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Need for Security =

» The need for operating systems to enforce security
requirements was recognized from the advent of
multi-user operating systems

Systems and Internet Infrastructure Security Laboratory (SIIS)



Multiprocessor Systems

PENNSTATE

* Major Effort: Multics

4

Multiprocessing system -- developed many OS concepts

 Including security
Begun in 1965 p \
» Research continued into the mid-70s ¢
Used until 2000

Initial partners: MIT, Bell Labs, GE (replaced by Honeywell)

Other innovations: hierarchical filesystems, dynamic linking

* Multics remains a basis for a secure operating systems
design

CSE543 - Introduction to Computer and Network Security
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Need for Security =

» The need for operating systems to enforce security
requirements was recognized from the advent of
multi-user operating systems

» FJ. Corbato and V.A. Vyssotsky. Introduction and overview
of the Multics System. In Proceedings of the 1965 AFIPS Fall

Joint Computer Conference, 1965.

» “Of considerable concern is the issue of privacy. Experience has
shown that privacy and security are sensitive issues in a multi-
user system where terminals are anonymously remote.”

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Questions =

« So, were we done! No, still several difficult questions
to address, including

(1) What does security mean!?

» Policy:What degree of control and access should be allowed to
enable a system to process user data securely?

* (2) How do we enforce security effectively?

» Mechanism:What should be the requirements of a security
mechanism to enforce security policies correctly?

* (3) How do we validate correctness in enforcement!?

» Validation:What methods are necessary to validate the
correctness requirements for enforcing a security policy?

Systems and Internet Infrastructure Security Laboratory (SIIS)



Multics Project (to 1977) e

« Importantly, the Multics project explored all three big
questions

» And made important contributions to each

Systems and Internet Infrastructure Security Laboratory (SIIS)
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« Importantly, the Multics project explored all three big
questions

» And made important contributions to each

* What does security (policy) mean!?

» Security has to protect secrecy and integrity even when
adversaries control processes (e.g., Mandatory Access Control)

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Multics Project (to 1977) e

« Importantly, the Multics project explored all three big
questions

» And made important contributions to each

* What does security (policy) mean!?

» Security has to protect secrecy and integrity even when
adversaries control processes (e.g., Mandatory Access Control)

« What does enforcement mean?

» Enforcement mechanisms must satisfy the reference monitor
concept

* What does validation require?

» Small code base; design for security; formal verification

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Mandatory Access Control =

 Multics introduced mandatory access control (MAC) to
enforce security

» Mandatory — System-defined administration of policies

» Access control — Information flow or MLS (e.g., Bell-La Padula, Biba)

« User programs are not authorized to
» Read/Write to data to unauthorized files or processes

» Or change the access control policy

* Prevents Trojan horse or compromised programs from
violating expected data security

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Multics Access Control S

« Each resource is associated with an
» Access Control List

» Multilevel Security Level (secrecy)

e Bell-La Padula

» Access Brackets (integrity)

« More later

» Last two are forms of mandatory access control

Systems and Internet Infrastructure Security Laboratory (SIIS)



Enforcement in Multics
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* How to apply policy to ensure correct enforcement!?
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Systems and Internet Infrastructure Security Laboratory (SIIS)
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Enforcement in Multics S

* Found that enforcement itself must be systematic and secured
» Which OS operations should be protected?
» How do authorization checks get processed correctly?

» How do we know they were processed correctly?

 Clearly, an informal approach to the enforcement of policies is
insufficient

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Reference Monitor S

« The Anderson report (USAF 1972) proposed the
reference monitor concept to provide

» Explicit control must be established over each programs access to any
system resource which is shared with any other user or system program.

