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Need for Security
• The need for operating systems to enforce security 

requirements was recognized from the advent of 
multi-user operating systems
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Evolution of Secure OS
• In this talk, I will review the evolution of the design of secure 

operating systems with respect to these questions

• Phase 1: The (Early) Multics Experience 

‣ Archaen – “the formation of continents and life started to form”

• Phase 2: The Security Kernel Experience 

‣ Proterozoic – “from the appearance of oxygen in Earth's 
atmosphere to just before the proliferation of complex life”

• Phase 3: Recent and Future Directions

‣ Phanerozoic – “starts with the rapid emergence of a number of 
life forms”

• Not only vertical but horizontal transfers
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Multiprocessor Systems
• Major Effort: Multics
‣ Multiprocessing system -- developed many OS concepts

• Including security

‣ Begun in 1965 
• Research continued into the mid-70s

‣ Used until 2000
‣ Initial partners: MIT, Bell Labs, GE (replaced by Honeywell)
‣ Other innovations: hierarchical filesystems, dynamic linking

• Multics remains a basis for a secure operating systems 
design

�X
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Need for Security
• The need for operating systems to enforce security 

requirements was recognized from the advent of 
multi-user operating systems

‣ F. J. Corbato ́ and V. A. Vyssotsky. Introduction and overview 
of the Multics System. In Proceedings of the 1965 AFIPS Fall 
Joint Computer Conference, 1965.

‣ “Of considerable concern is the issue of privacy. Experience has 
shown that privacy and security are sensitive issues in a multi-
user system where terminals are anonymously remote.”
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Questions
• So, were we done?  No, still several difficult questions 

to address, including

• (1) What does security mean?

‣ Policy: What degree of control and access should be allowed to 
enable a system to process user data securely?

• (2) How do we enforce security effectively?

‣ Mechanism: What should be the requirements of a security 
mechanism to enforce security policies correctly?

• (3) How do we validate correctness in enforcement?

‣ Validation: What methods are necessary to validate the 
correctness requirements for enforcing a security policy?
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Multics Project (to 1977)
• Importantly, the Multics project explored all three big 

questions

‣ And made important contributions to each
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‣ Security has to protect secrecy and integrity even when 
adversaries control processes (e.g., Mandatory Access Control)
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Multics Project (to 1977)
• Importantly, the Multics project explored all three big 

questions

‣ And made important contributions to each

• What does security (policy) mean?

‣ Security has to protect secrecy and integrity even when 
adversaries control processes (e.g., Mandatory Access Control)

• What does enforcement mean?

‣ Enforcement mechanisms must satisfy the reference monitor 
concept

• What does validation require?

‣ Small code base; design for security; formal verification
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Mandatory Access Control
• Multics introduced mandatory access control (MAC) to 

enforce security

‣ Mandatory – System-defined administration of policies

‣ Access control – Information flow or MLS (e.g., Bell-La Padula, Biba)

• User programs are not authorized to

‣ Read/Write to data to unauthorized files or processes

‣ Or change the access control policy

• Prevents Trojan horse or compromised programs from 
violating expected data security
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Multics Access Control
• Each resource is associated with an 

‣ Access Control List

‣ Multilevel Security Level (secrecy)

• Bell-La Padula

‣ Access Brackets (integrity) 

• More later

• Last two are forms of mandatory access control
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Enforcement in Multics
• How to apply policy to ensure correct enforcement?
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Enforcement in Multics
• Found that enforcement itself must be systematic and secured

‣ Which OS operations should be protected?

‣ How do authorization checks get processed correctly?

‣ How do we know they were processed correctly?

• Clearly, an informal approach to the enforcement of policies is 
insufficient
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Reference Monitor
• The Anderson report (USAF 1972) proposed the 

reference monitor concept to provide

‣ Explicit control must be established over each programs access to any 
system resource which is shared with any other user or system program.

