@ PennState

CSE543- Computer and Network Security
Module: The Evolution of Secure Operating
Systems

PENNSTAT

Need for Security =

» The need for operating systems to enforce security
requirements was recognized from the advent of
multi-user operating systems

Systems and Internet Infrastructure Security Laboratory (SIIS)

Multiprocessor Systems

PENNSTATE

* Major Effort: Multics

4

Multiprocessing system -- developed many OS concepts

 Including security
Begun in 1965 p \
» Research continued into the mid-70s ¢
Used until 2000

Initial partners: MIT, Bell Labs, GE (replaced by Honeywell)

Other innovations: hierarchical filesystems, dynamic linking

* Multics remains a basis for a secure operating systems
design

CSE543 - Introduction to Computer and Network Security

PENNSTAT

Need for Security =

» The need for operating systems to enforce security
requirements was recognized from the advent of
multi-user operating systems

» FJ. Corbato and V.A. Vyssotsky. Introduction and overview
of the Multics System. In Proceedings of the 1965 AFIPS Fall

Joint Computer Conference, 1965.

» “Of considerable concern is the issue of privacy. Experience has
shown that privacy and security are sensitive issues in a multi-
user system where terminals are anonymously remote.”

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Questions =

« So, were we done! No, still several difficult questions
to address, including

(1) What does security mean!?

» Policy:What degree of control and access should be allowed to
enable a system to process user data securely?

* (2) How do we enforce security effectively?

» Mechanism:What should be the requirements of a security
mechanism to enforce security policies correctly?

* (3) How do we validate correctness in enforcement!?

» Validation:What methods are necessary to validate the
correctness requirements for enforcing a security policy?

Systems and Internet Infrastructure Security Laboratory (SIIS)

Multics Project (to 1977) e

« Importantly, the Multics project explored all three big
questions

» And made important contributions to each

Systems and Internet Infrastructure Security Laboratory (SIIS)

Multics Project (to 1977) e

« Importantly, the Multics project explored all three big
questions

» And made important contributions to each

* What does security (policy) mean!?

» Security has to protect secrecy and integrity even when
adversaries control processes (e.g., Mandatory Access Control)

Systems and Internet Infrastructure Security Laboratory (SIIS)

Multics Project (to 1977) e

« Importantly, the Multics project explored all three big
questions

» And made important contributions to each

* What does security (policy) mean!?

» Security has to protect secrecy and integrity even when
adversaries control processes (e.g., Mandatory Access Control)

« What does enforcement mean?

» Enforcement mechanisms must satisfy the reference monitor
concept

Systems and Internet Infrastructure Security Laboratory (SIIS)

Multics Project (to 1977) e

« Importantly, the Multics project explored all three big
questions

» And made important contributions to each

* What does security (policy) mean!?

» Security has to protect secrecy and integrity even when
adversaries control processes (e.g., Mandatory Access Control)

« What does enforcement mean?

» Enforcement mechanisms must satisfy the reference monitor
concept

* What does validation require?

» Small code base; design for security; formal verification

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Mandatory Access Control =

 Multics introduced mandatory access control (MAC) to
enforce security

» Mandatory — System-defined administration of policies

» Access control — Information flow or MLS (e.g., Bell-La Padula, Biba)

« User programs are not authorized to
» Read/Write to data to unauthorized files or processes

» Or change the access control policy

* Prevents Trojan horse or compromised programs from
violating expected data security

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Multics Access Control S

« Each resource is associated with an
» Access Control List

» Multilevel Security Level (secrecy)

e Bell-La Padula

» Access Brackets (integrity)

« More later

» Last two are forms of mandatory access control

Systems and Internet Infrastructure Security Laboratory (SIIS)

Enforcement in Multics

PENNSTAT
i

* How to apply policy to ensure correct enforcement!?

Process 1 Process 2 Process n
Program Program Program
Data Data Data
t 7
. 7
\\ Operating System ~
\‘ Security / 7
\ i /
‘. Scheduling p
l‘ Resource Mechanisms
/
Merhory Disk Netwdrk Display |
7 .’
7
Y \
p / \
» A
Memory Disk Network Display
Device Device Device Device I

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Enforcement in Multics S

* Found that enforcement itself must be systematic and secured
» Which OS operations should be protected?
» How do authorization checks get processed correctly?

» How do we know they were processed correctly?

 Clearly, an informal approach to the enforcement of policies is
insufficient

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Reference Monitor S

« The Anderson report (USAF 1972) proposed the
reference monitor concept to provide

» Explicit control must be established over each programs access to any
system resource which is shared with any other user or system program.