« Reference Monitor Concept requirements:

» The reference validation mechanism must be tamperproof

» The reference validation mechanism must always be invoked
(complete mediation over security-sensitive operations)

» The reference validation mechanism must be small enough to be
subject to analysis and tests, the completeness of which can be
assured (validation)

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Protection Rings =

* Successively less-privileged “domains”

* Modern CPUs support 4 rings

» Use 2 mainly: Kernel and user

* Intel x86 rings

Least privileged

» Ring 0 has kernel

Ring 1

» Ring 3 has application code

Ring O

Kernel

_ . Most privileged
Device drivers

Device drivers

Applications

» Example: Multics (64 rings in theory, 8 in practice)

CSE543 - Introduction to Computer and Network Security



Protection Ring Rules
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* Program cannot call code of
higher privilege directly
» Gate is a special memory

address where lower-privilege
code can call higher

« Enables OS to control where
applications call it (system calls)

CSE543 - Introduction to Computer and Network Security
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What Are Protection Rings? =

* Coarse-grained, Hardware Protection Mechanism

* Boundary between Levels of Authority
» Most privileged -- ring O
» Monotonically less privileged above

* Fundamental Purpose

» Protect system integrity

e Protect kernel from services

Least privileged

« Protect services from apps

e So on...

Most privileged

Device drivers

Device drivers

Applications

. CSE543 - Introduction to Computer and Network Security
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Access Brackets =

« Multics policy that governs access control based on the ring in
which code is run

» Subject — process’s ring number
» Object — resource’s ring number

» Operations — usual read, write and execute

By default, processes cannot
» Modify resources in lower (more privileged) rings

« What access control model is that!?

» A bit too strong

« Weakened to a contiguous sequence of rings that could modify (or
execute) each object

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Reference Monitor in Multics —

« Tamperproofing
» Protection rings
» Kernel in ring 0

» Gates protecting kernel entry and exit

« Complete mediation

» Resources modeled as “segments”

» Control all segment operations (ACLs, MLS, ring brackets)
« Validation

» Come back to this

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Karger-Schell Analysis =

« Demonstrated the importance of following the reference
monitor concept

» Flaws in Tamperproofing
« Untrusted “master mode” code run in Ring 0 for performance
« No untrusted code in ring 0

» Flaws in Complete Mediation
 Failure to mediate some indirect memory accesses

* |Implementation bug in complete mediation

« However, these were both flaws in implementation, not design,
that would have been alleviated by following the reference
monitor concept correctly

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Validation in Multics =

« Challenges were seen for validating Multics (circa 1977)

» Size of the code base — 54 SLOC

« Although the Multics Final Report suggests that the kernel size can be reduced
by approximately half

» How to do formal validation on a kernel?

« To this point techniques had not been developed

 Ultimately, the Multics design formed the basis for the B2
assurance level of the Orange Book (now Common Ciriteria)

» + Security policy model clearly defined and formally documented (B2)

» - Satisfies reference monitor requirements (B3)

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Security Kernel Experience =

* A number of projects emerged to address the
challenge of validating secure operating systems

» Which came to be called security kernels

 To address three main challenges

» Reduce size and complexity of operating systems and
utility software

» Define security enforced by the OS internal controls

» Validate the correctness of the implemented security
controls

* From Ames and Gasser, I[EEE Computer, July 1983

Systems and Internet Infrastructure Security Laboratory (SIIS)



July 1983, IEEE Computer "g"

JULY 1983

COMPUTER
SECURITY

TECHNOLOGY

i

THE INSTITUTE OF ELECTRICAL AND
) IEEE COMPUTER SOCIETY ELECTRONICS ENGINEERS, INC

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Security Kernel Approach S

 Security Kernel Design: Ames, Gasser; and Schell

» Basic Principles
» A formally defined security model
« Complete, mandatory, and validated for security requirements
» Faithful implementation

« Transfer model to design incrementally and formally

« While addressing practical considerations

» Extracting security relevant functionality from OS at large

» Formal specification and validation methods

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Security Kernel Approach =

« From model to implementation

SECURITY
POLICY e
MODEL

VERIFICATION OF
SPECIFICATION TO

MODEL
HIGH-LEVEL KERNEL [€=
INTERFACE SPECIFICATION fe=
INTERMEDIATE
CORRESPONDENCE
PROOFS OR MAPPINGS

LOWER LEVEL <
DETAIL SPECIFICATIONS |

VERIFICATION OF
IMPLEMENTATION TO
SPECIFICATION

KERNEL HIGH-LEVEL I
LANGUAGE < :
IMPLEMENTATION

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Formal Verification S

« What techniques are necessary to formally assure a
kernel implementation satisfies a security model?