• Reference Monitor Concept requirements:

‣ The reference validation mechanism must be tamperproof

‣ The reference validation mechanism must always be invoked 
(complete mediation over security-sensitive operations)

‣ The reference validation mechanism must be small enough to be 
subject to analysis and tests, the completeness of which can be 
assured (validation)
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Enforcement in Multics
• Found that enforcement itself must be systematic and secured

‣ Which OS operations should be protected?

‣ How do authorization checks get processed correctly?

‣ How do we know they were processed correctly?

• Clearly, an informal approach to the enforcement of policies 
is insufficient
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Protection Rings
• Successively less-privileged “domains”
• Modern CPUs support 4 rings
‣ Use 2 mainly: Kernel and user

• Intel x86 rings
‣ Ring 0 has kernel

‣ Ring 3 has application code

• Example: Multics (64 rings in theory, 8 in practice)
�X
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Enforcement in Multics
• Found that enforcement itself must be systematic and secured

‣ Which OS operations should be protected?

‣ How do authorization checks get processed correctly?

‣ How do we know they were processed correctly?

• Clearly, an informal approach to the enforcement of policies is 
insufficient
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Ring 0

Ring 3 

Protection Ring Rules
• Program cannot call code of 

higher privilege directly
‣ Gate is a special memory 

address where lower-privilege 
code can call higher
• Enables OS to control where 

applications call it (system calls)

�X

Gate

No 
gate
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Enforcement in Multics
• Found that enforcement itself must be systematic and secured

‣ Which OS operations should be protected?

‣ How do authorization checks get processed correctly?

‣ How do we know they were processed correctly?

• Clearly, an informal approach to the enforcement of policies is 
insufficient
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What Are Protection Rings?
• Coarse-grained, Hardware Protection Mechanism
• Boundary between Levels of Authority
‣ Most privileged -- ring 0
‣ Monotonically less privileged above

• Fundamental Purpose
‣ Protect system integrity

• Protect kernel from services

• Protect services from apps

• So on...

�X
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Access Brackets
• Multics policy that governs access control based on the ring in 

which code is run

‣ Subject – process’s ring number

‣ Object – resource’s ring number 

‣ Operations – usual read, write and execute

• By default, processes cannot 

‣ Modify resources in lower (more privileged) rings 

• What access control model is that?

‣ A bit too strong 

• Weakened to a contiguous sequence of rings that could modify (or 
execute) each object
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Reference Monitor in Multics
• Tamperproofing

‣ Protection rings

‣ Kernel in ring 0

‣ Gates protecting kernel entry and exit

• Complete mediation

‣ Resources modeled as “segments”

‣ Control all segment operations (ACLs, MLS, ring brackets)

• Validation

‣ Come back to this
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Karger-Schell Analysis
• Demonstrated the importance of following the reference 

monitor concept

‣ Flaws in Tamperproofing

• Untrusted “master mode” code run in Ring 0 for performance

• No untrusted code in ring 0

‣ Flaws in Complete Mediation

• Failure to mediate some indirect memory accesses

• Implementation bug in complete mediation

• However, these were both flaws in implementation, not design, 
that would have been alleviated by following the reference 
monitor concept correctly 
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Validation in Multics
• Challenges were seen for validating Multics (circa 1977)

‣ Size of the code base – 54 SLOC

• Although the Multics Final Report suggests that the kernel size can be reduced 
by approximately half

‣ How to do formal validation on a kernel?

• To this point techniques had not been developed

• Ultimately, the Multics design formed the basis for the B2 
assurance level of the Orange Book (now Common Criteria)

‣ + Security policy model clearly defined and formally documented (B2)

‣ - Satisfies reference monitor requirements (B3)
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• A number of projects emerged to address the 
challenge of validating secure operating systems

‣ Which came to be called security kernels

• To address three main challenges 

‣ Reduce size and complexity of operating systems and 
utility software 

‣ Define security enforced by the OS internal controls

‣ Validate the correctness of the implemented security 
controls

• From Ames and Gasser, IEEE Computer, July 1983

Security Kernel Experience
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July 1983, IEEE Computer
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• Security Kernel Design: Ames, Gasser, and Schell

• Basic Principles

‣ A formally defined security model

• Complete, mandatory, and validated for security requirements

‣ Faithful implementation

• Transfer model to design incrementally and formally

• While addressing practical considerations

‣ Extracting security relevant functionality from OS at large

‣ Formal specification and validation methods 

Security Kernel Approach
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• From model to implementation

Security Kernel Approach

pand the functionality by gradually introducing more im-
plementation detail. This process is done without affect-
ing the validity of the security properties already
established. (For examples of systems that use formal
specification techniques, see the article by Landwehr in
this issue.)

