

CSE 543: Computer Security Module: Adversarial Machine Learning Recent Trends in Adversarial Machine Learning

Asst. Prof. Syed Rafiul Hussain Department of Computer Science and Engineering

The "security" and "safety" questions?

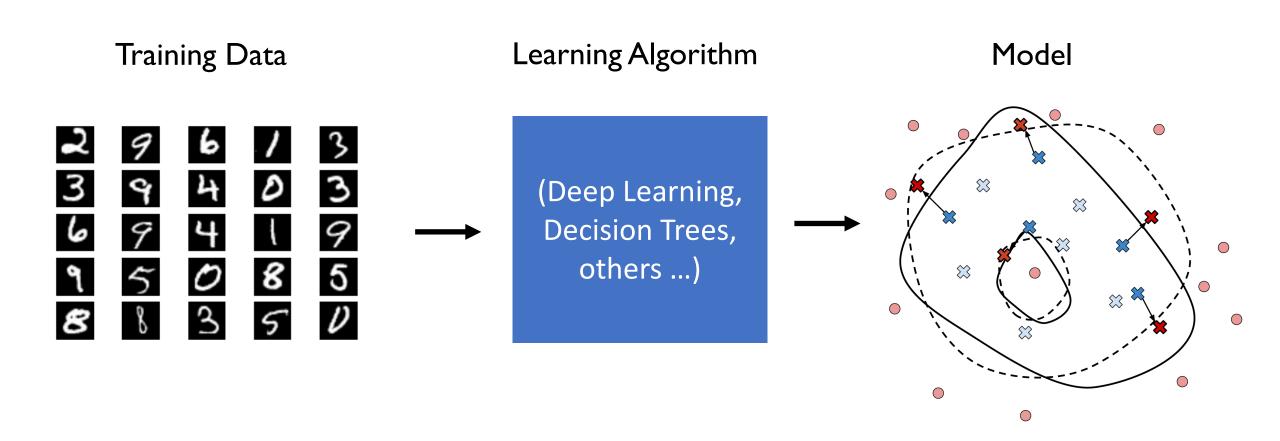
In security, we ask two questions of any new technology

- I. Can the technology be abused by an adversary?
- 2. Can the technology be used against us?

"Adversarial examples are inputs to machine learning models that an attacker has intentionally designed to cause the model to make a mistake"

(Goodfellow et al 2017)

How it works ... training ...



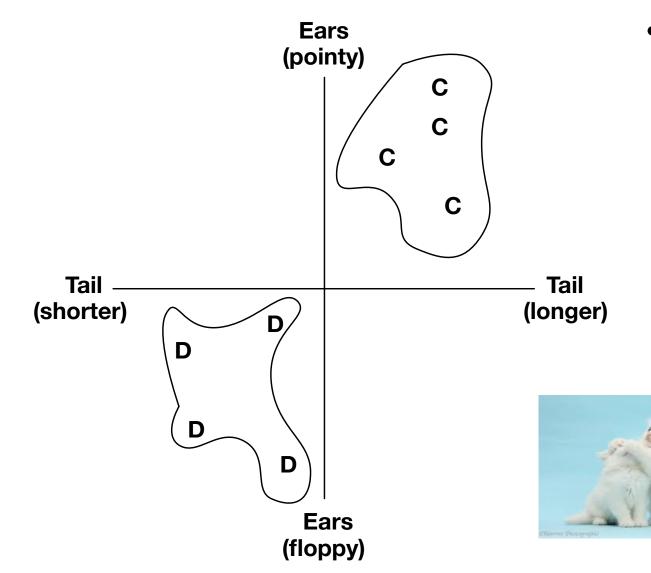
Learning: find *classifier* function that minimize a cost/loss (~model error)

How it works ... run-time ...

Machine Learning Classifier

Inference time: which "class" is most like the input sample

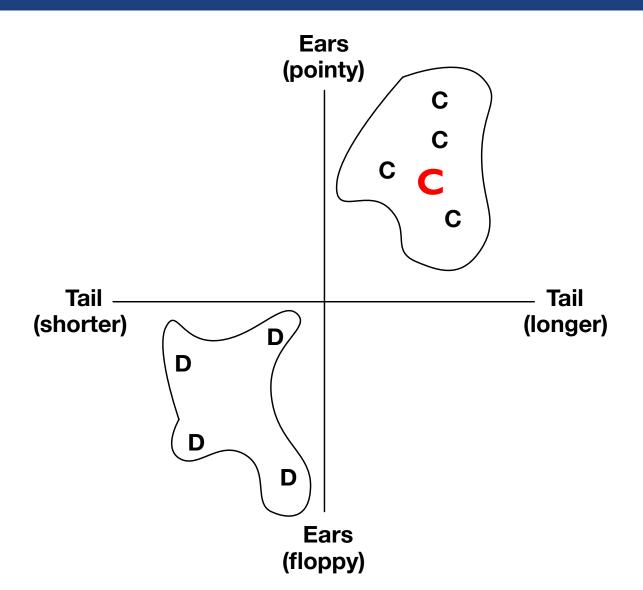
Model (training time ...)



• The learning algorithm identifies the regions of the input feature space that best represent the particular classes

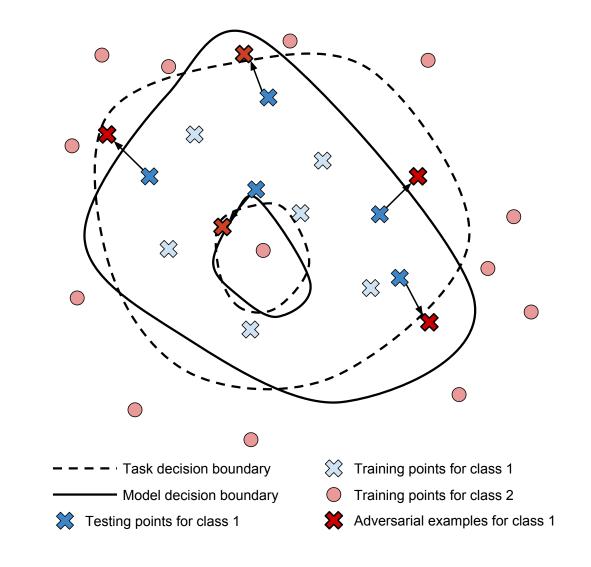
. . .