« Reference Monitor Concept requirements:

» The reference validation mechanism must be tamperproof

» The reference validation mechanism must always be invoked
(complete mediation over security-sensitive operations)

» The reference validation mechanism must be small enough to be
subject to analysis and tests, the completeness of which can be
assured (validation)

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Protection Rings =

* Successively less-privileged “domains”

* Modern CPUs support 4 rings

» Use 2 mainly: Kernel and user

* Intel x86 rings

Least privileged

» Ring 0 has kernel

Ring 1

» Ring 3 has application code

Ring O

Kernel

_ . Most privileged
Device drivers

Device drivers

Applications

» Example: Multics (64 rings in theory, 8 in practice)

CSE543 - Introduction to Computer and Network Security

Protection Ring Rules

PENNSTAT
| _Zhw

* Program cannot call code of
higher privilege directly
» Gate is a special memory

address where lower-privilege
code can call higher

« Enables OS to control where
applications call it (system calls)

CSE543 - Introduction to Computer and Network Security

PENNSTAT

What Are Protection Rings? =

* Coarse-grained, Hardware Protection Mechanism

* Boundary between Levels of Authority
» Most privileged -- ring O
» Monotonically less privileged above

* Fundamental Purpose

» Protect system integrity

e Protect kernel from services

Least privileged

« Protect services from apps

e So on...

Most privileged

Device drivers

Device drivers

Applications

. CSE543 - Introduction to Computer and Network Security

PENNSTAT

Access Brackets =

« Multics policy that governs access control based on the ring in
which code is run

» Subject — process’s ring number
» Object — resource’s ring number

» Operations — usual read, write and execute

By default, processes cannot
» Modify resources in lower (more privileged) rings

« What access control model is that!?

» A bit too strong

« Weakened to a contiguous sequence of rings that could modify (or
execute) each object

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Reference Monitor in Multics —

« Tamperproofing
» Protection rings
» Kernel in ring 0

» Gates protecting kernel entry and exit

« Complete mediation

» Resources modeled as “segments”

» Control all segment operations (ACLs, MLS, ring brackets)
« Validation

» Come back to this

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Karger-Schell Analysis =

« Demonstrated the importance of following the reference
monitor concept

» Flaws in Tamperproofing
« Untrusted “master mode” code run in Ring 0 for performance
« No untrusted code in ring 0

» Flaws in Complete Mediation
 Failure to mediate some indirect memory accesses

* |Implementation bug in complete mediation

« However, these were both flaws in implementation, not design,
that would have been alleviated by following the reference
monitor concept correctly

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Validation in Multics =

« Challenges were seen for validating Multics (circa 1977)

» Size of the code base — 54 SLOC

« Although the Multics Final Report suggests that the kernel size can be reduced
by approximately half

» How to do formal validation on a kernel?

« To this point techniques had not been developed

 Ultimately, the Multics design formed the basis for the B2
assurance level of the Orange Book (now Common Ciriteria)

» + Security policy model clearly defined and formally documented (B2)

» - Satisfies reference monitor requirements (B3)

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Security Kernel Experience =

* A number of projects emerged to address the
challenge of validating secure operating systems

» Which came to be called security kernels

 To address three main challenges

» Reduce size and complexity of operating systems and
utility software

» Define security enforced by the OS internal controls

» Validate the correctness of the implemented security
controls

* From Ames and Gasser, I[EEE Computer, July 1983

Systems and Internet Infrastructure Security Laboratory (SIIS)

July 1983, IEEE Computer "g"

JULY 1983

COMPUTER
SECURITY

TECHNOLOGY

i

THE INSTITUTE OF ELECTRICAL AND
) IEEE COMPUTER SOCIETY ELECTRONICS ENGINEERS, INC

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Security Kernel Approach S

 Security Kernel Design: Ames, Gasser; and Schell

» Basic Principles
» A formally defined security model
« Complete, mandatory, and validated for security requirements
» Faithful implementation

« Transfer model to design incrementally and formally

« While addressing practical considerations

» Extracting security relevant functionality from OS at large

» Formal specification and validation methods

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Security Kernel Approach =

« From model to implementation

SECURITY
POLICY e
MODEL

VERIFICATION OF
SPECIFICATION TO

MODEL
HIGH-LEVEL KERNEL [€=
INTERFACE SPECIFICATION fe=
INTERMEDIATE
CORRESPONDENCE
PROOFS OR MAPPINGS

LOWER LEVEL <
DETAIL SPECIFICATIONS |

VERIFICATION OF
IMPLEMENTATION TO
SPECIFICATION

KERNEL HIGH-LEVEL I
LANGUAGE < :
IMPLEMENTATION

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Formal Verification S

« What techniques are necessary to formally assure a
kernel implementation satisfies a security model?