Three classes of formal verification techniques have
been applied to different stages of kernel development
(Figure 2), and several techniques are available within
each class. The first class is used to prove that the
kernel's intended behavior, as described in the formal
high-level interface specification, is secure with respect to
the policy model. One common technique, securityJflow
analysis, is a relatively simple way to identify and analyze
information flows in a specification.7 Note that only the
security of the interface specification must be demon-
strated, not the more difficult problem of its functional
"correctness," since functional properties, most of
which are not security related, are not addressed by the
model.

In the second class of formal verification techniques,
we verify the correspondence or correctness of mappings
between any intermediate specifications in the hierarchy
and the interface specifications. Finally, a third class of
verification techniques, the most traditional way to
prove correctness, shows that the kernel implementation
corresponds to its specification.

Cheheyl et al. have documented a survey of current
verification systems covering most of these techniques,

Figure 2. Development and verification hierarchy.

along with their application to Department of Defense
security policy.8 Walker et al. describe an example of a
formal specification and verification.9

Implementation considerations

To successfully realize a kernel-based system, we must
take into account architectural and engineering consider-
ations that may not be encountered in the development
of other systems. Although the kernel approach can be
applied to all types of systems, these considerations are
best illustrated in the context of a general-purpose
operating system with online, interactive users (Figure 3).
The kernel, as already noted, provides a relatively small
and simple subset of the operating system functions. The
kernel primitives are the interface of this subset to the
rest of the operating system (generally referred to as the
supervisor). In turn, the supervisor primitives provide
the general-purpose operating system functions used by
the applications.

Kernel/supervisor trade-offs. An operating system is
usually broken down into functional areas, such as pro-
cess management, file system management for segments,
and I/O control. Within each area, some functions are
clearly security relevant and must be in the kernel, while
some are not. The rules of the policy model help to clear-
ly identify which functions are security relevant.

Figure 3. Structure of a kernel-based operation system.

July 1983 17
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• What techniques are necessary to formally assure a 
kernel implementation satisfies a security model?

‣ “verification has turned out to be more difficult than we 
expected”

• Goal: correctness

‣ Techniques not ready to prove correctness

• Approaches (at this time)

‣ Compare kernel security to information flows allowed

‣ Specification and implementation correspondence

Formal Verification
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• Choices in bringing security kernel OS to market

‣ (1) High-assurance version of existing OS

• But, would trail the standard product development lifecycle

‣ (2) Custom, high-assurance OS

• Lack application and ecosystem support

• Alternative: high-assurance virtual machine monitor (VMM)

‣ Motivation for the “VMM Security Kernel for VAX” in 1980 
IEEE Symposium on Security and Privacy

• VMM security kernel layers under commercial OSes

• To support multiple OSes and versions

VMM Security Kernel
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• Important design choices

‣ Layered system design

• Aimed to simplify design, test, and assurance

‣ Enforce information flow for secrecy and integrity

• Bell-La Padula and Biba

• Coarse-grained: For VMs access to storage volumes

‣ Paravirtualization with simple memory management

• Implemented in Pascal, PL/1, and assembly

‣ About 48K SLOC altogether

VAX/SVS Project

www.computer.org/security 29

was behind the action. Two privileges were reserved for 
VMs, so these VMs needed to be privileged. !e VAX/
SVS designers were primarily concerned with ensur-
ing that mandatory security could be enforced. Because 
performing these two privileged operations outside the 
kernel didn’t violate that goal, the designers preferred 
limiting these abilities rather than creating a larger and 
more complex kernel.

