
CSE543 - Introduction to Computer and Network Security Page

Asst. Prof. Syed Rafiul Hussain

1

CSE543
Introduction to Computer and

Network Security
Module: Program Vulnerabilities

CSE543 - Introduction to Computer and Network Security Page

Programming
• Why do we write programs?
‣ Function

• What functions do we enable via our programs?
‣ Some we want -- some we don’t need
‣ Adversaries take advantage of such “hidden” function

2

CSE543 - Introduction to Computer and Network Security Page

Some Attack Categories
• Control-flow Attacks
‣ Adversary directs program control-flow

• E.g., return address overwrite through buffer overflow

• Data Attacks
‣ Adversary exploits flaw to read/modify unexpected data

• E.g., critical variable overwrite through buffer overflow

• Code Injection Attacks
‣ Adversary tricks the program into executing their input

• E.g., SQL injection attacks

• Other types of attacks on unauthorized access (later)
• See CWE (http://cwe.mitre.org/)

3

http://cwe.mitre.org/
http://cwe.mitre.org/

CSE543 - Introduction to Computer and Network Security Page

Memory Errors
• Many attacks are possible because some programming

languages allow memory errors
‣ C and C++ for example

• A memory error occurs when the program allows an
access to a variable to read/write to memory beyond
what is allocated to that variable
‣ E.g., read/write beyond the end of a string
‣ Access memory next to the string

• Memory errors may be exploited to change the
program’s control-flow or data-flow or to allow
injection of code

4

CSE543 - Introduction to Computer and Network Security Page

A Simple Program
void myfunc()
{
 char string[16];
 printf("Enter a string\n");
 scanf(“%s”, string);
 printf(“You entered: %s\n”, string);
}
int main()
{
 myfunc();
}

5

CSE543 - Introduction to Computer and Network Security Page

What Happened?
• Brief refresher on program address space
‣ Stack -- local variables
‣ Heap -- dynamically allocated (malloc, free)
‣ Data -- global, uninitialized variables
‣ Text -- program code

6

Text
Data

Stack

Heap

CSE543 - Introduction to Computer and Network Security Page

What Happened?
• Stack Layout

7

myfunc() local vars
string[16]

saved frame pointer

return address

myfunc() parameters (void)

saved frame pointer

St
ac

k main() parameters(argc, argv)

return address

main() local vars

sghfjdsh

gjlkhgfd

jlkseghrueioshja

CSE543 - Introduction to Computer and Network Security Page

Exploiting Buffer Overflow
• Stack Layout

8

myfunc() local vars
string[16]

saved frame pointer

return address

myfunc() parameters (void)

saved frame pointer

St
ac

k main() parameters(argc, argv)

return address

main() local vars

address of string

more evil code

my evil code

CSE543 - Introduction to Computer and Network Security Page

Prevent Code Injection
• What if we made the stack non-executable?
‣ AMD NX-bit
‣ More general: W (xor) X

(DEP in Windows)

9

myfunc() local vars
string[16]

saved frame pointer

return address

myfunc() parameters (void)

pc of libc call()

arguments for
libc call

CSE543 - Introduction to Computer and Network Security Page

Protect the Return Address
• Stack Layout

10

myfunc() local vars
string[16]

saved frame pointer

return address

myfunc() parameters (void)

saved frame pointer

main() parameters(argc, argv)

return address

main() local vars

CANARY

• “Canary” on the stack
‣ Random value placed

between the local vars
and the return address

‣ If canary is modified,
program is stopped

• Have we solved buffer
overflows?

CSE543 - Introduction to Computer and Network Security Page

Canary Shortcomings
• Stack Layout

11

myfunc() local vars
string[16]

saved frame pointer

return address

myfunc() parameters (void)

saved frame pointer

main() parameters(argc, argv)

return address

main() local vars

CANARY

• Other local variables?
• Frame pointers?
• Anything left

unprotected on stack
can be used to launch
attacks

• Not possible to protect
everything
• Varargs
• Structure members
• Performance

???
???

CSE543 - Introduction to Computer and Network Security Page

A Simple Program

int authenticated = 0;
char packet[1000];

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

12

CSE543 - Introduction to Computer and Network Security Page

A Simple Program

int authenticated = 0;
char packet[1000];

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

13

What if packet is only
1004 bytes?

char packet[1000]

saved frame pointer

return address

myfunc() parameters

CANARY

int authenticated

CSE543 - Introduction to Computer and Network Security Page

Overflow of Local Variables
• Don’t need to modify return address
‣ Local variables may affect control

• What kinds of local variables would impact control?
‣ Ones used in conditionals (example)
‣ Function pointers

• What can you do to prevent that?

14

CSE543 - Introduction to Computer and Network Security Page

A Simple Program

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

15

What if we allocate the
packet buffer on the heap?

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• Overflows on heap also possible

• “Classical” heap overflow corrupts
metadata
‣ Heap metadata maintains chunk size,

previous and next pointers, ...

• Heap metadata is inline with
heap data

‣ And waits for heap management
functions (malloc, free) to
write corrupted metadata to
target locations

16

char *packet = malloc(1000)

packet[1000] = ‘M’;

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

17

• Heap allocators maintain a doubly-linked list of allocated
and free chunks

• malloc() and free() modify this list

http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf
http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• free() removes a chunk from allocated list

• By overflowing chunk2, attacker controls bk and fd
‣ Controls both where and what data is written!

