
CSE543 - Introduction to Computer and Network Security Page

Asst. Prof. Syed Rafiul Hussain
Department of Computer Science and Engineering

1

CSE543 Computer Security
Module: Operating System Security

CSE543 - Introduction to Computer and Network Security Page

MAC in Commercial OSes
• We have learned that MAC is necessary to enforce security
• How do we add MAC enforcement effectively to a commercial

OS?

2

CSE543 - Introduction to Computer and Network Security Page

Security Concerns
• Various attacks were being launched against Windows systems,

essentially compromising all
• Concerns that Linux could also be prone

‣ “Inevitability of Failure” paper

• Any system with network facing daemons (e.g., sshd, ftpd,
sendmail, etc) running as root was likely vulnerable

‣ Why is that?

3

CSE543 - Introduction to Computer and Network Security Page

Security Concerns
• Various attacks were being launched against Windows systems,

essentially compromising all
• Concerns that Linux could also be prone

‣ “Inevitability of Failure” paper

• Any system with network facing daemons running as root
was likely vulnerable

‣ What can we do?

4

CSE543 - Introduction to Computer and Network Security Page

Approx. Secure OS
• Maybe Linux cannot be a “secure” OS, but perhaps we can

approximate a secure OS closely enough
‣ What is required to be a secure OS?

• Security Policy
‣ Info Flow or Least Privilege?

• Reference Monitor
‣ Complete Mediation, Tamperproof, Validation

• Formal Assurance
‣ Validate that OS with reference monitor

implementation enforces security policy
• Can we do this?

5

CSE543 - Introduction to Computer and Network Security Page

Approx. Secure OS
• Secure Linux Project - 2001
• Group of systems security researchers working on refactoring

various security features into Linux
‣ But, especially a reference monitor

• A variety of different projects were underway
‣ Argus Pitbull, Security-Enhanced Linux, Subdomain (AppArmor),

grsecurity, RSBAC, …

• Presented ideas to Linus
‣ All were different

‣ Each group argued that its idea was best

• What would you do if you were Linus?

6

CSE543 - Introduction to Computer and Network Security Page

Linux Security Modules
• “All problems in computer science problem can be solved by another

level of indirection”
‣ Attributed to Butler Lampson

• Linus asked for another level of indirection to host
access control enforcement
‣ And the Linux Security Modules project was born

7

CSE543 - Introduction to Computer and Network Security Page

Linux Security Modules
• Defines an authorization interface to enable a

chosen security module to make access control
decisions
• Focus on mediation
• Let LSM module implementations determine the

security policy and how they satisfy the reference
monitor concept

8

CSE543 - Introduction to Computer and Network Security Page

Reference Monitor
• Defines a set of requirements on reference

validation mechanisms
‣ To enforce access control policies correctly

• Complete mediation
‣ The reference validation mechanism must always be

invoked (before executing security-sensitive operations)
• Tamperproof
‣ The reference validation mechanism must be tamperproof

• Verifiable
‣ The reference validation mechanism must be small enough

to be subject to analysis and tests, the completeness of
which can be assured

9

CSE543 - Introduction to Computer and Network Security Page

Access Policy Enforcement
• A protection system uses a reference validation mechanism to

produce and evaluate authorization queries
‣ Interface: Mediate security-sensitive operations by building

authorization queries to evaluate

‣ Module: Determine relevant protection state entry (ACLs, capabilities)
to evaluate authorization query

‣ Manage: Manage the assignment of objects and subjects (processes) to
the protection state

• How do we know whether a reference validation mechanism is
correct?

10

CSE543 - Introduction to Computer and Network Security Page

Security-Sensitive Operations
• Broadly, operations that enable interaction among

processes that violate secrecy, integrity, availability
• Which of these are security-sensitive? Why?
‣ Read a file (read)
‣ Get the process id of a process (getpid)
‣ Read file metadata (stat)
‣ Fork a child process (fork)
‣ Get the metadata of a file you have already

opened? (fstat)
‣ Modify the data segment size? (brk)

• Require protection for all of CIA?
11

CSE543 - Introduction to Computer and Network Security Page

Linux Security Modules
• Reference validation mechanism for Linux

‣ Upstreamed in Linux 2.6

‣ Support modular enforcement - you choose

• SELinux, AppArmor, POSIX Capabilities, SMACK, ...

• 150+ authorization hooks

‣ Mediate security-sensitive operations on

• Files, dirs/links, IPC, network, semaphores, shared memory, ...