In addition to mandatory access control and user 
privileges, VAX/SVS implemented discretionary access 
control (access control lists) on objects. !e discretion-
ary access control’s e"ectiveness was the only major 
area of disagreement between the development team 
and TCSEC evaluators. !e design was optimized 
around multiuser VMs—if each user required his or 
her own VM, the physical memory requirement for 
a commercially viable VAX/SVS system would have 
grown beyond what was available, and the team would 
have had to modify the design to demand page VMs’ 
memories. In the chosen design, a VM would operate 
at a speci$c mandatory access class (level and category 
set) with read-write access to objects at that access class 
and read access to objects at lower con$dentiality access 
classes (that is, lower security level and lesser category 
set). All users who needed to access objects at that VM’s 
access class would share the machine.

With multiuser VMs, VAX/SVS couldn’t determine 
with high assurance which individual user took a spe-
ci$c action for the purpose of enforcing discretionary 
access control or collecting an audit trail. !e VAX/SVS 
team argued that, given the reality of Trojan horses, the 
security gain wasn’t worth the impact on the system. 
!e evaluators argued that the TCSEC required “A1 
discretionary access controls.” In the end, the team 
documented a way to con$gure a VAX/SVS system for 
single-user VMs, with the expectation that user orga-
nizations would con$gure their VAX/SVS systems for 
more e%cient and adequately secure multiuser VMs. 
We note that the tradition of documenting an evaluated 
con$guration with speci$c security a&ributes, knowing 
full well it will be largely impractical, continues today.

Layered Design
!e VAX/SVS layered design approach proved to be key 
to a number of areas. !e Orange Book called for sig-
ni$cant use of layering, abstraction, and data hiding. A 
levels-of-abstraction approach in security kernel design 
was recommended as a means to reduce complexity 
and an aid in precise and understandable speci$cations. 
Reduced complexity was a core principle of VAX/SVS; 
the team lived by the “keep it simple, stupid” mo&o. !e 
team followed other classic layered design principles, 
including a separation of concerns between the layers, 
low coupling between layers and high cohesion within them, and limited exposure to layer internals.

Figure 1. VAX/SVS layers (from “A VMM Security Kernel for 
the VAX Architecture”1). Each layer implemented a well-
defined abstraction in the system. Higher layers could call 
on the services of lower layers whereas lower layers were 
forbidden from calling on higher layers.
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• Project Successes

‣ System was piloted in 1989 – “reasonably successful”

‣ “A VMM Security Kernel for the VAX Architecture” 
was lead paper and Best Paper Award winner at the 
1990 IEEE Symposium on Security and Privacy

‣ Comprehensive effort for A1 assurance applying formal 
methods for system design, test, maintenance, and 
cover channels

• Nonetheless, the project was cancelled in 1990

‣ Lack of customers – export controls did not help

‣ Lack of features – e.g., no networking support

VAX/SVS Project

www.computer.org/security 29
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• Other issues that may have had an impact

‣ Drivers are in the VMM security kernel

• DMA enables malicious device to overwrite physical memory

• Implications?

‣ Multi-user and privileged VMs

• Achieving A1 assurance in practice requires tracking individual users, 
but no visibility into VMs

• Implications?

‣ Assembly code

• About 11K SLOC of the VMM security kernel was implemented in 
assembly

VAX/SVS Project
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• Significant advances since then 

‣ Hardware support for security

• E.g., IOMMU 

‣ Software architectures for security

• E.g., Decentralized information flow control

‣ Program analysis for security

• E.g., Validation and retrofitting of security in programs

‣ Formal methods for security

• E.g., seL4

• These advances address several prior limitations

Recent and Future Work
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Implications

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

Specification

C Code
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Take Away
• The importance of enforcing security in operating systems 

has been long recognized

• Multics examined the dimensions of what to enforce (policy) 
how to enforce (mechanism), and need for validation

• Security kernel projects explore how to validate real systems 
based on security designs converted to implementations

• Recent and future work shows promise of overcoming some 
of the major challenges that have held back prior work

• With the availability of a formally verified core kernel, there is 
an opportunity to develop secure operating environment


