
The following paper was originally published in the
Proceedings of the Sixth USENIX UNIX Security Symposium

San Jose, California, July 1996.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

SSH - Secure Login Connections over the Internet

Tatu Ylonen
SSH Communications Security Ltd, Finland



SSH { Secure Login Connections over the Internet

Tatu Yl�onen <ylo@ssh.fi>

SSH Communications Security Ltd.

Tekniikantie 12, FIN-02150 ESPOO, Finland

Tel. (intl) +358-0-4354 3205 fax +358-0-4354 3206

June 7, 1996

Abstract

SSH provides secure login, �le transfer, X11, and

TCP/IP connections over an untrusted network. It

uses cryptographic authentication, automatic session

encryption, and integrity protection for transferred

data. RSA is used for key exchange and authentica-

tion, and symmetric algorithms (e.g., IDEA or three-

key triple-DES) for encrypting transferred data.

SSH is intended as a replacement for the existing

rsh, rlogin, rcp, rdist, and telnet protocols. SSH

is currently (March 1996) being used at thousands

of sites in at least 50 countries. Its users include

top universities, research laboratories, many major

corporations, and numerous smaller companies and

individuals.

The SSH protocol can also be used as a generic

transport layer encryption mechanism, providing

both host authentication and user authentication, to-

gether with privacy and integrity protection.

1 Introduction

The Internet has become the most economical means

for communication between two remote sites. Its uses

include communicating with clients, connecting re-

mote o�ces, �le transfer, remote systems administra-

tion, banking services, working at home, and many

others.

However, the Internet does not provide any protec-

tion for the transmitted information, and can become

an information security nightmare for companies con-

nected to it. Firewalls and access controls such as

one-time passwords do not fully solve the problem,

as it is easy to record and analyze any transmitted

data or to hijack an already established connection

and use it to attack machines inside the �rewall.

The threats from the Internet include:

� Network monitoring: it is easy to record pass-

words, �nancial data, private messages, or cor-

porate secrets from the network.

� Connection hijacking: it is possible to hijack a

connection without either party noticing it, in-

sert new commands at the command prompt,

and remove the output of those commands from

the output sent to the user. The same mecha-

nisms can, for example, be used to manipulate

remote banking connections to make wire trans-

fers with a di�erent sum and account than what

the user thinks (and sees). Having the accounts

protected by one-time passwords does not help.

� Routing spoo�ng: standard routing protocols

and commonly used router con�gurations per-

mit anyone in the world to recon�gure routings.

This can be used to bring connections into net-

works through which they do not normally go,

and where they can be hijacked.

� DNS (domain name server spoo�ng): active

network-level attacks can be used to make name

servers return whatever data is bene�cial for fur-

ther attacks. Veri�cation by reverse-mapping

does not help. The same holds for practically

all widely used network services.

� Denial of service attacks: here the purpose is to

prevent others from using a particular service.

The simplest implementation of this attack is to

overload the target machine with requests; how-

ever, more subtle forms are available, such as re-

con�guring the routers so that packets no longer

go to the machine, hijacking connections to the

machine and returning erroneous results, etc.

The current IP protocol does not in any way guar-

antee any aspects of information security (e.g., au-

thentication, privacy, data integrity). As higher level

protocols are mostly based on the assumption that

the lower level protocol can be trusted { and as this



is not the case { the higher level protocols aren't any

more reliable. If security is needed, it must be en-

tirely implemented on the application level.

An acceptable solution must guarantee at the same

time authentication of both ends of the connection,

secrecy of transmitted information, and integrity of

transmitted data. For example, if only authentica-

tion and integrity (but no secrecy) is provided, the

user is likely to eventually type a password to an-

other machine or service, which will then be shown

in the clear.

Strong encryption seems to be the only solution to

network security. Since several major governments

have demonstrated growing interest in economic espi-

onage (including, e.g., United States, Russia, France,

and Japan), commercial systems are now faced with

some of the most skilled and resourceful opponents in

the world, and must be designed using the strongest

possible methods to be of any use. Increasing eco-

nomic signi�cance will also lure interest from crim-

inal organizations, which are certainly well enough

funded to break e.g. DES-level encryption methods

without much trouble [12].

2 An Overview of SSH Secure

Remote Login

SSH permits secure login connections and �le transfer

over the Internet or other untrusted networks. Cryp-

tographic algorithms are used to authenticate both

ends of the connection, to automatically encrypt all

transmitted data, and to protect the integrity of data.

