1: Pop Jeax G1 Return Address

ret \
5
: op %eb

G2: POpP 70ebX -
ret o

G3: movl %eax, (%be) 0x8048000
ret o3)

%eax= 5 Ox8048000 =

%ebx = 0x8048000

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)

a1: Pop Jeax G1 Return Address

ret \
5
: op %eb

G2: POpP 70ebX -
ret .

G3: movl %eax, (%be) 0x8048000
ret o3)

%eax= 5 Ox8048000 =

%ebx = 0x8048000

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)
G1: pop %eax G1 Return Address
ret)
5
: op %eb
G2: POP 7EDX o
ret > buf
G3: movl %eax, (%ebx) 0x8048000
ret G3)
%eax= 5 Ox8048000= 5

%ebx = 0x8048000

Machine Instructions (@) pennstate

Insn INsn Insn Insn INsn

instruction
pointer

» Instruction pointer (“eip) determines which
iInstruction to fetch & execute

» Once processor has executed the instruction, it
automatically increments %eip to next instruction

» Control flow by changing value of %eip

CSE543 - Computer Securit Page 19

ROP Execution) pennstate

insns ... ret insns ... ret

C Iibrary A

iInsns . insns ... ret Insns ... ret

A

stack
pointer

» Stack pointer (%esp) determines which instruction
sequence to fetch & execute

» Processor doesn’t automatically increment %esp; — but
the “ret” at end of each instruction sequence does

CSE543 - Computer Securit Page 20

Building ROP Functionality @) pennstate

No-ops

iInstruction stack
pointer pointer

» No-op instruction does nothing but advance %eip

» Return-oriented equivalent:
point to return instruction
advances %esp

» Useful in nop sled

CSE543 - Computer Securit Page 21

Building ROP Functionality @) pennstate

Immediate constants

pop %=ebx; ret

Oxdeadbeet

INstruction stack
pointer pointer

mov $0xdeadbeef, Steax
(bb ef be ad de)

» Instructions can encode constants

» Return-oriented equivalent:
Store on the stack;
Pop into register to use

CSE543 - Computer Securit Page 22

Building ROP Functionality @) pennstate

Control flow

pop %.esp; ret

l jmp +4 I ! |
T Instruction stack
pointer pointer

» Ordinary programming:
(Conditionally) set %eip to new value

» Return-oriented equivalent:
(Conditionally) set %esp to new value

CSE543 - Computer Securit Page 23

Creating Programs @) pennstate

Gadgets: multiple instruction sequences

| maov (%eeax), “sebx; ret
poOp “eeax; ret

{word 1o
load)

stack
pointer

» Sometimes more than one instruction sequence
needed to encode logical unit

» Example: load from memory into register:
Load address of source word into %eax
Load memory at (%eax) into %ebx

CSE543 - Computer Securit Page 24

Finding Gadgets (§&) pennstate

Finding instruction sequences

» Any instruction sequence ending in “ret” is useful —
could be part of a gadget

» Algorithmic problem: recover all sequences of valid
iInstructions from libc that end in a “ret” insn

» ldea: at each ret (c3 byte) look back:

are preceding / bytes a valid length-/insn?
recursefrom found instructions

» Collect instruction sequences in a trie

CSE543 - Computer Securit Page 25

ROP Conclusions (@) Pennsiate

Conclusions

» Code injection is not necessary for arbitrary
exploitation

» Defenses that distinguish “good code” from “bad
code” are useless

» Return-oriented programming likely possible on
every architecture, not just x86

» Compilers make sophisticated return-oriented
exploits easy to write

CSE543 - Computer Securit Page 26

Control-Flow Integrity @) pennstate

* Goal: Ensure that process control follows source code

» Adversary can only choose authorized control-flow sequences

* Build a model from source code that describes legal control flows
» E.g., control-flow graph

* Enforce the model on program execution

» |Instrument indirect control transfers

* Jumps, calls, returns, ...

=0 | Bl
» Challenges ot
: : 't1:=_a—b B2
» Building accurate model B
» Efficient enforcement * B3 [s=sei] B4

t3 :=n-i
ifnz t3 goto B2 | BS

Y

t4:=a-b B6

CSE543 - Computer Securit Page 27

"

Software Control Flow Integrity
Techniques, Proofs, & Security Applications

Jay Ligatti summer 2004 intern work with:
Ulfar Erlingsson and Martin Abadi

28

Our Mechanism

if(*fp != nop IMM,) halt
call fp if(**esp != nop IMM) halt

nop IMM, ~ ————Teturn
% CFG excerpt

Acall B1

NB: Need to ensure bit patterns for nops

. A6/ Bret
appear nowhere else in code memory

call+1

AS

%@ More Complex CFGs

Maybe statically all we know is that

Fa can call any int —int function

Fa

%

if(*fp '= nop IMM1) halt
call fp

:

N:

nop IMM,

F

nop IMM,

CEG excerpt

Acal > By

\01

SUCC(Acan) = {B1, C1}

Construction: All targets of a computed jump must have
the same destination id (IMM) in their nop instruction 3

L

Q: What if Fg can return
Fa to many functions ?

% A: Imprecise CFG

@ Imprecise Return Information

CEG excerpt

Acall+1
1\ .

ret
Deaie1 &

call Fg ——————— — | Fg
nop IMM, % SUCC(Bret) = {Acall+1a Dcall+1}
= CFG Integrity:
D if(**esp = nop IMM,) halt Changes to the

return

PC are only to
valid successor
PCs, per succ().

