

CSE543 Introduction to Computer and Network Security Module: Malware

Asst. Prof. Syed Rafiul Hussain

Malware

- Adversaries aim to get code running on your computer that performs tasks of their choosing
 - This code is often called malware
- Two main challenges for adversaries
 - How do they get trick you into getting their malware onto your computer?
 - How do they get their malware to run?
- Other practical concerns of malware distribution
 - Spread malware to as many systems as possible
 - Hide malware execution
 - Make malware difficult to remove

Viruses

- Is an attack that modifies programs on your host
- Approach
 - I. Download a program ...
 - 2. Run the program ...
 - 3. Searches for binaries and other code (firmware, boot sector) that it can modify ...
 - 4. Modifies these programs by adding code that the program will run

• What can an adversary do with this ability?

- How does it work?
 - Modify the file executable format

Figure 1. Overall structure of a Portable Executable file image.

Viruses

- How does it work?
 - Modify the file executable format
- What types of modifications?
 - Overwrite the "entry point"
 - Add code anywhere and change "address of entry point"
 - Add a new section header
 - Patch into a section
 - Add jump instruction to exploit
- All these were well known by 90s

MS-DOS MZ Header
MS-DOS Real-Mode Stub Probram
PE File Signature
PE File Header
PE File Optional Header
.text Section Header
.bss Section Header
.rdata Section Header
.debug Section Header
.text section
.bss Section
.rdata Section
.debug section

Figure 1. Overall structure of a Portable Executable file image.

Virus Infection

- Keeping with the virus analogy, getting a virus to run on a computer system is called infecting the system
 - Program that attaches itself to another (usually trusted, aka. benign program)

Virus Infection

- Keeping with the virus analogy, getting a virus to run on a computer system is called infecting the system
 - Program that attaches itself to another (usually trusted program)
 - How can an adversary infect another's computer?
 - Tricking users into downloading their malware
 - Need to also trick the user into running the malware
 - Exploiting a vulnerable program to inject code
 - By exploiting a running process, the malware can run directly

An Easier Way

- Don't really need to modify existing executable to download and run code on a remote computer
 - Since the mid-90s systems have provided methods for you to get a remote system to run your code
 - First, email attachments, then client-side scripts
 - Enabled by phishing attacks (more later)
- In general, the idea is to get the user to run your code (in email or via web link)
 - Either run directly
 - Or exploit a vulnerability in the platform (e.g., browser)

Melissa Virus (1999)

- Came through email including an MS Word attachment
- Emailed itself to the first 50 people in the Outlook's contact list
- Infected ~20% of computers, \$1.2B in damages.

Important Message From Florian Fernweh Datei Bearbeiten Ansicht Extras Verfassen ?	- 🗆 ×
Von:Florian Fernweh (262996)Datum:Dienstag, 30. März 1999 17:46An:Florian_Fernweh@gmx.deBetreff:Important Message From Florian Fernweh	Ø
Here is that document you asked for don't show anyone else ;	-)
list.doc (41,0 KB) ATT00011.txt (156 Byte)	
image credit: http://www.heise.de	

Worms

- A worm is a self-propagating program.
- As relevant to this discussion
 - I. Exploits some vulnerability on a target host (e.g., buffer overflow)...
 - 2. (often) embeds itself into a host ...
 - 3. Searches for other vulnerable hosts without human interventions...
 - A worm takes advantage of file or information transport features on your system, which allows it to travel unaided.

4. Goto (I)

• Sometimes used to create botnets

The Danger

- What makes worms so dangerous is that infection grows at an exponential rate
 - A simple model:
 - S (search) is the time it takes to find vulnerable host
 - *i* (infect) is the time is take to infect a host
 - Assume that t=0 is the worm outbreak, the number of hosts infected at t=j is

2(j/(s+i))

▶ For example, if (s+i = 1), what is it at time j=32?