Values returned by services such as DNS or network

protocols (e.g., TCP/IP [10]) are considered only ad-

visory, and are validated using cryptography. SSH

also automatically and securely forwards X11 con-

nections from the remote machine, and can be con-

�gured to forward arbitrary TCP/IP ports. It can

also be used for secure �le transfer.

3 The SSH Protocol

SSH uses a packet-based binary protocol that works

on top of any transport that will pass a stream of

binary data. Normally, TCP/IP is used as the trans-

port, but the current implementation also permits us-

ing an arbitrary proxy program to pass data to/from

the server, and includes direct support for SOCKS

and FWTK based �rewalls.

The packet mechanism and related authentica-

tion, key exchange, encryption, and integrity mech-

anisms implement a transport layer security mech-

anism, which is then used to implement the remote

login functionality. An attacker is limited to breaking

the connection.

Every transmitted packet starts with random

padding, followed by (optionally compressed) packet

type, packet data, and integrity protection data.

The entire packet is encrypted using a suitable al-

gorithm, such as IDEA-CFB [2, 9], 3DES-CBC [9], or

an RC4

1

[9] equivalent algorithm. The packet type

and data �elds can be compressed with the gzip al-

gorithm before encryption. Compression reduces the

amount of transmitted data to about a third for typ-

ical interactive sessions.

Integrity protection is currently (March 1996) pro-

vided by including CRC32 [1] of the packet under

encryption. However, it is being replaced by HMAC-

SHA; see Section 5. If tampering is detected, the er-

ror is logged, the user is noti�ed, and the connection

is terminated.

On the transport, each encrypted packet is pre-

�xed by the length of the packet data, excluding

padding (the total length on the wire is the given

length rounded up to a multiple of eight bytes in such

a way that the length of padding is 1-8 bytes).

The SSH protocol works on top of the packet-level

protocol, and proceeds in the following phases:

1. The client opens a connection to the server.

(Note that an attacker may cause the connection

to actually go to a di�erent machine.)

2. The server sends its public RSA host key and

another public RSA key (\server key") that

changes every hour. The client compares the

received host key against its own database of

known host keys (in future, it will validate the

host key using a public key infrastructure; how-

ever, at present no such infrastructure exists).

At present, SSH is not able to validate keys for

hosts that it does not already know. It will nor-

mally accept the key of an unknown host and

store it in its database for future reference (this

makes SSH usable in practice in most environ-

ments). However, SSH can also be con�gured

to refuse access to any hosts whose key is not

known.

3. The client generates a 256 bit random number

using a cryptographically strong random number

generator, and chooses an encryption algorithm

from those supported by the server (normally

IDEA or three-key 3DES). The client encrypts

1

RC4 is a trademark of RSA Data Security, Inc.



the random number (session key) with RSA us-

ing both the host key and the server key, and

sends the encrypted key to the server.

The purpose of the host key is to bind the con-

nection to the desired server host (only the server

can decrypt the encrypted session key). The

server key is used to make decrypting recorded

historic tra�c impossible after the server key has

been changed (usually every hour) in the event

that the host key becomes compromised. The

host key is normally a 1024 bit RSA key, and

the server key is 768 bits. Both keys are gen-

erated using a cryptographically strong random

number generator.

4. The server decrypts the RSA encryptions and

recovers the session key. Both parties start us-

ing the session key (until this point, all tra�c

has been unencrypted on the packet level). The

server sends an encrypted con�rmation to the

client. Receipt of the con�rmation tells the client

that the server was able to decrypt the key, and

thus holds the proper private keys.

At this point, the server machine has been au-

thenticated, and transport-level encryption and

integrity protection are in use.

5. The user is authenticated to the server. This can

happen in a number of ways; the dialog is driven

by the client which sends requests to the server.

The �rst request always declares the user name

to log in as. The server responds to each request

with either \success" (no further authentication

is needed) or \failure" (further authentication is

required).

Currently supported authentication methods

are:

� Traditional password authentication. The

password is transmitted over the encrypted

channel, and thus cannot be seen by out-

siders.

� A combination of traditional .rhosts or

hosts.equiv authentication and RSA-based

host authentication. Host authentication

works by the server generating a 256 bit

challenge, encrypting it with the client's

public host key, and sending the encrypted

challenge to the client. The client decrypts

the challenge, and computes MD5 [7] of the

challenge and other information that binds

the returned value to the particular ses-

sion. The client then sends this value to the

server; the server makes the corresponding

computations and compares the values.

