

CSE543 - Computer Security Module: Intrusion Detection

Asst. Prof. Syed Rafiul Hussain

Intrusion

- An authorized action ...
- that exploits a vulnerability ...
- that causes a compromise ...
- and thus a successful attack.

• Authentication and Access Control Are No Help!

Example Intrusions

Network

- Malformed (and unauthenticated) packet
- Let through the firewall
- Reaches the network-facing daemon
- Can we detect intrusions from packet contents?

• Host

- Input to daemon
- Exploits a vulnerability (buffer overflow)
- Injects attacker or reuses program code
- Performs malicious action
- Can we detect intrusions from process behavior?

Intrusion Detection (def. by Forrest) v PennState

- An IDS system finds intrusions
 - "The IDS approach to security is based on the assumption that a system will not be secure, but that violations of security policy (intrusions) can be detected by monitoring and analyzing system behavior." [Forrest 98]
 - However you do it, it requires
 - Training the IDS (*training*)
 - Looking for intrusions (*detection*)

• This is active area of computer security, that has led to lots of new tools, applications, and an entire industry

Intrusion Detection Systems

- IDS's claim to detect adversary when they are in the act of attack
 - Monitor operation
 - Trigger mitigation technique on detection
 - Monitor: Network or Host (Application) events
- A tool that discovers intrusions "after the fact" are called *forensic analysis* tools
 - E.g., from system logfiles
- IDS's really refer to two kinds of detection technologies
 - Anomaly Detection
 - Misuse Detection

PennState

Anomaly Detection

- Compares profile of normal systems operation to monitored state
 - Hypothesis: any attack causes enough deviation from profile (generally true?)
- Q: How do you derive normal operation?
 - Al: learn operational behavior from training data
 - Expert: construct profile from domain knowledge
 - Black-box analysis (vs. white or grey?)
- Q: Is normal the same for all environments?
- Pitfall: false learning

Misuse Detection

- Profile known attacks
 - Monitor operational state for known attack behaviors
 - Hypothesis: attacks of the same kind has enough similarity to distinguish from normal behavior
 - This is largely pattern matching
- Q:Where do "known attack patterns" come from?
 - Record: examples of known attacks
 - Expert: domain knowledge
 - Al: Learn by negative and positive feedback

The "confusion matrix"

- What constitutes a intrusion is really just a matter of definition
 - A system can exhibit all sorts of behavior

- Quality determined by consistency with a given definition
 - context sensitive

Sequences of System Calls V PennState

• Forrest et al. in early-mid 90s, attempt to understand the characteristics of an intrusion

- Idea: match sequence of system calls with profiles
 - *n-grams* of system call sequences (learned)
 - Match sliding windows of sequences
 - Record the number of mismatches
 - Use n-grams of length *5, 6, 11*.
- If found, then it is normal (w.r.t. learned sequences)

Evaluating Forrest et al.

- The qualitative measure of detection is the departure of the trace from the database of n-grams
- They measure how far a particular n-gram *i* departs by computing the minimum Hamming distance of the sample from the database (really pairwise mismatches)

 $d_{min} = min(d(i,j) | for all normal j in n-gram database)$

- this is called the anomaly signal.
- Result: on lpr, sendmail, etc.
 - About I in 100 false positive rate for lpr
 - % abnormal seqs I-2% for lpr attack
- Is this good?

Can You Evade Forrest?

- Can you devise a malware program that performs its malicious actions and cannot be detected by Forrest?
 - How would you do that?

Can You Evade Forrest?

- Can you devise a malware program that performs its malicious actions and cannot be detected by Forrest?
 - How would you do that?

