
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 1

CSE543- Computer Security
Module: Security Analysis Techniques

Asst. Prof. Syed Rafiul Hussain

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Testing/Fuzzing

• Static Analysis (Already covered in software
vulnerability)

• Symbolic Execution

• Concolic Execution

• Formal Verification

Security Analysis Techniques

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Testing
• Testing: the process of running a program on a set

of test cases and comparing the actual
results with expected results (according to the
specification).

‣ For the implementation of a factorial function, test cases
could be {0, 1, 5, 10}. What is missing?

‣ Can it guarantee correctness?

• Correctness: For all possible values of n, your factorial program
will provide correct output.

• Verification: High cost!

3

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Fuzz Testing
Fuzz Testing

‣ Idea proposed by Bart Miller at Wisconsin in 1988
after experiencing an unusual crash while accessing a
Unix utility remotely

format.c (line 276):

... while (lastc != ’\n’) { //reading line

rdc(); }

input.c (line 27):
rdc() {

do { //reading words
readchar(); } while (lastc == ’ ’ || lastc == ’\t’);

return (lastc);
}

4

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Fuzzing is an automated form of testing that runs code on (semi)
random and (abnormal) input.

‣ Black Box (based on specification): e.g., input is non-negative

‣ White Box (source/binary): e.g., if(x>y and y>z) then … else .

• Mutation-based fuzzing generates test cases by mutating existing test cases.

• Generation-based fuzzing generates test cases based on a model of the input (i.e.,
a specification). It generates inputs “from scratch” rather than using an initial
input and mutating.

• Any inputs that crash the program are recorded.

‣ Crashes are then sorted, reduced, and bugs are extracted. Bugs are then analyzed
individually (is it a security vulnerability?).

Fuzzing

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

American Fuzzy Lop (AFL)

6

• American Fuzzy Lop is a security-
oriented fuzzer hat employs a novel
type of compile time instrumentation
and genetic algorithms to
automatically discover clean,
interesting test cases that trigger
new internal states in the targeted
binary.

• Low overhead and low initialization
cost (i.e., fast forward to interesting
points in binary before you start
fuzzing).

• Different different fuzzing strategies
and switches on demand.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Static Analysis
• Limitation of dynamic testing:

‣ We cannot find all vulnerabilities in a program

• Can we build a technique that identifies *all* vulnerabilities?

‣ Turns out that we can: static analysis

• Explore all possible executions of a program

‣ All possible inputs

‣ All possible states

‣ But, it has its own major limitation

• Can identify many false positives (not actual vulnerabilitiies)

‣ Can be effective when used carefully

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Static Analysis
• Provides an approximation of behavior

• “Run in the aggregate”

‣ Rather than executing on ordinary states

‣ Finite-sized descriptors representing a collection of states

• “Run in non-standard way”

‣ Run in fragments

‣ Stitch them together to cover all paths

• Various properties of programs can be tracked

• Control flow, Data flow, Types

• Which ones will expose which vulnerabilities
8

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Flow Analysis
Can we detect code with no return check? From original
Miller fuzzing paper.

format.c (line 276):
while (lastc != ’\n’)
{ //reading line
rdc();
}

input.c (line 27):
rdc() {
do { //reading words

readchar(); }
while (lastc == ’ ’ || lastc
== ’\t’);

return (lastc);
}• Compute the control flow of a program, i.e., possible

execution paths.
• To find an execution path that does not check the return

value of a function
q That is actually run by the program
q How do we do this? Control Flow Analysis

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Static vs. Dynamic
• Dynamic

‣ Depends on concrete inputs

‣ Must run the program

‣ Impractical to run all possible executions in most cases

• Static

‣ Overapproximates possible input values (sound)

‣ Assesses all possible runs of the program at once

‣ Setting up static analysis is somewhat of an art form

• Is there something that combines best of both?

‣ Can’t quite achieve all these, but can come closer

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Symbolic Execution
• Symbolic execution is a method for emulating the

execution of a program to learn constraints

‣ Assign variables to symbolic values instead of concrete
values

‣ Symbolic execution tells you what values are possible for
symbolic variables at any particular point in your program

• Like dynamic analysis (fuzzing) in that the program is
executed in a way – albeit on symbolic inputs

• Like static analysis in that one start of the program
tells you what values may reach a particular state

11

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Background: SAT

12

Information Security 12

SATisfying
assignment!

Given a propositional formula in CNF, find if
there exists an assignment to Boolean variables
that makes the formula true:

w1 = (b c)

w2 = (¬ a ¬ d)

w3 = (¬ b d)

j = w1 w2 w3
A = {a=0, b=1, c=0, d=1}

Ù Ù

clauses

literals

ÚÚ

Ú

Ú

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Background: SMT
SMT: Satisfiability Modulo Theories
Input: a first-order formula j over background theory
Output: is j satisfiable?

‣ does j have a model?
‣ Is there a refutation of j = proof of ¬j?