» “‘verification has turned out to be more difficult than we
expected”

« Goal: correctness

» Techniques not ready to prove correctness

« Approaches (at this time)

» Compare kernel security to information flows allowed

» Specification and implementation correspondence

Systems and Internet Infrastructure Security Laboratory (SIIS)



VMM Security Kernel -

« Choices in bringing security kernel OS to market

» (I) High-assurance version of existing OS

« But, would trail the standard product development lifecycle

» (2) Custom, high-assurance OS

« Lack application and ecosystem support

* Alternative: high-assurance virtual machine monitor (VMM)

» Motivation for the “VMM Security Kernel for VAX" in 1980
IEEE Symposium on Security and Privacy

« VMM security kernel layers under commercial OSes

« To support multiple OSes and versions

Systems and Internet Infrastructure Security Laboratory (SIIS)



VAX/SVS Project e

« Important design choices

» Layered system design

« Aimed to simplify design, test, and assurance

» Enforce information flow for secrecy and integrity

e Bell-La Padula and Biba

« Coarse-grained: For VMs access to storage volumes

» Paravirtualization with simple memory management

« Implemented in Pascal, PL/I, and assembly

» About 48K SLOC altogether

Systems and Internet Infrastructure Security Laboratory (SIIS)



VAX/SVS Project e

* Project Successes

» System was piloted in 1989 —“reasonably successful”

» “AVMM Security Kernel for the VAX Architecture”

was lead paper and Best Paper Award winner at the
1990 IEEE Symposium on Security and Privacy

» Comprehensive effort for Al assurance applying form:
methods for system design, test, maintenance, and
cover channels

* Nonetheless, the project was cancelled in 1990

» Lack of customers — export controls did not help

» Lack of features — e.g., no networking support

Systems and Internet Infrastructure Security Laboratory (SIIS)



VAX/SVS Project e

« Other issues that may have had an impact

» Drivers are in the VMM security kernel
« DMA enables malicious device to overwrite physical memory
 Implications?

» Multi-user and privileged VMs

« Achieving Al assurance in practice requires tracking individual users,
but no visibility into VMs

 Implications?
» Assembly code

« About | K SLOC of the VMM security kernel was implemented in
assembly

Systems and Internet Infrastructure Security Laboratory (SIIS)
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1 microkernel
8,700 lines of C
0 bugs’

ged

*conditions apply



Small Kernels

Small trustworthy foundation
Untrusted Trusted

it e

e hypervisor, microkernel,

nano-kernel, virtual machine,
separation kernel, exokernel ...
 High assurance components in

presence of other components

selL4 API:

- IPC

- Threads

- VM

- IRQ

- Capabilities
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Proof

l Assumptions
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Access Control Spec “

definition
schedule :: unit s_monad where
schedule = do

. . threads <« allActiveTCBs;
Specification thread < select threads;
switch_to_thread thread

od
OR switch_to_idle_thread

Prototype

© NICTA 2002 12




“Implications .. /// (Je

NICTA
m - e Specification
Execution always defined: E@ e
* no null pointer de-reference I
* no buffer overflows
* no code injection i

* no memory leaks/out of kernel memory
* no div by zero, no undefined shift
* no undefined execution

* no infinite loops/recursion

Not implied:

e “secure” (define secure)

e zero bugs from expectation to physical world
e covert channel analysis
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Iterative Design and Formalisation

E Whiteboard /::ﬁ
Haskell Formal “ Formal
Prototype Design Specification

=
ode +--j

] O




Did you find any Bugs?

Bugs found

during testing: 16

during verification:
e inC: 160
* indesign: ~150

* inspec: ~150
460 bugs

void
schedule(void) {

switch ((word t)ksSchedulerActLon) {

Haskell design
First C impl.
Debugging/Testing
Kernel verification

} Formal frameworks

Total

Cost

Common Criteria EALG:

L4.verified:

2 py read;
2 weeks

2 months

12 py

10 py
25 py

read;

$87M
$6M
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Take Away S

« The importance of enforcing security in operating systems
has been long recognized

» Multics examined the dimensions of what to enforce (policy)
how to enforce (mechanism), and need for validation

» Security kernel projects explore how to validate real systems
based on security designs converted to implementations

« Recent and future work shows promise of overcoming some
of the major challenges that have held back prior work

* With the availability of a formally verified core kernel, there is
an opportunity to develop secure operating environment

Systems and Internet Infrastructure Security Laboratory (SIIS)



