
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 1

CSE543- Computer and Network Security
Module: The Evolution of Secure Operating

Systems

Asst. Prof. Syed Rafiul Hussain

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Need for Security
• The need for operating systems to enforce security

requirements was recognized from the advent of
multi-user operating systems

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Evolution of Secure OS
• In this talk, I will review the evolution of the design of secure

operating systems with respect to these questions

• Phase 1: The (Early) Multics Experience

‣ Archaen – “the formation of continents and life started to form”

• Phase 2: The Security Kernel Experience

‣ Proterozoic – “from the appearance of oxygen in Earth's
atmosphere to just before the proliferation of complex life”

• Phase 3: Recent and Future Directions

‣ Phanerozoic – “starts with the rapid emergence of a number of
life forms”

• Not only vertical but horizontal transfers
CSE543 - Introduction to Computer and Network Security Page

Multiprocessor Systems
• Major Effort: Multics
‣ Multiprocessing system -- developed many OS concepts

• Including security

‣ Begun in 1965
• Research continued into the mid-70s

‣ Used until 2000
‣ Initial partners: MIT, Bell Labs, GE (replaced by Honeywell)
‣ Other innovations: hierarchical filesystems, dynamic linking

• Multics remains a basis for a secure operating systems
design

�X

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Need for Security
• The need for operating systems to enforce security

requirements was recognized from the advent of
multi-user operating systems

‣ F. J. Corbato ́ and V. A. Vyssotsky. Introduction and overview
of the Multics System. In Proceedings of the 1965 AFIPS Fall
Joint Computer Conference, 1965.

‣ “Of considerable concern is the issue of privacy. Experience has
shown that privacy and security are sensitive issues in a multi-
user system where terminals are anonymously remote.”

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Questions
• So, were we done? No, still several difficult questions

to address, including

• (1) What does security mean?

‣ Policy: What degree of control and access should be allowed to
enable a system to process user data securely?

• (2) How do we enforce security effectively?

‣ Mechanism: What should be the requirements of a security
mechanism to enforce security policies correctly?

• (3) How do we validate correctness in enforcement?

‣ Validation: What methods are necessary to validate the
correctness requirements for enforcing a security policy?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Multics Project (to 1977)
• Importantly, the Multics project explored all three big

questions

‣ And made important contributions to each

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Multics Project (to 1977)
• Importantly, the Multics project explored all three big

questions

‣ And made important contributions to each

• What does security (policy) mean?

‣ Security has to protect secrecy and integrity even when
adversaries control processes (e.g., Mandatory Access Control)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Multics Project (to 1977)
• Importantly, the Multics project explored all three big

questions

‣ And made important contributions to each

• What does security (policy) mean?

‣ Security has to protect secrecy and integrity even when
adversaries control processes (e.g., Mandatory Access Control)

• What does enforcement mean?

‣ Enforcement mechanisms must satisfy the reference monitor
concept

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Multics Project (to 1977)
• Importantly, the Multics project explored all three big

questions

‣ And made important contributions to each

• What does security (policy) mean?

‣ Security has to protect secrecy and integrity even when
adversaries control processes (e.g., Mandatory Access Control)

• What does enforcement mean?

‣ Enforcement mechanisms must satisfy the reference monitor
concept

• What does validation require?

‣ Small code base; design for security; formal verification

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Mandatory Access Control
• Multics introduced mandatory access control (MAC) to

enforce security

‣ Mandatory – System-defined administration of policies

‣ Access control – Information flow or MLS (e.g., Bell-La Padula, Biba)

• User programs are not authorized to

‣ Read/Write to data to unauthorized files or processes

‣ Or change the access control policy

• Prevents Trojan horse or compromised programs from
violating expected data security

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Multics Access Control
• Each resource is associated with an

‣ Access Control List

‣ Multilevel Security Level (secrecy)

• Bell-La Padula

‣ Access Brackets (integrity)

• More later

• Last two are forms of mandatory access control

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Enforcement in Multics
• How to apply policy to ensure correct enforcement?

Operating System

Resource Mechanisms

Process 1

Program

Data

Process 2

Program

Data

Process n

Program

Data...

Security

Scheduling

Disk Network Display ...

Memory
Device

Disk
Device

Network
Device

Display
Device ...

Memory

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Enforcement in Multics
• Found that enforcement itself must be systematic and secured

‣ Which OS operations should be protected?

‣ How do authorization checks get processed correctly?

‣ How do we know they were processed correctly?