» “‘verification has turned out to be more difficult than we
expected”

« Goal: correctness

» Techniques not ready to prove correctness

« Approaches (at this time)

» Compare kernel security to information flows allowed

» Specification and implementation correspondence

Systems and Internet Infrastructure Security Laboratory (SIIS)

VMM Security Kernel -

« Choices in bringing security kernel OS to market

» (I) High-assurance version of existing OS

« But, would trail the standard product development lifecycle

» (2) Custom, high-assurance OS

« Lack application and ecosystem support

* Alternative: high-assurance virtual machine monitor (VMM)

» Motivation for the “VMM Security Kernel for VAX" in 1980
IEEE Symposium on Security and Privacy

« VMM security kernel layers under commercial OSes

« To support multiple OSes and versions

Systems and Internet Infrastructure Security Laboratory (SIIS)

VAX/SVS Project e

« Important design choices

» Layered system design

« Aimed to simplify design, test, and assurance

» Enforce information flow for secrecy and integrity

e Bell-La Padula and Biba

« Coarse-grained: For VMs access to storage volumes

» Paravirtualization with simple memory management

« Implemented in Pascal, PL/I, and assembly

» About 48K SLOC altogether

Systems and Internet Infrastructure Security Laboratory (SIIS)

VAX/SVS Project e

* Project Successes

» System was piloted in 1989 —“reasonably successful”

» “AVMM Security Kernel for the VAX Architecture”

was lead paper and Best Paper Award winner at the
1990 IEEE Symposium on Security and Privacy

» Comprehensive effort for Al assurance applying form:
methods for system design, test, maintenance, and
cover channels

* Nonetheless, the project was cancelled in 1990

» Lack of customers — export controls did not help

» Lack of features — e.g., no networking support

Systems and Internet Infrastructure Security Laboratory (SIIS)

VAX/SVS Project e

« Other issues that may have had an impact

» Drivers are in the VMM security kernel
« DMA enables malicious device to overwrite physical memory
 Implications?

» Multi-user and privileged VMs

« Achieving Al assurance in practice requires tracking individual users,
but no visibility into VMs

 Implications?
» Assembly code

« About | K SLOC of the VMM security kernel was implemented in
assembly

Systems and Internet Infrastructure Security Laboratory (SIIS)

/,Jlizm:fﬁﬁigaqﬁ

1 microkernel
8,700 lines of C
0 bugs’

ged

*conditions apply

Small Kernels

Small trustworthy foundation
Untrusted Trusted

it e

e hypervisor, microkernel,

nano-kernel, virtual machine,
separation kernel, exokernel ...
 High assurance components in

presence of other components

selL4 API:

- IPC

- Threads

- VM

- IRQ

- Capabilities

—
N, -
N
1

ey W -

© NICTA 2009 5

@) Expectation

Proof

l Assumptions

>
(\.

.

Access Control Spec “

definition
schedule :: unit s_monad where
schedule = do

. . threads <« allActiveTCBs;
Specification thread < select threads;
switch_to_thread thread

od
OR switch_to_idle_thread

Prototype

© NICTA 2002 12

“Implications .. /// (Je

NICTA
m - e Specification
Execution always defined: E@ e
* no null pointer de-reference I
* no buffer overflows
* no code injection i

* no memory leaks/out of kernel memory
* no div by zero, no undefined shift
* no undefined execution

* no infinite loops/recursion

Not implied:

e “secure” (define secure)

e zero bugs from expectation to physical world
e covert channel analysis

w—-

Iterative Design and Formalisation

E Whiteboard /::ﬁ
Haskell Formal “ Formal
Prototype Design Specification

=
ode +--j

] O

Did you find any Bugs?

Bugs found

during testing: 16

during verification:
e inC: 160
* indesign: ~150

* inspec: ~150
460 bugs

void
schedule(void) {

switch ((word t)ksSchedulerActLon) {

Haskell design
First C impl.
Debugging/Testing
Kernel verification

} Formal frameworks

Total

Cost

Common Criteria EALG:

L4.verified:

2 py read;
2 weeks

2 months

12 py

10 py
25 py

read;

$87M
$6M

PENNSTAT

Take Away S

« The importance of enforcing security in operating systems
has been long recognized

» Multics examined the dimensions of what to enforce (policy)
how to enforce (mechanism), and need for validation

» Security kernel projects explore how to validate real systems
based on security designs converted to implementations

« Recent and future work shows promise of overcoming some
of the major challenges that have held back prior work

* With the availability of a formally verified core kernel, there is
an opportunity to develop secure operating environment

Systems and Internet Infrastructure Security Laboratory (SIIS)