� Pure RSA authentication. The idea is that

possession of a particular private RSA key

serves as authentication. The server has a

list of accepted public keys. The client re-

quests authentication by a particular key,

and the server responds with a challenge

similar to that in RhostsRSA authentica-

tion.

� Support is also included e.g. for Security

Dynamics SecurID cards. Adding new au-

thentication methods is easy.

6. After authentication has been successful, a

preparatory phase begins. In this phase, the

client sends requests that prepare for the ac-

tual session. Such requests include allocation of

a pseudo-tty, X11 forwarding, TCP/IP forward-

ing, etc. Adding new preparatory operations is

easy.

After all other requests, the client sends a request

to start the shell or to execute a given command.

This message causes both sides to enter the in-

teractive session.

7. During the interactive session, both sides are al-

lowed to send packets asynchronously. The pack-

ets may contain data, open requests for X11 con-

nections, forwarded TCP/IP ports, or the agent,

etc. Finally at some point the client usually

sends an EOF message. When the user's shell

or command exits, the server sends its exit sta-

tus to the client, and the client acknowledges the

message and closes the connection.

More information about the protocol can be found

in [13].

3.1 X11 and TCP/IP Forwarding

SSH can automatically forward the connection to the

user's X server over the secure channel. Forwarding

works by creating a proxy X server at the remote ma-

chine by allocating the next available TCP/IP port

number above 6001 (these correspond to X display

numbers so that the port corresponding to display n

is 6000+n). The SSH server then listens for connec-

tions on this port, forwards the connection request

and any data over the secure channel, and makes a

connection to the real X server from the SSH client.

The DISPLAY variable is automatically set to point

to the proper value. Note that forwardings can be

chained, permitting safe use of X applications over

an arbitrary chain of SSH connections.



SSH also automatically stores Xauthority data [8]

on the server. In fact, the client generates a ran-

domMIT-MAGIC-COOKIE-1 authentication cookie,

and sends this cookie to the server, which stores it in

.Xauthority. When a connection is made, the client

veri�es that the authority data matches the generated

random data, and replaces it with the real data. The

motivation for sending a fake cookie is that old cook-

ies left at the server are useless after logout (many

users keep the same terminal open for months at a

time, and may brie
y log into dozens of machines

during that time; it is important to not leave the

cookies lying around in all of these machines).

TCP/IP forwarding works similarly: the server lis-

tens for a socket on the desired port, forwards the

request and data over the secure channel, and makes

the connection to the speci�ed target port from the

other side. There is no authentication for forwarded

TCP/IP connections.

3.2 The Authentication Agent

SSH supports using an authentication agent. The

agent is a program that runs in the user's local ma-

chine (or, in future, on a smartcard connected to it).

The agent holds the user's private RSA keys. It never

gives out the private keys, but accepts authentication

requests and gives back suitable answers.

In the Unix environment, the agent communicates

with SSH using an open �le handle that is inher-

ited by all children of the agent process (the agent

is started as a parent of the user's shell). Other users

cannot get access to the agent, and even for root it

is fairly di�cult to send requests to a �le descriptor

held by some process. Di�erent mechanisms are used

on other operating systems.

SSH can forward the connection to the agent to an-

other process running on the server machine (such as

another SSH connection). In this way, it is possible

to go through an arbitrarily long chain of machines,

located anywhere around the world, without the au-

thentication keys ever leaving the agent.

4 Cryptographic Methods

Used in SSH

SSH attempts to provide strong security without

making normal use any more di�cult than necessary.

Its security relies on cryptographic methods.

SSH uses RSA [6, 9] for host authentication and

user authentication. Host keys and user authentica-

tion keys are normally 1024 bits.

The server key that changes every hour is 768 bits

by default. It is used to protect intercepted historical

sessions from being decrypted if the host key is later

compromised. The server key is never saved on disk.

Key exchange is performed by encrypting the 256-

bit session key twice using RSA. It is padded with

non-zero random bytes before each encryption (ac-

cording to PKCS#1 [5]). Server host authentication

happens implicitly with the key exchange (the idea

is that only the holder of the valid private key can

decrypt the session key, and receipt of the encrypted

con�rmation tells the client that the session key was

successfully decrypted).

Client host authentication and RSA user authenti-

cation are done using a challenge-response exchange,

where the response is MD5 of the decrypted challenge

plus data that binds the result to a speci�c session

(host key and anti-spoo�ng cookie).