• Clearly, an informal approach to the enforcement of policies is
insufficient

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Reference Monitor
• The Anderson report (USAF 1972) proposed the

reference monitor concept to provide

‣ Explicit control must be established over each programs access to any
system resource which is shared with any other user or system program.

• Reference Monitor Concept requirements:

‣ The reference validation mechanism must be tamperproof

‣ The reference validation mechanism must always be invoked
(complete mediation over security-sensitive operations)

‣ The reference validation mechanism must be small enough to be
subject to analysis and tests, the completeness of which can be
assured (validation)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Enforcement in Multics
• Found that enforcement itself must be systematic and secured

‣ Which OS operations should be protected?

‣ How do authorization checks get processed correctly?

‣ How do we know they were processed correctly?

• Clearly, an informal approach to the enforcement of policies
is insufficient

CSE543 - Introduction to Computer and Network Security Page

Protection Rings
• Successively less-privileged “domains”
• Modern CPUs support 4 rings
‣ Use 2 mainly: Kernel and user

• Intel x86 rings
‣ Ring 0 has kernel

‣ Ring 3 has application code

• Example: Multics (64 rings in theory, 8 in practice)
�X

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Enforcement in Multics
• Found that enforcement itself must be systematic and secured

‣ Which OS operations should be protected?

‣ How do authorization checks get processed correctly?

‣ How do we know they were processed correctly?

• Clearly, an informal approach to the enforcement of policies is
insufficient

CSE543 - Introduction to Computer and Network Security Page

Ring 0

Ring 3

Protection Ring Rules
• Program cannot call code of

higher privilege directly
‣ Gate is a special memory

address where lower-privilege
code can call higher
• Enables OS to control where

applications call it (system calls)

�X

Gate

No
gate

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Enforcement in Multics
• Found that enforcement itself must be systematic and secured

‣ Which OS operations should be protected?

‣ How do authorization checks get processed correctly?

‣ How do we know they were processed correctly?

• Clearly, an informal approach to the enforcement of policies is
insufficient

CSE543 - Introduction to Computer and Network Security Page

What Are Protection Rings?
• Coarse-grained, Hardware Protection Mechanism
• Boundary between Levels of Authority
‣ Most privileged -- ring 0
‣ Monotonically less privileged above

• Fundamental Purpose
‣ Protect system integrity

• Protect kernel from services

• Protect services from apps

• So on...

�X

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Access Brackets
• Multics policy that governs access control based on the ring in

which code is run

‣ Subject – process’s ring number

‣ Object – resource’s ring number

‣ Operations – usual read, write and execute

• By default, processes cannot

‣ Modify resources in lower (more privileged) rings

• What access control model is that?

‣ A bit too strong

• Weakened to a contiguous sequence of rings that could modify (or
execute) each object

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Reference Monitor in Multics
• Tamperproofing

‣ Protection rings

‣ Kernel in ring 0

‣ Gates protecting kernel entry and exit

• Complete mediation

‣ Resources modeled as “segments”

‣ Control all segment operations (ACLs, MLS, ring brackets)

• Validation

‣ Come back to this

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Karger-Schell Analysis
• Demonstrated the importance of following the reference

monitor concept

‣ Flaws in Tamperproofing

• Untrusted “master mode” code run in Ring 0 for performance

• No untrusted code in ring 0

‣ Flaws in Complete Mediation

• Failure to mediate some indirect memory accesses

• Implementation bug in complete mediation

• However, these were both flaws in implementation, not design,
that would have been alleviated by following the reference
monitor concept correctly

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Validation in Multics
• Challenges were seen for validating Multics (circa 1977)

‣ Size of the code base – 54 SLOC

• Although the Multics Final Report suggests that the kernel size can be reduced
by approximately half

‣ How to do formal validation on a kernel?

• To this point techniques had not been developed

• Ultimately, the Multics design formed the basis for the B2
assurance level of the Orange Book (now Common Criteria)

‣ + Security policy model clearly defined and formally documented (B2)

‣ - Satisfies reference monitor requirements (B3)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• A number of projects emerged to address the
challenge of validating secure operating systems

‣ Which came to be called security kernels

• To address three main challenges

‣ Reduce size and complexity of operating systems and
utility software

‣ Define security enforced by the OS internal controls

‣ Validate the correctness of the implemented security
controls

• From Ames and Gasser, IEEE Computer, July 1983

Security Kernel Experience

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

July 1983, IEEE Computer

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Security Kernel Design: Ames, Gasser, and Schell

• Basic Principles

‣ A formally defined security model

• Complete, mandatory, and validated for security requirements

‣ Faithful implementation

• Transfer model to design incrementally and formally

• While addressing practical considerations

‣ Extracting security relevant functionality from OS at large

‣ Formal specification and validation methods

Security Kernel Approach

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• From model to implementation

Security Kernel Approach

pand the functionality by gradually introducing more im-
plementation detail. This process is done without affect-
ing the validity of the security properties already
established. (For examples of systems that use formal
specification techniques, see the article by Landwehr in
this issue.)