The result

5,000,000,000 -	
4 500 000 000	
4,500,000,000 -	
4,000,000,000 -	
3,500,000,000 -	
3,000,000,000 -	
2,500,000,000	
2,000,000,000 -	
1,500,000,000 -	
1,000,000,000 -	
500,000,000 -	
_	
0	

The Morris Worm (1988)

- Robert Morris, a 23 doctoral student from Cornell
 - Wrote a small (99 line) program
 - Launched on November 3rd, 1988
 - Simply disabled the Internet
- How it did it
 - Exploited a buffer overflow in the "finger" daemon
 - Used local /etc/hosts.equiv, .rhosts, .forward to identify hosts that can be accessed without passwords
 - Reads /etc/password to perform password cracking
 - Scanned local interfaces for network information
 - Covered its tracks (set is own process name to sh, prevented accurate cores, re-forked itself)
- Morris claimed the worm was intended to gauge the size of the internet but accidentally replicated itself.

Code Red

- Exploited a Microsoft IIS web-server vulnerability
 - A vanilla buffer overflow (allows adversary to run code)
 - Scans for vulnerabilities over random IP addresses
 - Sometimes would deface the served website
- July 16th, 2001 outbreak
 - CRvI- contained bad randomness (fixed IPs searched)
 - CRv2 fixed the randomness,
 - added DDOS of www.whitehouse.gov
 - Turned itself off and on (spread 1st-19th of month, attack 20-27th, dormant 28-31st)
 - August 4 Code Red II
 - Different code base, same exploit
 - Added local scanning (biased randomness to local IPs)
 - Killed itself in October of 2001

Worms and infection

- The effectiveness of a worm is determined by how good it is at identifying vulnerable machines
 - Morris used local information at the host
 - Code Red used what?
- Multi-vector worms use lots of ways to infect
 - E.g., network, email, drive by downloads, etc.
 - Others' backdoors... another worm, Nimda did this
- Lots of scanning strategies
 - Signpost scanning (using local information, e.g., Morris)
 - Random IP good, but waste a lot of time scanning "dark" or unreachable addresses (e.g., Code Red)
 - Permutation scanning instance is given part of IP space
- What is the fastest way to infect as many machines as possible?

Other scanning strategies

- The doomsday worm: a flash worm
 - Create a hit list of all vulnerable hosts
 - Staniford et al. argue this is feasible
 - Would contain a 48MB list
 - Do the infect and split approach
 - Use a zero-day vulnerability

Result: saturate the Internet in less than 30 seconds!

Worms: Defense Strategies 🐼 PennState

- (Network) Packet Filtering: look for unnecessary or unusual communication patterns, then drop them on the floor
 - This is the dominant method, sophisticated
- (Network) Heterogeneity: use more than one vendor for your networks

- (Host) Patch Your Systems (auto): most, if not all, large worm outbreaks have exploited known vulnerabilities (with patches)
- Network and Host Intrusion Detection Systems (more later)

Modern Malware

- Now malware has a whole other level of sophistication
- Now we speak of ...
 - Advanced Persistent Malware
 - Target specific organizations for a singular objective
 - Attempt to gain a foothold in the environment (common tactics include phishing emails)
 - Escalate privileges use exploits and password cracking to acquire administrator privileges
 - Use the compromised systems as access into the target network
 - Collect information on surrounding infrastructure.
 - Move laterally and deploy additional tools that hell fulfill the attack objective
 - Cover tracks to maintain access for future initiatives

Advanced

- More like a software engineering approach
 - Growing demand for "reliable" malware
 - Want malware to feed into existing criminal enterprise
 - Online criminals use online banking too
- Malware ecosystem
 - Measuring Pay-per-Install:The Commoditization of Malware Distribution, USENIX 2011
 - Tool kits
 - Sharing of exploit materials
 - Combine multiple attack methodologies
- Not hard to find DIY kits for malware

Malware Lifecycle

Persistent

- Malware writers are focused on specific task
 - Criminals willing to wait for gratification
 - Cyberwarfare
- Low-and-slow
 - Can exfiltrate secrets at a slow rate, especially if you don't need them right away

• Plus can often evade or disable defenses

Threat

- Coordinated effort to complete objective
 - Not just for kicks anymore
- Well-funded
 - There is money to be made
 - ... At least that is the perception