For most SMT solvers: j is a ground formula
‣ Background theories: Arithmetic, Arrays, Bit-vectors,

Algebraic Datatypes

‣ Most SMT solvers support simple first-order sorts

13

13

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Background: SMT
• b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

10/7/2015

Array TheoryArithmetic Uninterpreted
Function

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Example SMT Solving
• b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

[Substituting c by b+2]
• b + 2 = c and f(read(write(a,b,3), b+2-2)) ≠ f(b+2-

b+1)
[Arithmetic simplification]
• b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3)

[Applying array theory axiom–
forall a,i,v:read(write(a,i,v), i) = v]
• b+2 = c and f(3) ≠ f(3) [NOT SATISFIABLE]

15

15

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Symbolic Execution

10/7/2015

Void func(int x, int
y){

int z = 2 * y;

if(z == x){

if (x > y + 10)

ERROR

}

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

Symbolic
Execution

Engine

SMT solver

Path
constraint

Satisfying
Assignment

High coverage
test inputs

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Symbolic Execution
• Execute the program with symbolic valued inputs

(Goal: good path coverage)

• Represents equivalence class of inputs with first order
logic formulas (path constraints)

• One path constraint abstractly represent all inputs
that induces the program execution to go down a
specific path

• Solve the path constraint to obtain one
representative input that exercises the program to
go down that specific path

10/7/2015

17

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Symbolic Execution
• Instead of concrete state, the program maintains

symbolic states, each of which maps variables to
symbolic values

• Path condition is a quantifier-free formula over the
symbolic inputs that encodes all branch decisions
taken so far

• All paths in the program form its execution tree, in
which some paths are feasible and some are
infeasible

18

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Symbolic Execution

19

19

Void func(int x, int
y){

int z = 2 * y;

if(z == x){
if (x > y + 10)

ERROR

}

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

x = a = 0
y = b = 1

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

Path constraint z = 2b

Note: Require inputs to be marked as symbolic

Generated
Test inputs

for this path

How does symbolic execution work?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Symbolic Execution

10/7/2015

Information Security 20

x = a = 0
y = b = 1

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

z = 2b

How does symbolic execution work?

x = a = 0
y = b = 1

x = a = 2
y = b = 3

x = a = 5
y = b = 4 ……

…

…
…
…

x = a = 2
y = b = 1

x = a = 4
y = b = 2

x = a = -6
y = b = -3

x = a = 40
y = b = 20

x = a = 30
y = b = 15

x = a = 48
y = b = 24

………

Path constraints represent
equivalence classes of inputs

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

SMT Queries
• Counterexample queries (generate a test case)

• Branch queries (whether a branch is valid)

21

21If K

Path Constraints = {C1, C2, …, Cn};
SAT

then else

Use queries to determine validity of a branch
else path is impossible: C1 ∧ C2 ∧ … ∧ Cn ∧ ¬K is UNSAT
then path is impossible: C1 ∧ C2 ∧ … ∧ Cn ∧ K is UNSAT

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Symbolic Execution Tools
• FuzzBALL:

‣ Works on binaries, generic SE engine. Used to, e.g., find PoC
exploits given a vulnerability condition.

‣ KLEE: Instruments through LLVM-based pass, relies on source
code. Used to, e.g., nd bugs in programs.

‣ S2E: Selective Symbolic Execution: automatic testing of large
source base, combines KLEE with an concolic execution. Used
to, e.g., test large source bases (e.g., drivers in kernels) for bugs.

• Efficiency of SE tool depends on the search heuristics
and search strategy. As search space grows
exponentially, a good search strategy is crucial for
efficiency and scalability.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Symbolic Execution Summary
• Symbolic execution is a great tool to nd

vulnerabilities or to create PoC exploits.

• Symbolic execution is limited in its scalability. An
efficient search strategy is crucial.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Concolic Execution

19

Void func(int x, int
y){

int z = 2 * y;

if(z == x){
if (x > y + 10)

ERROR

}

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

ERROR

Path constraint

z = 2b

Start with x=22, y=7

Solve 2b == a
Start with a=2, b=1

Solve (2b == a) ∧ (a – b> 10)
Start with a=30, b=15

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Formal Verification
• Formal verification is the act of using formal methods to

proving or disproving the correctness of a certain system
given its formal specification.

• Formal verification requires a specification and an abstraction
mechanism to show that the formal specification either holds
(i.e., its correctness is proven) or fails (i.e., there is a bug).

• Verification is carried out by providing a formal proof on the
abstracted mathematical model of the system according to
the specification. Many different forms of mathematical
objects can be used for formal verification like finite state
machines or formal semantics of programming languages
(e.g., operational semantics or Hoare logic).

25

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Takeaways
• Testing is simple but only tests for presence of

functionality.

• Fuzzing uses test cases to explore other paths, might
run forever.

• Static analysis has limited precision (e.g., aliasing).

• Symbolic execution needs guidance when searching
through program.

• Formal verification is precise but arithmetic operations
can be diffiucult.

• All mechanisms (except testing) run into state
explosion.

26

