g dystem decurit

CSE543 - Introduction to Computer and Network Security

MAC in Commercial OSes @) rernstate

* We have learned that MAC is necessary to enforce security

* How do we add MAC enforcement effectively to a commercial
OS?

2

CSE543 - Introduction to Computer and Network Security

Secu rity COncernS @ PennState

* Various attacks were being launched against Windows systems,
essentially compromising all

* Concerns that Linux could also be prone
» “Inevitability of Failure” paper

* Any system with network facing daemons (e.g., sshd, ftpd,
sendmail, etc) running as root was likely vulnerable

» Why is that?

CSE543 - Introduction to Computer and Network Security

Secu rity COncernS @ PennState

* Various attacks were being launched against Windows systems,
essentially compromising all

* Concerns that Linux could also be prone
» “Inevitability of Failure” paper

* Any system with network facing daemons running as root
was likely vulnerable

» What can we do!?

CSE543 - Introduction to Computer and Network Security

Approx. Secure OS (@) pennstare

* Maybe Linux cannot be a “secure” OS, but perhaps we can
approximate a secure OS closely enough

» What is required to be a secure OS!?
» Security Policy
» Info Flow or Least Privilege!?

Reference Monitor
» Complete Mediation, Tamperproof, Validation
* Formal Assurance

» Validate that OS with reference monitor
implementation enforces security policy

 Can we do this?

CSE543 - Introduction to Computer and Network Security

Approx. Secure OS (@) pennstare

* Secure Linux Project - 2001

* Group of systems security researchers working on refactoring
various security features into Linux

» But, especially a reference monitor
* A variety of different projects were underway

» Argus Pitbull, Security-Enhanced Linux, Subdomain (AppArmor),
grsecurity, RSBAC, ...

* Presented ideas to Linus
» All were different

» Each group argued that its idea was best

* What would you do if you were Linus!?

CSE543 - Introduction to Computer and Network Security

Linux Security MOdUIeS @PennState

 “All problems in computer science problem can be solved by another
level of indirection”

» Attributed to Butler Lampson

 Linus asked for another level of indirection to host
access control enforcement

» And the Linux Security Modules project was born

Linux Security Modules

~H
11

LEW Moduke

CSE543 - Introduction to Computer and Network Security

Linux Security MOdUIeS @PennState

 Defines an authorization interface to enable a

chosen security module to make access control
decisions

* Focus on mediation

* Let LSM module implementations determine the

security policy and how they satisfy the reference
monitor concept

Linux Security Modules

-~
11

LEM Modue

CSE543 - Introduction to Computer and Network Security

Reference Monitor (@) pennstate

* Defines a set of requirements on reference
validation mechanisms

» To enforce access control policies correctly

* Complete mediation

» The reference validation mechanism must always be
invoked (before executing security-sensitive operations)

* Tamperproof
» The reference validation mechanism must be tamperproof

* Verifiable

» The reference validation mechanism must be small enough
to be subject to analysis and tests, the completeness of
which can be assured

CSE543 - Introduction to Computer and Network Security

Access Policy Enforcement @) remstare

A protection system uses a reference validation mechanism to
produce and evaluate authorization queries
» Interface: Mediate security-sensitive operations by building
authorization queries to evaluate

» Module: Determine relevant protection state entry (ACLs, capabilities)
to evaluate authorization query

» Manage: Manage the assighment of objects and subjects (processes) to
the protection state

* How do we know whether a reference validation mechanism is
correct!

CSE543 - Introduction to Computer and Network Security Page 10

Security-Sensitive Operations (@) rernstate

* Broadly, operations that enable interaction among
processes that violate secrecy, integrity, availability

* Which of these are security-sensitive! VWhy?

4

v VvV Vv v

4

Read a file (read)

Get the process id of a process (getpid)
Read file metadata (stat)

Fork a child process (fork)

Get the metadata of a file you have already
opened? (fstat)

Modify the data segment size! (brk)

* Require protection for all of CIA?

Linux Security MOdUIeS @PennState

e Reference validation mechanism for Linux

» Upstreamed in Linux 2.6
» Support modular enforcement - you choose

« SELinux,AppArmor, POSIX Capabilities, SMACK, ...

|50+ authorization hooks

» Mediate security-sensitive operations on

* Files, dirs/links, IPC, network, semaphores, shared memory, ...

» Variety of operations per data type

* Control access to read of file data and file metadata separately

* Hooks are restrictive - in addition to DAC security

CSE543 - Introduction to Computer and Network Security Page 12

Linux Security MOdU|eS @PennState

[gecu rity check fu nctlorj

N\

linux/fs/read write.c:

ssize t vfs read(..) {

ret = security file permission(file, ..);
if (l!ret) { ..
ret = file->f op->read(file, ..); ..

S
} \
\ .
\
\
\
e \

' Security sensitive operation |

CSE543 - Introduction to Computer and Network Security Page 13

Linux Security MOdUIeS @PennState

Load Register/
Syscall Policy Unregister

T

4 N
: -l
Object(@) Linux Kernel LSM
_ ,

- I\CSIDLCI \IIIDLdII} 1H1IVUuUIcC
* Load policy (open and write to special file)

* Produce authorization queries at hooks

CSE543 - Introduction to Computer and Network Security

LSM Hook Architecture

@ PennState

User Process

User Space

i file path, operations

open System Call

v

Lookup inode

v

DAC checks

.

'

Access inode

CSE543 - Introduction to Computer and Network Security

LSM hook —p

Kernel Space

Process file path down to inode
(through directories and links)

LSM

Is user process
allowed to perform
operations on inode?