The key exchange transfers 256 bits of keying data

to the server. Di�erent encryption methods use vary-

ing amounts of the key: IDEA-CFB uses 128 bits,

3DES-CBC 168 bits, RC4-equivalent 128 bits per di-

rection, and DES-CBC 56 bits. The reasons for using

IDEA in CFB mode is mainly historical; the new pro-

tocol (Section 5) will use IDEA-CBC instead.

Transmitted data is currently protected against

modi�cation by computing a CRC32 of all packet

data (including random padding) before encryption.

The checksum and all packet data are encrypted.

Presumably it will be di�cult for an attacker to

modify the plaintext data so that the checksum still

matches without breaking the encryption �rst. (The

integrity mechanism has changed in the new protocol;

see Section 5.)

All random numbers used in SSH are generated

with a cryptographically strong generator. SSH has

a pool of 8192 bits of randomness. The �rst time it is

started, it uses several commands to gather entropy

from the system (on Unix, '`ps laxww", \ps -al", \ls

-alni /tmp/.", \w", \netstat -s", \netstat -an", and

\netstat -in"). The entropy is mixed into the pool,

stirring the pool frequently. The stirring involves en-

crypting the pool twice using MD5 in CBC mode so

that every bit of the pool depends on every other

bit. Additional noise is obtained from various sys-

tem parameters (e.g., disk I/O counts, page swapping

counts, interrupt counts, CPU usage) every time the

pool is stirred, and if /dev/random is available, 128

bits of noise are taken from there every few minutes

and stirred into the pool.



5 The New Protocol

The SSH protocol is currently undergoing major

changes. The protocol will be split to two levels, a

generic secure transport layer mechanism and a high-

level SSH protocol.

5.1 The New Transport Layer Proto-

col

The new transport layer protocol has been designed

to be 
exible, allowing negotiation of all algorithms

and parameters, simple, secure, easily veri�able, and

fast. It performs a full algorithm negotiation, key ex-

change, and mutual host authentication in a total of

1.5 round-trip times typical, and 2.5 round-trip times

worst case. A minimal number of round-trips will

become increasingly important in future as network

bandwidth increases but the speed of light remains

constant. Mobile computing, in particular, will put

strong demands on the number of roundtrips; over a

GSM phone, for example, a round-trip is around a

second.

There have been several cryptographic improve-

ments. All data exchanged during key exchange is au-

thenticated. HMAC-MD5 or HMAC-SHA outside en-

cryption are used for data integrity protection. IDEA

is now used in CBC mode. All data, including the

packet length, is now encrypted (except the MAC).

Keys are re-exchanged periodically. The protocol can

also interface with a public key infrastructure.

5.2 The New SSH Protocol

The new SSH protocol runs over the transport layer

protocol, which provides a secure channel. The SSH

protocol performs user authentication, session man-

agement, and handshaking for multiple simultaneous

connections (forwarded X11 connections, etc).

User authentication now permits the client to send

authentication requests without waiting for responses

from the server after each request. This reduces

round-trips. Additionally, whenever an authentica-

tion request fails (or is insu�cient), the server will

tell the client which authentication methods can con-

tinue the dialog. This permits the server to guide the

client through a multi-phase authentication accord-

ing to the server's per-user policy. The server can

require multiple authentications.

All authentication methods that require user input

have been merged under one interactive authentica-

tion type. This handles passwords, one-time pass-

words, SecurID cards, and other such methods. The

user basically converses with the server using a sim-

ple text-based protocol. The protocol does, however,

permit dialog-based windowed implementation and

local editing at the client.

The new protocol also supports proper 
ow control

for individual channels (e.g., forwarded X11 clients).

This will prevent a runaway program from jamming

the entire connection. Details of the new protocol are

still being speci�ed as of this writing.

6 The Current Implementation

SSH was �rst published on the Internet in July 1995.

Since then, it has been ported to a number of plat-

forms and there have been several other improve-

ments.

SSH currently runs on almost all Unix variants,

including e.g. AIX, BSD, Convex, DGUX, HPUX,

IRIX, Linux, Mach3, OSF/1, SysV, Solaris, SunOS,

Ultrix, and Unicos. A commercial Windows version is

available from Data Fellows, and a Macintosh version

is due in the fall 1996. A free OS/2 version is also

available.

The current Unix version supports SOCKS and

FWTK based �rewalls, and permits using an arbi-

trary proxy program to make the connection. In most

environments, it can be installed simply by

./configure

make

make install

7 Performance

Performance of SSH can divided into two important

parameters: startup time and transfer rate.