Three classes of formal verification techniques have
been applied to different stages of kernel development
(Figure 2), and several techniques are available within
each class. The first class is used to prove that the
kernel's intended behavior, as described in the formal
high-level interface specification, is secure with respect to
the policy model. One common technique, securityJflow
analysis, is a relatively simple way to identify and analyze
information flows in a specification.7 Note that only the
security of the interface specification must be demon-
strated, not the more difficult problem of its functional
"correctness," since functional properties, most of
which are not security related, are not addressed by the
model.

In the second class of formal verification techniques,
we verify the correspondence or correctness of mappings
between any intermediate specifications in the hierarchy
and the interface specifications. Finally, a third class of
verification techniques, the most traditional way to
prove correctness, shows that the kernel implementation
corresponds to its specification.

Cheheyl et al. have documented a survey of current
verification systems covering most of these techniques,

Figure 2. Development and verification hierarchy.

along with their application to Department of Defense
security policy.8 Walker et al. describe an example of a
formal specification and verification.9

Implementation considerations

To successfully realize a kernel-based system, we must
take into account architectural and engineering consider-
ations that may not be encountered in the development
of other systems. Although the kernel approach can be
applied to all types of systems, these considerations are
best illustrated in the context of a general-purpose
operating system with online, interactive users (Figure 3).
The kernel, as already noted, provides a relatively small
and simple subset of the operating system functions. The
kernel primitives are the interface of this subset to the
rest of the operating system (generally referred to as the
supervisor). In turn, the supervisor primitives provide
the general-purpose operating system functions used by
the applications.

Kernel/supervisor trade-offs. An operating system is
usually broken down into functional areas, such as pro-
cess management, file system management for segments,
and I/O control. Within each area, some functions are
clearly security relevant and must be in the kernel, while
some are not. The rules of the policy model help to clear-
ly identify which functions are security relevant.

Figure 3. Structure of a kernel-based operation system.

July 1983 17

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• What techniques are necessary to formally assure a
kernel implementation satisfies a security model?

‣ “verification has turned out to be more difficult than we
expected”

• Goal: correctness

‣ Techniques not ready to prove correctness

• Approaches (at this time)

‣ Compare kernel security to information flows allowed

‣ Specification and implementation correspondence

Formal Verification

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Choices in bringing security kernel OS to market

‣ (1) High-assurance version of existing OS

• But, would trail the standard product development lifecycle

‣ (2) Custom, high-assurance OS

• Lack application and ecosystem support

• Alternative: high-assurance virtual machine monitor (VMM)

‣ Motivation for the “VMM Security Kernel for VAX” in 1980
IEEE Symposium on Security and Privacy

• VMM security kernel layers under commercial OSes

• To support multiple OSes and versions

VMM Security Kernel

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Important design choices

‣ Layered system design

• Aimed to simplify design, test, and assurance

‣ Enforce information flow for secrecy and integrity

• Bell-La Padula and Biba

• Coarse-grained: For VMs access to storage volumes

‣ Paravirtualization with simple memory management

• Implemented in Pascal, PL/1, and assembly

‣ About 48K SLOC altogether

VAX/SVS Project

www.computer.org/security 29

was behind the action. Two privileges were reserved for
VMs, so these VMs needed to be privileged. !e VAX/
SVS designers were primarily concerned with ensur-
ing that mandatory security could be enforced. Because
performing these two privileged operations outside the
kernel didn’t violate that goal, the designers preferred
limiting these abilities rather than creating a larger and
more complex kernel.

In addition to mandatory access control and user
privileges, VAX/SVS implemented discretionary access
control (access control lists) on objects. !e discretion-
ary access control’s e"ectiveness was the only major
area of disagreement between the development team
and TCSEC evaluators. !e design was optimized
around multiuser VMs—if each user required his or
her own VM, the physical memory requirement for
a commercially viable VAX/SVS system would have
grown beyond what was available, and the team would
have had to modify the design to demand page VMs’
memories. In the chosen design, a VM would operate
at a speci$c mandatory access class (level and category
set) with read-write access to objects at that access class
and read access to objects at lower con$dentiality access
classes (that is, lower security level and lesser category
set). All users who needed to access objects at that VM’s
access class would share the machine.