31

%@ No “Zig-Zag” Imprecision

Solution |: Allow the imprecision Solution |I: Duplicate code
to remove zig-zags

CEG excerpt CEG excerpt
Acall B1 Aca” I B1

Z{" o ™~ Cin

Ecai Eca™——— Coe

32

CFG Imprecision (§8) Pennstate

* Best reduced by a technique developed in the “HyperSafe” system

» “HyperSafe: A Lightweight Approach to Provide Lifetime Hypervisor Control-Flow
Integrity” IEEE Symposium on Security and Privacy, 2010

* On indirect call (forward edge)
» Check the proposed target against the set of legal targets from the CFG

* On return (backward edge)

» Check the proposed return location against the set of legal return locations from the
CFG

* Tricky to make that efficient (see the paper)

CSE543 - Computer Securit Page 33

Shadow Stack (@) pennstare

* What should be the target of a return instruction?

» Return to caller
» But, need a way to protect return value
* Shadow stack

» Stack that can only be accessed by trusted code (e.g., software fault isolation)

» Off limits to overflows

CSE543 - Computer Securit Page 34

CFG Computation (§8) Pennstate

* What should be the target of a call instruction?

» Direct call - hard coded, so no problem

» Indirect call (function pointer) - would be any legal value for the function pointer
* That is, anywhere it can point

* The “points-to’” problem in general, which is

* So, there are various techniques to over-approximate the target set for each
indirect call

CSE543 - Computer Securit

More Challenges

* Predicting return targets can be hard

» Exceptions, signals, and setjmp/longjmp
» Runtime generation of indirect jumps

» E.g.,dynamically linked libraries

* |Indirect jumps using arithmetic operators
» E.g.,assembly

* |s enforcing fine-grained CFl sufficient
to prevent exploits?

CSE543 - Computer Securit

s:=0
i:=0
n:=10

Y

tl:=a-b
ifz t1 goto B4

Y

t2 :=i*4

+ 12 B3

i=i+1
t3 :=n-i
ifnz t3 goto B2

Y

t4:=a-b

S:=S+1i

@ PennState

Page 36

Recent Result (@) pennstate

» Suppose a program is protected by fine-grained CFG on calls and a shadow
stack on returns

* Further suppose that the program contains an “arbitrary write primitive”
(e.g., based on a memory error)

 For these programs, exploits can be generated over 80% of the time, even
against CFl defenses

» “Block Oriented Programming: Automating Data-Only Attacks”, ACM CCS 2018
» Exploits follow CFG, but manipulate memory to complete exploit

» Called “data-oriented programming”

CSE543 - Computer Securit

Alternatives to CFI? @) pennstate

 What are the fundamental enablers of ROP attacks?
* (1) CFl:violate control flow

* (2) Adversary can choose gadgets

» Can we prevent adversaries from -
choosing useful gadgets!?
* In general, adversaries can » cnabler
create/obtain the same binary as
is run by the victim

 But, that need not be the case

CSE543 - Computer Securit Page 38

Apply Crypto to Code? (@) pennstate

» Can we randomize the program’s execution in such a way that an adversary
cannot select gadgets?

* Given a secret key and a program address space, encrypt the address space
such that

» the probability that an adversary can locate a particular instruction (start of
gadget) is sufficiently low

* and the program still runs correctly and efficiently
» Called address space randomization

CSE543 - Computer Securit

AS = @ PennState

 For control-flow attacks, attacker needs absolute addresses

* Address-space Layout Randomization 7-7§ Stack
(ASLR) randomizes base addresses .o
of memory segments on each ¢

invocation of the program

> Attacker cannot predict absolute T
addresses 599
» Heap, stack, data, text, mmap, ... eos| en
® O!C — S

CSE543 - Computer Securit Page 40

ASLR Implementations (@) pennstate

* Linux
» Introduced in Linux 2.6.12 (June 2005)

» Shacham et al. [2004]:16 bits of randomization defeated by a (remote)
brute force attack in minutes

» Reality: ASLR for text segment (PIE) is rarely used
* Only few programs in Linux use PIE

* Enough gadgets for ROP can be found in unrandomized code [Schwartz
201 []

CSE543 - Computer Securit Page 41

ASLR Limitations (@) pennstate

» Attacks may leak randomization information

 Disclosure attacks

* Use buffer over-read to read unauthorized program memory (extract code or
randomizing state)

* ASLR can be bypassed by information leaks about memory layout

» E.g, format string vulnerabilities

* So, what can we do!?

» How do we avoid leaking the “key’?

CSE543 - Computer Securit Page 42

CO”CIUSlOn @PennState

» Control-flow attack defenses operate at two stages

» Prevent attacker from getting control
» StackGuard, heap sanity checks, ASLR, shadow stacks, ...

» Prevent attacker from using control for malice
* NX,W (xor) X, ASLR, Control Flow Integrity (CFl), ...

* For maximum security, a system may need to use a combination of these
defenses

* Q. Is subverting control-flow the only goal of an attacker?

-
-
""""
-

iz
A
r'g'
.7’ i
o \u "
:"
i 53 @)
Y R
! B3 2 “'
: '
! r’§
§§

CSE543 - Computer Securit Page 43