\. J

Linux Security MOdUIeS @PennState

Load Register/
Syscall Policy Unregister

T

4 N
: -l
Object(@) Linux Kernel LSM
_ ,

T MLLACiND VIl | CSIDLCI

» Attacks on “install policy”

» Attacks on “system calls”

CSE543 - Introduction to Computer and Network Security

Linux Security MOdUIeS @PennState

Load Register/
Syscall Policy Unregister

T

4 N
: -l
Object@>) Linux Kernel LSM
. y,

- 19 |JI CVCIIL alltaCiND VIl | CSIDLI alivili

* And attacks on function pointers of LSM

* LSMs are now statically compiled into the kernel

CSE543 - Introduction to Computer and Network Security

LSM & Reference Monitor (@) pennstate

* Does LSM satisfy reference monitor concept!

LSM & Reference Monitor (@) pennstate

* Does LSM satisfy reference monitor concept!
» Tamperproof

* Can MAC policy be tampered!?

* Can kernel be tampered?

Access Control Administration @) remstte

There are two central ways to manage a policy

1. Discretionary - Object “owners” define policy

» Users have discretion over who has access to what objects and when
(trusted users)

» Canonical example, the UNIX filesystem
— RWX assigned by file owners
2. Mandatory - Environment defines policy

» OS distributor and/or administrators define a system policy that
cannot be modified by normal users (or their processes)

» Typically, information flow policies are mandatory

» More later...

CSE543 - Introduction to Computer and Network Security

LSM & Reference Monitor (@) pennstate

* Does LSM satisfy reference monitor concept!
» Tamperproof
* Can MAC policy be tampered!?
* Can kernel be tampered?
» Verifiable

* How large is kernel?

* Can we perform complete testing?

LSM & Reference Monitor (@) pennstate

* Does LSM satisfy reference monitor concept!
» Tamperproof
* Can MAC policy be tampered!?
* Can kernel be tampered?
» Verifiable
* How large is kernel?
* Can we perform complete testing?
» Complete Mediation
* What is a security-sensitive operation!?

* Do we mediate all paths to such operations?

CSE543 - Introduction to Computer and Network Security

LSM & Complete Mediation (@) pennstae

* What is a security-sensitive operation?

» Instructions? Which?
» Structure member accesses! To what data?
» Data types whose instances may be controlled?

* |nodes, files, IPCs, tasks, ...

* Approaches

» Mediation: Check that authorization hook dominates all
control-flow paths to structure member access on

security-sensitive data type

» Consistency: Check that every structure member access
that is mediated once is always mediated

* Several bugs found - some years later

CSE543 - Introduction to Computer and Network Security

LSM & Complete Mediation (@) pennstae

e Static analysis of Zhang, Edwards, """ uiin
and Jaeger [USENIX Security o
2002] T,

err = do_fcntl(fd, cmd, arg, filp);

» Based on a tool called CQUAL

e Founda TOCTTOU bug T
4 Aut 1orize ﬁlp in Sys_fcntl “ierr;fcnt;setlk(fd, ce)i

» But pass fd again to fcntl_getlk

/* from fs/locks.c */
fentl _getlk(fd, ...) {
struct file * filp;

e Many supplementary analyses

/* operate on filp */ S

were necessary to support

Figure 8: Code path from Linux 2.4.9 containing an ex-

< Q l ' A L ploitable type error.

e = I i

CSE543 - Introduction to Computer and Network Security

LSM Enforcement (@) Pennstate

 Several LSMs have been deployed
» Most prominent: AppArmor, SELinux, Smack, TOMOYO

* The most comprehensive is SELinux

» Used by RedHat Fedora and some others

LSM Enforcement (@) Pennstate

 Several LSMs have been deployed

» Most prominent: AppArmor, SELinux, Smack, TOMOYO
* The most comprehensive is SELinux

» Created by the NSA - Result of many years work

» Used by RedHat Fedora and some others

SELinux

SELanX Cha”enges @ PennState

* (1) Protection state definition
» Per program access control policy
» Thousands of rules - produced by runtime auditing
* (2) Assigning objects and subjects (processes) to labels
» Policy module per program on install
» Control how a new program obtains its label

* Different approach to setuid problem

SELiNnux
Page 27

Setuid Problem (@) Pennstate

* In Setuid, program runs with UID of file owner
» Usually root, so too many permissions
* SELinux - run with permissions of program
» Anyone can start any setuid program

* Limit to authorized processes by label

CSE543 - Introduction to Computer and Network Security

PENNSTATE

SELinux Transition State s

e For user to run passwd program
» Only passwd should have permission to modify /etc/shadow
e Need permission to execute the passwd program
» allow user_t passwd_exec_t:file execute (user can exec /usr/bin/passwd)
» allow user_t passwd_t:process transition (user gets passwd perms)
e Must transition to passwd_t from user_t
» allow passwd_t passwd_exec_t:file entrypoint (run w/ passwd perms)
» type_transition user_t passwd_exec_t:process passwd_t
e Passwd can the perform the operation

» allow passwd_t shadow_t:file {read write} (can edit passwd file)

Systems and Internet Infrastructure Security (SIIS) Laboratory

Ta ke AWay @ PennState

Goal: Build authorization into operating systems

» Multics and Linux

* Requirements: Reference monitor

» Satisfy reference monitor concept

* Multics
» Hierarchical Rings for Protection
» Call/Access Bracket Policies (in addition to MLS)
* Linux
» Did not enforce security (DAC, Setuid, root daemons)
» So, the Linux Security Modules framework was added

» Approximates reference monitor assuming network threats only
-- some challenges in ensuring complete mediation

CSE543 - Introduction to Computer and Network Security