With multiuser VMs, VAX/SVS couldn’t determine
with high assurance which individual user took a spe-
ci$c action for the purpose of enforcing discretionary
access control or collecting an audit trail. !e VAX/SVS
team argued that, given the reality of Trojan horses, the
security gain wasn’t worth the impact on the system.
!e evaluators argued that the TCSEC required “A1
discretionary access controls.” In the end, the team
documented a way to con$gure a VAX/SVS system for
single-user VMs, with the expectation that user orga-
nizations would con$gure their VAX/SVS systems for
more e%cient and adequately secure multiuser VMs.
We note that the tradition of documenting an evaluated
con$guration with speci$c security a&ributes, knowing
full well it will be largely impractical, continues today.

Layered Design
!e VAX/SVS layered design approach proved to be key
to a number of areas. !e Orange Book called for sig-
ni$cant use of layering, abstraction, and data hiding. A
levels-of-abstraction approach in security kernel design
was recommended as a means to reduce complexity
and an aid in precise and understandable speci$cations.
Reduced complexity was a core principle of VAX/SVS;
the team lived by the “keep it simple, stupid” mo&o. !e
team followed other classic layered design principles,
including a separation of concerns between the layers,
low coupling between layers and high cohesion within them, and limited exposure to layer internals.

Figure 1. VAX/SVS layers (from “A VMM Security Kernel for
the VAX Architecture”1). Each layer implemented a well-
defined abstraction in the system. Higher layers could call
on the services of lower layers whereas lower layers were
forbidden from calling on higher layers.

Kernel interface

Security perimeter

KI

Secure
server

SSVR

Visual printers

VPrint
Virtual terminals

VTerm
Volumes

VOL
Files-11 files

F11F
Audit trail

AUD
Higher-level scheduler

HLS
VM-virtual

space manager

VMV
VM-physical

space manager

VMP
I/O services

IOS
Lower-level scheduler

LLS

Modified microcode
for virtualization

VAX hardware

Hardware
interrupt handlers

HIH

Virtual
VAX

Virtual machine
operating system

VVAX

Users

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Project Successes

‣ System was piloted in 1989 – “reasonably successful”

‣ “A VMM Security Kernel for the VAX Architecture”
was lead paper and Best Paper Award winner at the
1990 IEEE Symposium on Security and Privacy

‣ Comprehensive effort for A1 assurance applying formal
methods for system design, test, maintenance, and
cover channels

• Nonetheless, the project was cancelled in 1990

‣ Lack of customers – export controls did not help

‣ Lack of features – e.g., no networking support

VAX/SVS Project

www.computer.org/security 29

was behind the action. Two privileges were reserved for
VMs, so these VMs needed to be privileged. !e VAX/
SVS designers were primarily concerned with ensur-
ing that mandatory security could be enforced. Because
performing these two privileged operations outside the
kernel didn’t violate that goal, the designers preferred
limiting these abilities rather than creating a larger and
more complex kernel.

In addition to mandatory access control and user
privileges, VAX/SVS implemented discretionary access
control (access control lists) on objects. !e discretion-
ary access control’s e"ectiveness was the only major
area of disagreement between the development team
and TCSEC evaluators. !e design was optimized
around multiuser VMs—if each user required his or
her own VM, the physical memory requirement for
a commercially viable VAX/SVS system would have
grown beyond what was available, and the team would
have had to modify the design to demand page VMs’
memories. In the chosen design, a VM would operate
at a speci$c mandatory access class (level and category
set) with read-write access to objects at that access class
and read access to objects at lower con$dentiality access
classes (that is, lower security level and lesser category
set). All users who needed to access objects at that VM’s
access class would share the machine.

With multiuser VMs, VAX/SVS couldn’t determine
with high assurance which individual user took a spe-
ci$c action for the purpose of enforcing discretionary
access control or collecting an audit trail. !e VAX/SVS
team argued that, given the reality of Trojan horses, the
security gain wasn’t worth the impact on the system.
!e evaluators argued that the TCSEC required “A1
discretionary access controls.” In the end, the team
documented a way to con$gure a VAX/SVS system for
single-user VMs, with the expectation that user orga-
nizations would con$gure their VAX/SVS systems for
more e%cient and adequately secure multiuser VMs.
We note that the tradition of documenting an evaluated
con$guration with speci$c security a&ributes, knowing
full well it will be largely impractical, continues today.