Mimicry - Wagner and Soto - ACM CCS 2002

"gedanken experiment"

- Assume a very good anomaly detector (99%)
- And a pretty constant attack rate, where you can observe I out of 10000 events are malicious

• Are you going to detect the adversary wen:

Bayes' Rule

- Pr(x) function, probability of event X
 - Pr(sunny) = .8 (80% of sunny day)
- Pr(x|y), probability of x given y
 - Conditional probability
 - Pr(cavity|toothache) = .6
 - 60% chance of cavity given you have a toothache
 - Bayes' Rule (of conditional probability)

$$Pr(B|A) = \frac{Pr(A|B) Pr(B)}{Pr(A)}$$

The (base-rate) Bayesian Fallacy

- Setup
 - Pr(T) is attack probability, I/I0,000
 - Pr(T) = .0001
 - Pr(F) is probability of event flagging, unknown
 - Pr(F|T) is 99% accurate (higher than most techniques)
 - Pr(F|T) = .99, Pr(!F|T) = .01, Pr(F|!T) = .01, Pr(!F|!T) = .99
- Deriving Pr(F)
 - $\mathbf{Pr}(\mathbf{F}) = \Pr(\mathbf{F}|\mathbf{T}) * \Pr(\mathbf{T}) + \Pr(\mathbf{F}|\mathbf{T}) * \Pr(\mathbf{T})$
 - Pr(F) = (.99)(.0001) + (.01)(.9999) = .010098
- Now, what's Pr(T|F)?

A

PennState

The Bayesian Fallacy

• Now plug it in to Bayes Rule

 $\Pr(T|F) = \frac{\Pr(F|T) \Pr(T)}{\Pr(F)} = \frac{\Pr(.99) \Pr(.0001)}{\Pr(.010098)} = .0098$

- So, a 99% accurate detector leads to ...
 - ► 1% accurate detection.
 - With 99 false positives per true positive
 - This is a central problem with IDS
- Suppression of false positives real issue
 - Open question, makes some systems unusable

Where is Anomaly Detection Useful?

PennState

System	Attack Density P(T)	Detector Flagging Pr(F)	Detector Accuracy Pr(F T)	True Positives P(T F)
Α	0.1		0.65	
B	0.001		0.99	
С	0.1		0.99	
D	0.00001		0.99999	

$$Pr(B|A) = \frac{Pr(A|B) Pr(B)}{Pr(A)}$$

Where is Anomaly Detection Useful?

System	Attack Density P(T)	Detector Flagging Pr(F)	Detector Accuracy Pr(F T)	True Positives P(T F)	
Α	0.1	0.38	0.65	0.171	
B	0.001	0.01098	0.99	0.090164	
С	0.1	0.108	0.99	0.911667	
D	0.00001	0.00002	0.99999	0.5	

$$Pr(B|A) = \frac{Pr(A|B) Pr(B)}{Pr(A)}$$

The ROC curve

- Receiver operating characteristic
 - Curve that shows that detection/false positive ratio

and shows how this is not unique to CS

Medical example

Example ROC Curve

 You are told to design an intrusion detection algorithm that identifies vulnerabilities by solely looking at transaction length, i.e., the algorithm uses a packet length threshold T that determines when a packet is marked as an attack. More formally, the algorithm is defined:

 $D(k,T) \rightarrow [0,1]$

- where k is the packet length of a suspect packet in bytes, T is the length threshold, and (0,1) indicate that packet should or should not be marked as an attack, respectively. You are given the following data to use to design the algorithm.
 - attack packet lengths: 1, 1, 2, 3, 5, 8
 - non-attack packet lengths: 2, 2, 4, 6, 6, 7, 8, 9
- Draw the ROC curve.

Solution

	0	1	2	3	4	5	6	7	8	9
TP	0	2	3	4	4	5	5	5	6	6
TP%	0.00	33.33	50.00	66.67	66.67	83.33	83.33	83.33	100.00	100.00
FP	0	0	2	2	3	3	5	6	7	8
FP%	0.00	0.00	25.00	25.00	37.50	37.50	62.50	75.00	87.50	100.00

The reality ...

- Intrusion detections systems are good at catching demonstrably bad behavior (and some subtle)
- Alarms are the problem
 - How do you suppress them?
 - and not suppress the true positives?
 - This is a limitation of *probabilistic pattern matching*, and nothing to do with bad science
- Beware: the fact that an IDS is not alarming does not mean the network is safe
- All too often: used as a tool to demonstrate all safe, but is not really appropriate for that.