‣ Variety of operations per data type

• Control access to read of file data and file metadata separately

• Hooks are restrictive - in addition to DAC security

12

CSE543 - Introduction to Computer and Network Security Page

Linux Security Modules

13
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

LSM Hooks

13

CSE543 - Introduction to Computer and Network Security Page

Linux Security Modules

• Register (install) module

• Load policy (open and write to special file)

• Produce authorization queries at hooks

14

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

LSM API

14

CSE543 - Introduction to Computer and Network Security Page

LSM Hook Architecture

•
15

CSE543 - Introduction to Computer and Network Security Page

Linux Security Modules

• Attacks on “register”

• Attacks on “install policy”

• Attacks on “system calls”

16

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

LSM API

14

CSE543 - Introduction to Computer and Network Security Page

Linux Security Modules

• To prevent attacks on registration

• And attacks on function pointers of LSM

• LSMs are now statically compiled into the kernel

17

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

LSM API

14

CSE543 - Introduction to Computer and Network Security Page

LSM & Reference Monitor
• Does LSM satisfy reference monitor concept?

18

CSE543 - Introduction to Computer and Network Security Page

LSM & Reference Monitor
• Does LSM satisfy reference monitor concept?
‣ Tamperproof

• Can MAC policy be tampered?
• Can kernel be tampered?

19

CSE543 - Introduction to Computer and Network Security Page

Access Control Administration
There are two central ways to manage a policy

1. Discretionary - Object “owners” define policy
‣ Users have discretion over who has access to what objects and when

(trusted users)

‣ Canonical example, the UNIX filesystem
– RWX assigned by file owners

2. Mandatory - Environment defines policy
‣ OS distributor and/or administrators define a system policy that

cannot be modified by normal users (or their processes)

‣ Typically, information flow policies are mandatory

‣ More later…

20

CSE543 - Introduction to Computer and Network Security Page

LSM & Reference Monitor
• Does LSM satisfy reference monitor concept?
‣ Tamperproof

• Can MAC policy be tampered?
• Can kernel be tampered?

‣ Verifiable
• How large is kernel?
• Can we perform complete testing?

21

CSE543 - Introduction to Computer and Network Security Page

LSM & Reference Monitor
• Does LSM satisfy reference monitor concept?
‣ Tamperproof

• Can MAC policy be tampered?
• Can kernel be tampered?

‣ Verifiable
• How large is kernel?
• Can we perform complete testing?

‣ Complete Mediation
• What is a security-sensitive operation?
• Do we mediate all paths to such operations?

22

CSE543 - Introduction to Computer and Network Security Page

LSM & Complete Mediation
• What is a security-sensitive operation?
‣ Instructions? Which?
‣ Structure member accesses? To what data?
‣ Data types whose instances may be controlled?

• Inodes, files, IPCs, tasks, ...
• Approaches
‣ Mediation: Check that authorization hook dominates all

control-flow paths to structure member access on
security-sensitive data type

‣ Consistency: Check that every structure member access
that is mediated once is always mediated
• Several bugs found - some years later

23

CSE543 - Introduction to Computer and Network Security Page

LSM & Complete Mediation
• Security-sensitive operations
‣ Instructions? Which?
‣ Structure member accesses? To what data?
‣ Data types whose instances may be controlled

• Inodes, files, IPCs, tasks, ...
• Approaches
‣ Mediation: Check that authorization hook dominates all

control-flow paths to structure member access on
security-sensitive data type

‣ Consistency: Check that every structure member access
that is mediated once is always mediated
• Several bugs found - some years later

24Systems and Internet Infrastructure Security (SIIS) Laboratory Page

LSM Analysis
•  Static analysis of Zhang, Edwards,

and Jaeger [USENIX Security
2002]!

‣  Based on a tool called CQUAL!

•  Found a TOCTTOU bug!

‣  Authorize filp in sys_fcntl!

‣  But pass fd again to fcntl_getlk!

•  Many supplementary analyses
were necessary to support
CQUAL!

21

/* from fs/fcntl.c */

long sys_fcntl(unsigned int fd,

unsigned int cmd,

unsigned long arg)

{

struct file * filp;

...

filp = fget(fd);

...

err = security ops->file ops

->fcntl(filp, cmd, arg);

...

err = do fcntl(fd, cmd, arg, filp);

...