The startup time means the time from starting the

SSH client to the moment when �rst data bytes are

transferred. The startup time is on the order of a

second on 486 or Pentium class machines connected

to an ethernet, and on the order of a few seconds for

long-distance connections.

Transfer rate means the number of bytes per sec-

ond that can be transmitted over the secure chan-

nel. In the case of SSH, it depends on the encryption

algorithm used. On 486-class machines, the rate is

1-2 megabits/second for IDEA, 3-4 megabits/second

for DES, and about 5 megabits per second for RC4-

equivalent. The rate is almost directly proportional

to the speed of the machines; some faster machines

run RC4-equivalent in software at speeds exceeding

40 megabits per second.

To summarize, the encryption speed on even slower

modern machines is su�cient to �ll an ethernet net-

work. Most of the time, transfer rate is not limited



by encryption but by the transfer rate of the network.

Furthermore, on long-distance connections SSH can

be substantially faster than telnet or rlogin, due

to compression of transferred data.

8 Conclusion

SSH solves one of the most acute security problems

on the Internet: that of securely logging from one

machine to another, and securely transferring �les

between machines. It does this in a way that is con-

venient and completely transparent to users. At the

same time, it automates passing the X11 connection,

and makes using X11 over long distance connections

secure.

SSH uses strong cryptography to achieve this goal.

Its fundamental principle is that the network or any

of its services cannot be trusted. Usability in normal

environments has been a major design concern from

the beginning, and SSH attempts to make things as

easy for normal users as possible while still maintain-

ing a su�cient level of security. For the most secu-

rity conscious environments, SSH can be con�gured

to never trust the network, and fail if it cannot e.g.

verify the host key of the remote host.

Experience has shown that the CPU overhead

caused by strong encryption is negligible. One need

not try to justify why to encrypt; doing so costs al-

most nothing. However, not using strong encryp-

tion in all communications can have severe conse-

quences. Also, the strongest available encryption

methods should be used, as they are no more ex-

pensive than weak methods. Weak encryption will

just make transmitted data available to foreign intel-

ligence agencies and criminal organizations.

SSH is currently (June 1996) being used at thou-

sands or tens of thousands of sites in at least 50

countries around the world. There are about one

thousand addresses on the mailing list, and many of

those are redistribution aliases or newsgroup gate-

ways. The SSH WWW pages are accessed about

1000-2000 times every day (about once every minute).

During about a period of about ten days (examined

in February 1996), accesses came from about 6000

hosts (many of them WWW proxy/cache servers) in

55 top-level domains. The actual number of people

using SSH is not known.

SSH is freely available for non-commercial use.

Its WWW home page, including pointers to ftp

sites and commercial versions, is available at

http://www.cs.hut.fi/ssh.

References

[1] J. Campbell. C Programmer's Guide to Serial

Communications, Sams, 1993.

[2] Lai, X. On the Design and Security of Block

Ciphers. ETH Series in Information Processing,

vol. 1, Hartung-Gorre Verlag, Konstantz, 1992.

[3] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,

and L. Jones. SOCKS Protocol Version 5, RFC

1928, 1996.

[4] Mockapetris, P. Domain Names { Concepts and

Facilities, RFC 1034, Internet Engineering Task

Force, 1987.

[5] Public Key Cryptography Standards, #1. RSA

Laboratories. Available for anonymous ftp at

ftp.rsa.com.

[6] Rivest, R., Shamir, A., and Adleman, L. M.

A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems. Communications of

the ACM, vol. 21, no. 2, 1978, pp. 120-126.

[7] Rivest, R. The MD5 Message Digest Algorithm,

RFC 1321, Internet Engineering Task Force,

1992.

[8] Schei
er, R. X Window System Protocol. X Con-

sortium Standard, Version 11, Release 6. Labo-

ratory of Computer Science, Massachusetts In-

stitute of Technology, 1994.

[9] Schneier, Bruce. Applied Cryptography, 2nd edi-

tion. John Wiley & Sons, 1996.

[10] Stevens, W. Richard. TCP/IP Illustrated. Vol-

ume 1: The Protocols. Addison-Wesley, 1994.

[11] TIS Firewall Toolkit, Trusted Information Sys-

tems Inc., 1993.

[12] Wiener, M. J. E�cient DES Key Search. Techni-

cal Report TR-244, School of Computer Science,

Carleton University, 1994.

[13] Yl�onen, Tatu. The SSH (Secure Shell) Re-

mote Login Protocol, 1996. Available on

the Internet from the SSH Home Page at

http://www.cs.hut.�/ssh. Also included in the

SSH distribution.


