

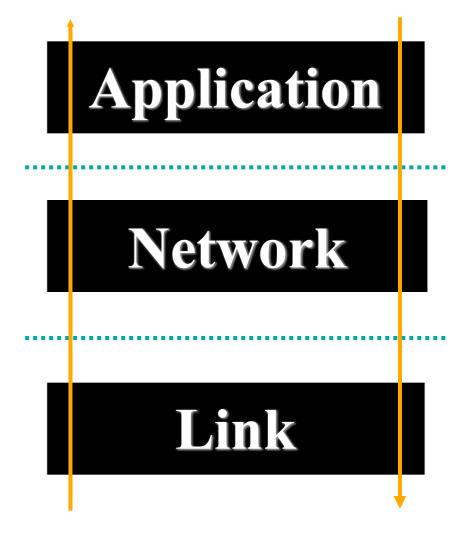
CSE543 - Computer and Network Security Module: Firewalls

Asst. Prof. Syed Rafiul Hussain

Problem

- All network flows were possible
 - Into or out of our network
 - To/from individual hosts and their processes
 - We need to control access to protect confidentiality, integrity and secrecy
 - What mechanism do we need?

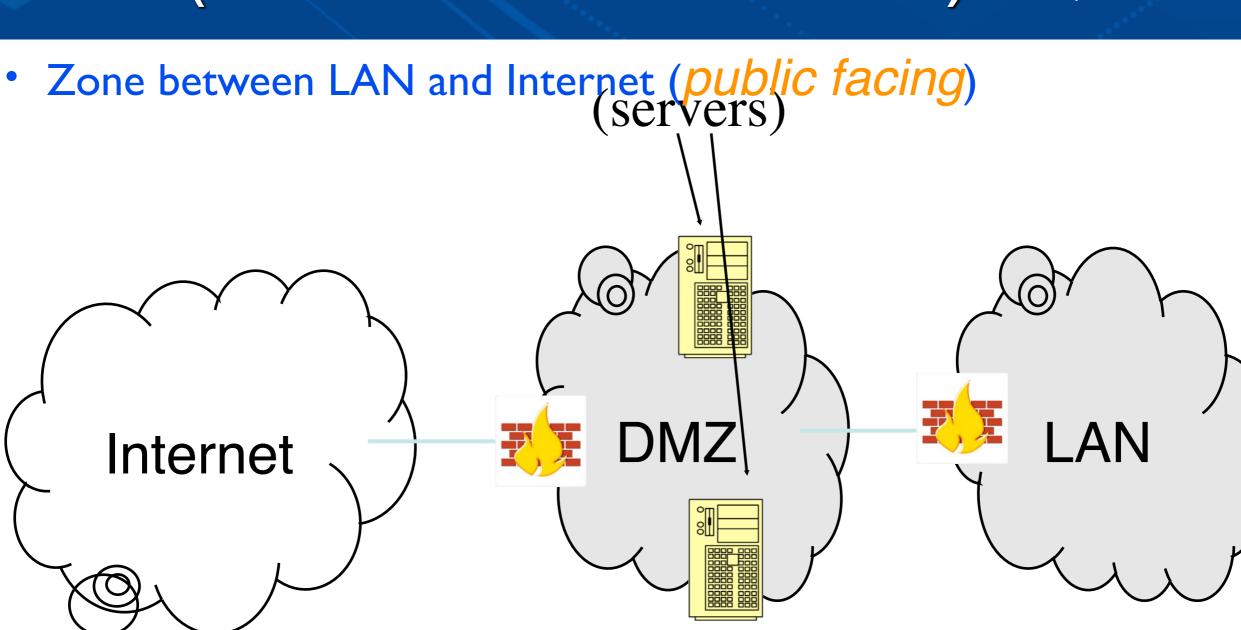
Firewalls


• A firewall ... is a physical barrier inside a building or vehicle, designed to limit the spread of fire, heat and structural collapse.

Filtering: Firewalls

- Filtering traffic based on *policy*
 - Policy determines what is acceptable traffic
 - Access control over traffic
 - Accept or deny
- May perform other duties
 - Logging (forensics, SLA)
 - Flagging (intrusion detection)
 - QoS (differentiated services)

X-Listing


- Blacklisting specifying specific connectivity that is explicitly disallowed
 - E.g., prevent connections from badguys.com
- Whitelisting specifying specific connectivity that explicitly allowed ROAD CLOSFN
 - E.g., allow connections from goodguys.com

- These is useful for IP filtering, SPAM mitigation, ...
- Q:What access control policies do these represent?