}

static long

do_fcntl(unsigned int fd,

unsigned int cmd,

unsigned long arg,

struct file * filp) {

...

switch(cmd){

...

case F_SETLK:

err = fcntl setlk(fd, ...);

...

}

...

}

/* from fs/locks.c */

fcntl_getlk(fd, ...) {

struct file * filp;

...

filp = fget(fd);

/* operate on filp */

...

}

Figure 8: Code path from Linux 2.4.9 containing an ex-

ploitable type error.

THREAD-A:

(1) fd1 = open("myfile", O_RDWR);

(2) fd2 = open("target_file", O_RDONLY);

(3) fcntl(fd1, F_SETLK, F_WRLOCK);

KERNEL-A (do_fcntl):

(4) filp = fget(fd1);

(5) security_ops->file_ops

->fcntl (fd1);

(6) fcntl_setlk(fd1,cmd)

THREAD-B:

/* this closes fd1, dups fd2,

* and assigns it to fd1.

*/

(7) dup2(fd2, fd1);

KERNEL-A (fcntl_setlk)

/* this filp is for the target

* file due to (7).

*/

(8) filp = fget (fd1)

(9) lock file

Figure 9: An example exploit.

chance of race conditions when the data structures are

not properly synchronized, which may result in poten-

tial exploits.

Here we present a type error of this kind. Many se-

curity checks that intend to protect the inode structure

are performed on the dentry data structure. For exam-

ple, the following code does the permission check on the

dentry structure, but does the “set attribute” operation

on the inode structure.

/* from fs/attr.c */

...

security_ops->inode_ops

->setattr(dentry, attr);

...

inode = dentry->d_inode;

inode_setattr(inode, attr);

...

It is also quite common in Linux to check on the file

data structure and operate on the inode data structure.

CSE543 - Introduction to Computer and Network Security Page

LSM Enforcement
• Several LSMs have been deployed
‣ Most prominent: AppArmor, SELinux, Smack, TOMOYO

• The most comprehensive is SELinux
‣ Used by RedHat Fedora and some others

25

CSE543 - Introduction to Computer and Network Security Page

LSM Enforcement
• Several LSMs have been deployed
‣ Most prominent: AppArmor, SELinux, Smack, TOMOYO

• The most comprehensive is SELinux
‣ Created by the NSA - Result of many years work
‣ Used by RedHat Fedora and some others

26

CSE543 - Introduction to Computer and Network Security Page

SELinux Challenges
• (1) Protection state definition
‣ Per program access control policy
‣ Thousands of rules - produced by runtime auditing

• (2) Assigning objects and subjects (processes) to labels
‣ Policy module per program on install
‣ Control how a new program obtains its label

• Different approach to setuid problem

27

CSE543 - Introduction to Computer and Network Security Page

Setuid Problem
• In Setuid, program runs with UID of file owner
‣ Usually root, so too many permissions

• SELinux - run with permissions of program
‣ Anyone can start any setuid program

• Limit to authorized processes by label

28

CSE543 - Introduction to Computer and Network Security Page

LSM Enforcement
• Several LSMs have been deployed
‣ Most prominent: AppArmor, SELinux, Smack, TOMOYO

• The most comprehensive is SELinux
‣ Created by the NSA - Result of many years work
‣ Used by RedHat Fedora and some others

29Systems and Internet Infrastructure Security (SIIS) Laboratory Page

SELinux Transition State
•  For user to run passwd program

‣  Only passwd should have permission to modify /etc/shadow

•  Need permission to execute the passwd program

‣  allow user_t passwd_exec_t:file execute (user can exec /usr/bin/passwd)

‣  allow user_t passwd_t:process transition (user gets passwd perms)

•  Must transition to passwd_t from user_t

‣  allow passwd_t passwd_exec_t:file entrypoint (run w/ passwd perms)

‣  type_transition user_t passwd_exec_t:process passwd_t

•  Passwd can the perform the operation

‣  allow passwd_t shadow_t:file {read write} (can edit passwd file)

10

CSE543 - Introduction to Computer and Network Security Page

Take Away
• Goal: Build authorization into operating systems
‣ Multics and Linux

• Requirements: Reference monitor
‣ Satisfy reference monitor concept

• Multics
‣ Hierarchical Rings for Protection

‣ Call/Access Bracket Policies (in addition to MLS)

• Linux
‣ Did not enforce security (DAC, Setuid, root daemons)

‣ So, the Linux Security Modules framework was added

‣ Approximates reference monitor assuming network threats only
-- some challenges in ensuring complete mediation

30