• Arbitrarily change memory (e.g., function pointers)

18

chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk
chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• free() removes a chunk from allocated list

• By overflowing chunk2, attacker controls bk and fd
‣ Controls both where and what data is written!

• Arbitrarily change memory (e.g., function pointers)

19

v[chunk1+8]= chunk3
v[chunk3+12] = chunk1

chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• By overflowing chunk2, attacker controls bk and fd
‣ Controls both where and what data is written!

• Assign chunk2->fd to value to want to write

• Assign chunk2->bk to address X (where you want to write)

• Less an offset of the fd field in the structure

• Free() removes a chunk from allocated list

• What’s the result?

20

chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• By overflowing chunk2, attacker controls bk and fd
‣ Controls both where and what data is written!

• Assign chunk2->fd to value to want to write

• Assign chunk2->bk to address X (where you want to write)

• Less an offset of the fd field in the structure

• Free() removes a chunk from allocated list

• What’s the result?
• Change a memory address to a new pointer value (in data)

21

chunk2->bk->fd = chunk2->fd

 addrX->fd = value

chunk2->fd->bk = chunk2->bk

 value->bk = addrX

chunk2->bk->fd = chunk2->fd

 => addrX+8 = value

If adversary wants to write
value 0xdeadbeef to address

0xbffffffc, she writes

chunk2->fd = 0xdeadbeef

chunk2->bk = 0xbffffffc - 8

CSE543 - Introduction to Computer and Network Security Page

Overflow Defenses
• Address space randomization
‣ Make it difficult to predict where a particular program

variable is stored in memory

• Rather than randomly locate every variable
‣ A simpler solution is to randomly offset each memory

region

• Address space layout randomization (ASLR)
‣ Stack and heap are located at different base addresses each

time the program is run
‣ NOTE: Always on a page offset, however, so limited in range

of bits available for randomization

• Also, works for buffer overflows

22

CSE543 - Introduction to Computer and Network Security Page

Other Heap Attacks
• Heap spraying
‣ Combat randomization by filling heap with allocated objects

containing malicious code
‣ Use another vulnerability to overwrite a function pointer to

any heap address, hoping it points to a sprayed object
‣ Heuristic defenses

• e.g., NOZZLE: If heap data is like
code, flag attack

• Use-after-free
‣ Type confusion

23

CSE543 - Introduction to Computer and Network Security Page

Heap Overflow Defenses
• Separate data and metadata
‣ e.g., OpenBSD’s allocator (Variation of PHKmalloc)

• Sanity checks during heap management

‣ Added to GNU libc 2.3.5

• Randomization
• Q. What are analogous defenses for stack overflows?

24

free(chunk2) -->
assert(chunk2->fd->bk == chunk2)
assert(chunk2->bk->fd == chunk2)

CSE543 - Introduction to Computer and Network Security Page

Another Simple Program

int size = BASE_SIZE;
char *packet = (char *)malloc(1000);
char *buf = (char *)malloc(1000+BASE_SIZE);

 strcpy(buf, FILE_PREFIX);
 size += PacketRead(packet);
 if (size >= 1000+BASE_SIZE)) {
 return(-1)
}
else

 strcat(buf, packet);
 fd = open(buf);
 }

25

Any problem with this
conditional check?

CSE543 - Introduction to Computer and Network Security Page

Integer Overflow
• Signed variables represent positive and negative values
‣ Consider an 8-bit integer: -128 to 127
‣ Weird math: 127+1 = ???

• This results in some strange behaviors
‣ size += PacketRead(packet)

• What is the possible value of size?

‣ if (size >= 1000+BASE_SIZE) … {
• What is the possible result of this condition?

• How do we prevent these errors?

26

CSE543 - Introduction to Computer and Network Security Page

Another Simple Program

int size = BASE_SIZE;
char *packet = (char *)malloc(1000);
char *buf = (char *)malloc(1000+BASE_SIZE);

 strcpy(buf, FILE_PREFIX);
 size += PacketRead(packet);
 if (size < 1000+BASE_SIZE) {
 strcat(buf, packet);
 fd = open(buf);
 printf(packet);
 }

27

Any problem with this
printf?

CSE543 - Introduction to Computer and Network Security Page

Format String Vulnerability
• Attacker control of the format string results in a format

string vulnerability
‣ printf is a very versatile function

• %s - dereferences (crash program)
‣ printf(“Hello %s”); //expects 2 args

• %x - print addresses (leak addresses, break ASLR)
‣ printf(“Hello %x %x %x”); // expects 4 arguments

• %n - write to address (arbitrarily change memory)
‣ printf (“12345%n”, &x); // writes 5 into x

• Never use
‣ printf(string);

• Instead, use
28

CSE543 - Introduction to Computer and Network Security Page

Take Away
• Programs have function
‣ Adversaries can exploit unexpected functions

• Vulnerabilities due to malicious input
‣ Subvert control-flow or critical data

• Buffer, heap, integer overflows, format string vulnerabilities

‣ Injection attacks
• Application-dependent

• If applicable, write programs in languages that eliminate
classes of vulnerabilities
‣ E.g., Type-safe languages such as Java

29