Example: Sirefef

- Windows malware Trojan to install rootkit
 - See http://antivirus.about.com/od/virusdescriptions/a/What-Is-Sirefef-Malware.htm
- Attack: "Sirefef gives attackers full access to your system"
 - Runs as a Trojan software update (GoogleUpdate)
 - Runs on each boot by setting a Windows registry entry
 - Some versions replace device drivers
- Downloads code to run a P2P communication
 - Steal software keys and crack password for software piracy
 - Downloads other files to propagate the attack to other computers

Example: Sirefef

- Windows malware Trojan to install rootkit
 - See http://antivirus.about.com/od/virusdescriptions/a/What-Is-Sirefef-Malware.htm
- Stealth: "while using stealth techniques in order to hide its presence"
 - "altering the internal processes of an <u>operating system</u> so that your <u>antivirus</u> and <u>anti-spyware</u> can't detect it."
 - Disable: Windows firewall, Windows defender
 - Changes: Browser settings
 - Join bot
- Microsoft: "This list is incomplete"

• Symantec's slides

Real world example: Stuxnet Worm

<u>https://securelist.com/myrtus-and-guava-episode-3/29616/</u>

• Symantec's slides

Stuxnet: Overview

- June 2010: A worm targeting Siemens WinCC industrial control system.
- Targets high speed variable-frequency programmable logic motor controllers from just two vendors: Vacon (Finland) and Fararo Paya (Iran)
- Only when the controllers are running at 807Hz to 1210Hz. Makes the frequency of those controllers vary from 1410Hz to 2Hz to 1064Hz.
- http://en.wikipedia.org/wiki/Stuxnet

2

• Symantec's slides

Timeline

- 2009 June: Earliest Stuxnet seen
 - Does not have signed drivers
- 2010 Jan: Stuxnet driver signed

- With a valid certificate belonging to Realtek Semiconductors
- 2010 June: Virusblokada reports W32.Stuxnet
 - Verisign revokes Realtek certificate
- 2010 July: Anti-virus vendor Eset identifies new Stuxnet driver
 - With a valid certificate belonging to JMicron Technology Corp
- 2010 July: Siemens report they are investig SCADA systems
 - Verisign revokes JMicron certificate

• Symantec's slides

Possible Attack Scenario (Conjecture)

- Reconnaissance
 - Each PLC is configured in a unique manner
 - Targeted ICS's schematics needed
 - Design docs stolen by an insider?
 - Retrieved by an early version of Stuxnet
 - Stuxnet developed with the goal of sabotaging a specific set of ICS.
- Development
 - Mirrored development Environment needed
 - ICS Hardware
 - PLC modules
 - PLC development software
 - Estimation
 - 6+ man-years by an experienced and well funded development team

• Symantec's slides

Attack Scenario (2)

- The malicious binaries need to be signed to avoid suspicion
 - Two digital certificates were compromised.
 - High probability that the digital certificates/keys were stolen from the companies premises.
 - Realtek and JMicron are in close proximity.
- Initial Infection
 - Stuxnet needed to be introduced to the targeted environment
 - Insider
 - Third party, such as a contractor
 - Delivery method
 - USB drive
 - Windows Maintenance Laptop
 - Targeted email attack

• Symantec's slides

Attack Scenario (3)

- Infection Spread
 - Look for Windows computer that program the PLC's
 - The Field PG are typically not networked
 - Spread the Infection on computers on the local LAN
 - Zero-day vulnerabilities
 - Two-year old vulnerability
 - Spread to all available USB drives
 - When a USB drive is connected to the Field PG, the Infection jumps to the Field PG
 - The "airgap" is thus breached

• Symantec's slides

Attack Scenario (4)

- Target Infection
 - Look for Specific PLC
 - Running Step 7 Operating System
 - Change PLC code
 - Sabotage system
 - Hide modifications
 - Command and Control may not be possible
 - Due to the "airgap"
 - Functionality already embedded

Take Away

- Malware is now very functional and effective
 - Tools for building and hiding malware from detection
 - Malware can be difficult to notice much less detect and remove
- Malware leverages multiple vulnerabilities to escalate privileges and disable defenses
 - Getting code running on the host enables control of host
 - And there are lots of ways to download code to hosts

• What are the nature of the vulnerabilities? Next time