Stateful, Proxy, and Transparent 🖗 PennState

- Single packet may not contain sufficient data to make access control decision
 - Stateful: allows historical context consideration
 - Firewall collects data over time
 - e.g., TCP packet is part of established session
- Firewalls can affect network traffic
 - Transparent: appear as a single router (network)
 - Proxy: receives, interprets, and reinitiates communication (application)
 - Transparent good for speed (routers), proxies good for complex state (applications)

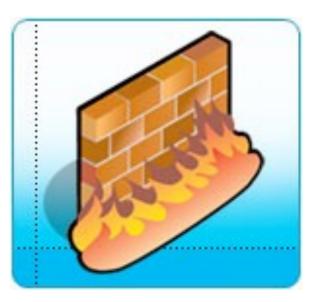
DMZ (De-militarized Zone)

PennState

Practical Issues and Limitations 🖗 PennState

- Network layer firewalls are first defense
 - DMZs allow multi-tiered fire-walling
 - Tools are widely available and mature
 - Depth: application and personal firewalls
- Issues
 - Network perimeters not quite as clear as before
 - E.g., telecommuters, VPNs, wireless, ...
 - Every access point must be protected
 - E.g., this is why war-dialing/driving is effective
 - Hard to debug, maintain consistency and correctness
 - Often seen by non-security personnel as impediment
 - E.g., Just open port X so I can use my wonder widget ...

IP Firewall Policy

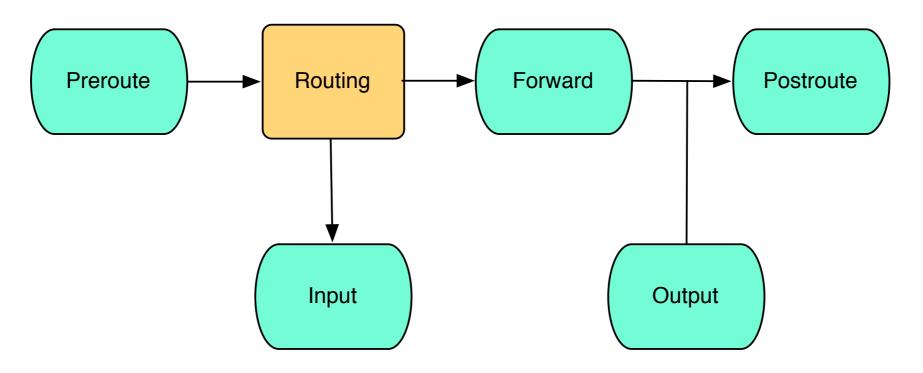


- Specifies what traffic is (not) allowed
 - Maps attributes to address and ports
 - Example: HTTP should be allowed to any external host, but inbound only to web-server

Source		Destination		Protocol	Flags	Actions
Address	Port	Address	Port	FICIOCOI	Гауэ	ACTIONS
*	*	1.1.1.1	80	TCP	SYN	Accept
1.1.1.*	*	*	80	TCP	SYN	Accept
*	*	*	80	TCP		Accept
*	*	*	*	TCP		Deny

Practical Firewall Implementations

- Primary task is to filter packets
 - But systems and requirements are complex
- Consider
 - All the protocols and services
 - Stateless vs. stateful firewalls
 - Network function: NAT, forwarding, etc.
- Practical implementation: Linux iptables
 - http://www.netfilter.org/documentation/HOWTO/packetfiltering-HOWTO.html
 - http://linux.web.cern.ch/linux/scientific3/docs/rhel-rg-en-3/chiptables.html


PennState

Netfilter hook

- Series of hooks in Linux network protocol stack
- An iptable rule set is evaluated at each
 - "PREROUTING": anything received
 - "INPUT": inbound to local destination
 - "FORWARD": inbound/outbound but routed off host
 - "OUTPUT": outbound to remote destination
 - "POSTROUTING": anything outbound

iptables Concepts

- Table: all the firewall rules
- Chime liptadfleal free sound in the sound of the sound of
- Matur enteroalk matchesiel pankethathe executes the
- Targe Starget of it desecute on a packet given a match

Test it out

- PING on localhost
 - ping -c 1 127.0.0.1
- Add iptables rule to block
 - iptables -A INPUT -d 127.0.0.1 -p icmp -j DROP
- Try ping
- Delete the rule
 - iptables -D INPUT 1
 - iptables -D INPUT -d 127.0.0.1 -p icmp -j DROP
 - iptables -F INPUT

Testing

- Use loopback to test the rules locally on your machine
 IP address [27.0.0.]
- ICMP
 - submit ping requests to 127.0.0.1 as above
- **TCP**
 - submit requests to 127.0.0.1 at specific port
 - server
 - nc -l -p 3750
 - listen at port 3750
 - client
 - nc -p 3000 localhost 3750
 - send from port 3000 to localhost at port 3750