Layered Design
!e VAX/SVS layered design approach proved to be key
to a number of areas. !e Orange Book called for sig-
ni$cant use of layering, abstraction, and data hiding. A
levels-of-abstraction approach in security kernel design
was recommended as a means to reduce complexity
and an aid in precise and understandable speci$cations.
Reduced complexity was a core principle of VAX/SVS;
the team lived by the “keep it simple, stupid” mo&o. !e
team followed other classic layered design principles,
including a separation of concerns between the layers,
low coupling between layers and high cohesion within them, and limited exposure to layer internals.

Figure 1. VAX/SVS layers (from “A VMM Security Kernel for
the VAX Architecture”1). Each layer implemented a well-
defined abstraction in the system. Higher layers could call
on the services of lower layers whereas lower layers were
forbidden from calling on higher layers.

Kernel interface

Security perimeter

KI

Secure
server

SSVR

Visual printers

VPrint
Virtual terminals

VTerm
Volumes

VOL
Files-11 files

F11F
Audit trail

AUD
Higher-level scheduler

HLS
VM-virtual

space manager

VMV
VM-physical

space manager

VMP
I/O services

IOS
Lower-level scheduler

LLS

Modified microcode
for virtualization

VAX hardware

Hardware
interrupt handlers

HIH

Virtual
VAX

Virtual machine
operating system

VVAX

Users

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Other issues that may have had an impact

‣ Drivers are in the VMM security kernel

• DMA enables malicious device to overwrite physical memory

• Implications?

‣ Multi-user and privileged VMs

• Achieving A1 assurance in practice requires tracking individual users,
but no visibility into VMs

• Implications?

‣ Assembly code

• About 11K SLOC of the VMM security kernel was implemented in
assembly

VAX/SVS Project

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Significant advances since then

‣ Hardware support for security

• E.g., IOMMU

‣ Software architectures for security

• E.g., Decentralized information flow control

‣ Program analysis for security

• E.g., Validation and retrofitting of security in programs

‣ Formal methods for security

• E.g., seL4

• These advances address several prior limitations

Recent and Future Work

1 microkernel

0 bugs

 8,700 l nes of Ci

qed

*conditions apply

*

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Significant advances since then

‣ Hardware support for security

• E.g., IOMMU

‣ Software architectures for security

• E.g., Decentralized information flow control

‣ Program analysis for security

• E.g., Validation and retrofitting of security in programs

‣ Formal methods for security

• E.g., seL4

• These advances address several prior limitations

Recent and Future Work

© NICTA 2009

Small Kernels

Small trustworthy foundation

• hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

• High assurance components in
presence of other components

5

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Significant advances since then

‣ Hardware support for security

• E.g., IOMMU

‣ Software architectures for security

• E.g., Decentralized information flow control

‣ Program analysis for security

• E.g., Validation and retrofitting of security in programs

‣ Formal methods for security

• E.g., seL4

• These advances address several prior limitations

Recent and Future Work

© NICTA 2009 8

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Significant advances since then

‣ Hardware support for security

• E.g., IOMMU

‣ Software architectures for security

• E.g., Decentralized information flow control

‣ Program analysis for security

• E.g., Validation and retrofitting of security in programs

‣ Formal methods for security

• E.g., seL4

• These advances address several prior limitations

Recent and Future Work

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Significant advances since then

‣ Hardware support for security

• E.g., IOMMU

‣ Software architectures for security

• E.g., Decentralized information flow control

‣ Program analysis for security

• E.g., Validation and retrofitting of security in programs

‣ Formal methods for security

• E.g., seL4

• These advances address several prior limitations

Recent and Future Work

© NICTA 2009 9

Implications

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

Specification

C Code

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Significant advances since then

‣ Hardware support for security

• E.g., IOMMU

‣ Software architectures for security

• E.g., Decentralized information flow control

‣ Program analysis for security

• E.g., Validation and retrofitting of security in programs

‣ Formal methods for security

• E.g., seL4

• These advances address several prior limitations

Recent and Future Work

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Significant advances since then

‣ Hardware support for security

• E.g., IOMMU

‣ Software architectures for security

• E.g., Decentralized information flow control

‣ Program analysis for security

• E.g., Validation and retrofitting of security in programs

‣ Formal methods for security

• E.g., seL4

• These advances address several prior limitations

Recent and Future Work

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Take Away
• The importance of enforcing security in operating systems

has been long recognized

• Multics examined the dimensions of what to enforce (policy)
how to enforce (mechanism), and need for validation

• Security kernel projects explore how to validate real systems
based on security designs converted to implementations

• Recent and future work shows promise of overcoming some
of the major challenges that have held back prior work

• With the availability of a formally verified core kernel, there is
an opportunity to develop secure operating environment