Deep Packet Inspection

- Deep packet inspection looks into the internals of a packet to look for some application/content context
 - e.g., inspect HTTP for URLs that point to malicious websites
 - Can have serious privacy issues if done by, say COMCAST

- To specify a match in iptables
 - iptables -A INPUT -p tcp -m string --algo bm --string 'exe'
 - matches to packet with content containing 'exe'
 - iptables -A INPUT -p tcp -m length --length 10:100
 - matches to packet with length between 10 and 100 bytes
 - Also, can specify 'greater than 10' by 10:

Firewall Policy Design

• So, what is the problem with the firewall rules...

accept tcp 192.168.0.0/16 any deny tcp 192.168.1.0/24 any 3127

- This may be a simple problem, but
- Rules now have complex actions

FIREMAN

- Static analysis tool for detecting incorrect, inefficient, or inconsistent firewall rules
 - Using something called binary decision diagrams
- Finds real misconfigurations
 - Classify misconfigurations
 - Applies intra- and inter-firewalls

Misconfigurations

• Consider the following rules

3.

- 1. deny tcp 10.1.1.0/25 any
- 2. | accept udp any 192.168.1.0/24
 - deny tcp 10.1.1.128/25 any
- 4. deny udp 172.16.1.0/24 192.168.1.0/24
- 5. accept tcp 10.1.1.0/24 any
- 6. deny udp 10.1.1.0/24 192.168.0.0/16
- 7. | accept udp 172.16.1.0/24 any
- Compare Rules 2 and 4
- Compare Rules 1, 3, and 5
- Compare Rules 4 and 7
- Compare Rules 2 and 6

Misconfigurations

- Violations
 - What is the security goal?
- Inconsistencies (possibly between firewalls)
 - Shadowing: Accept (denies) all packets already denied (accepted)
 E.g., 2 and 4
 - Generalization: Excluded a subset of preceding E.g., 4 and 7
 - Correlation: Matches subset of preceding, but takes a different action - E.g., 2 and 6
- Inefficiencies
 - Redundancy: Remove rule and no change
 - Verbosity: Summarize with fewer rules

Analysis

- What is static analysis?
 - Analyze without running program (firewall rules)
 - Approximate all possible executions at once
- For a firewall
 - Track all packets that have been accepted (A), denied (D), diverted (F) before this rule - remaining (R) is implied
 - ▶ jth rule defines <P_j, action_j>
 - A_j, D_j, F_j identify the packets accepted, denied, or diverted prior to rule j
- Analysis
 - Update the state of A, D, F, R at each rule
 - Evaluate for shadowing, generalization, correlation, etc.

Analysis Rules

- Problems detected by comparing sets (A, D, F, R, P)
 - In a good rule, packets affected are only in remaining
 - For an bad deny rule, suppose P_j and R_j have no intersection (always a problem)
 - (P_j , Deny) where P_j subset A_j shadowing
 - Already accepted all the packets to be denied here
 - (P_j, Deny) where (P_j intersect R_j) = NULL and
 (Pj intersect Aj) = NULL redundant
 - Already denied remaining and wouldn't block accepted
 - For a maybe bad deny rule, if P_j and R_j are not related by subset and only related by a partial intersection
 - P_i and D_i have an intersection correlation

Analysis Example

• Consider the following rules

- 1. deny tcp 10.1.1.0/25 any
- 2. accept udp any 192.168.1.0/24
 - deny tcp 10.1.1.128/25 any
- 4. deny udp 172.16.1.0/24 192.168.1.0/24
- 5. accept tcp 10.1.1.0/24 any
- 6. deny udp 10.1.1.0/24 192.168.0.0/16
- 7. | accept udp 172.16.1.0/24 any
- Rules for A: 2, 5, 7 Rules for D: 1, 3, 4, 6
- At Rule 4: P_4 has no intersection with remaining R_4
 - any >192.168.1.0/24 in A₄ (from Rule 2)
 - ▶ P₄ is a subset of A₄ Shadowing
- At Rule 6:
 - Traffic in P₆ intersects of A₆ (from Rule 2) Correlation

Take Away

- A firewall is an authorization mechanism for network flows
 - Control packet flows to subnets, hosts, ports
 - Scan a rulebase for matching rule for packet
 - Like Windows ACLs, but with default accept
- We examined the Linux iptables firewall
 - Netfilter hooks provide complete mediation
 - Rule chains can be connected like subroutines
- However, firewall rules may be misconfigured
 - FIREMAN detects violations, inconsistencies, and inefficiencies using static analysis of rule bases
 - Compare sets of packets at rule with those accepted, denied, etc.