Model (inference time ...)



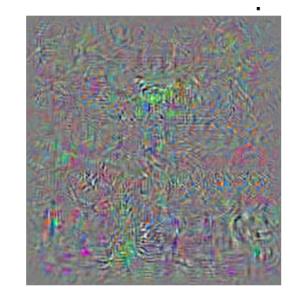
• At run time selects looks at the input features and determines which of the classes best represents the input sample

An Example of Misclassification



Adversarial Example

Schoolbus



+

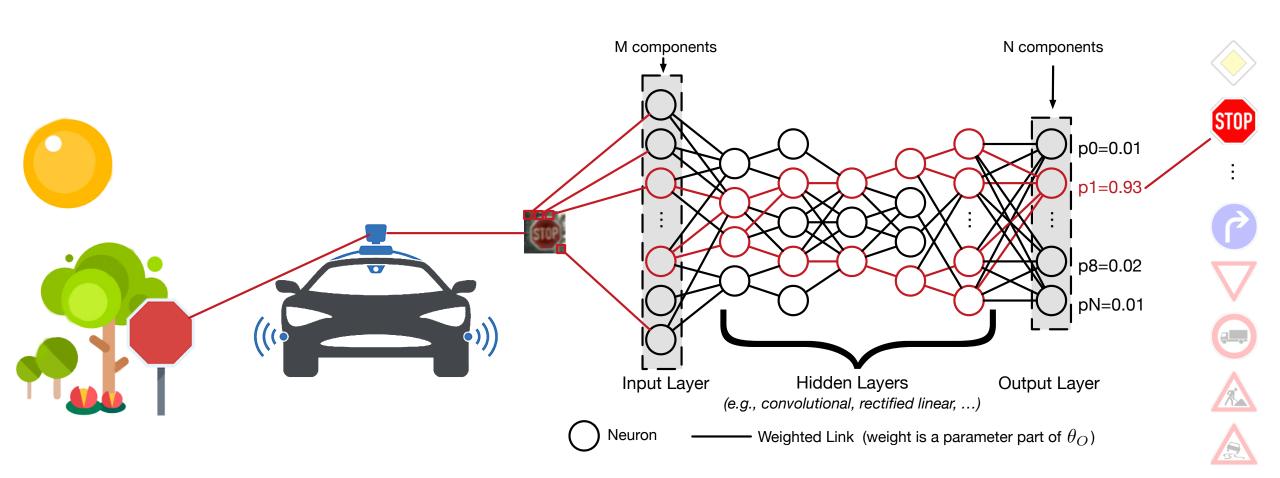
Perturbation (rescaled for visualization)

(Szegedy et al, 2013)

=

Ostrich

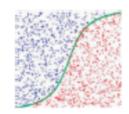
Another example ...



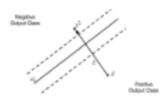
Let's play a game

Adversarial Examples

... beyond deep learning

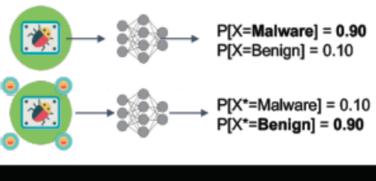


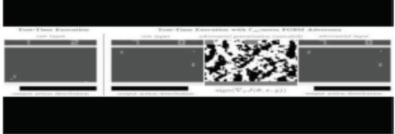
Logistic Regression



Support Vector Machines

... beyond computer vision





Threat Model

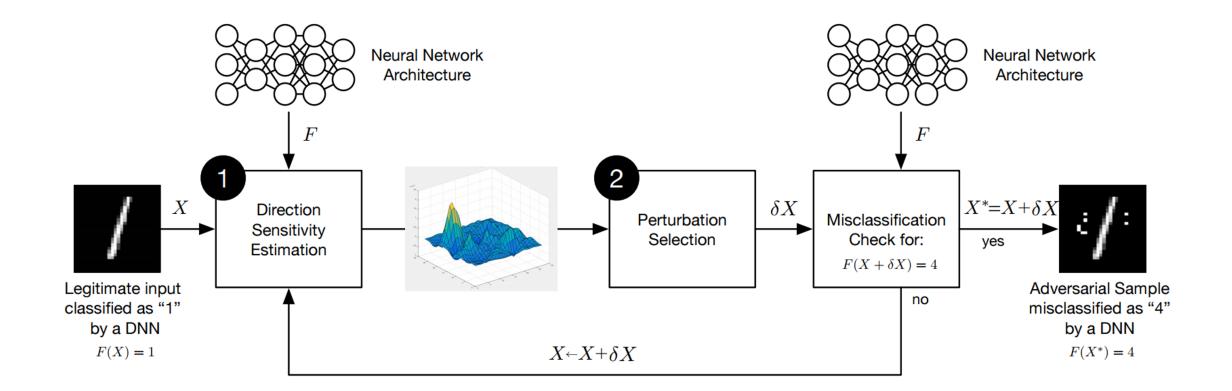
White Box

- Complete access to the classifier F
- Black Box
 - Oracle access to the classifier F
 - For a data x receive F(x)
- Grey Box
 - Black Box + "some other information"
 - Example: structure of the defense

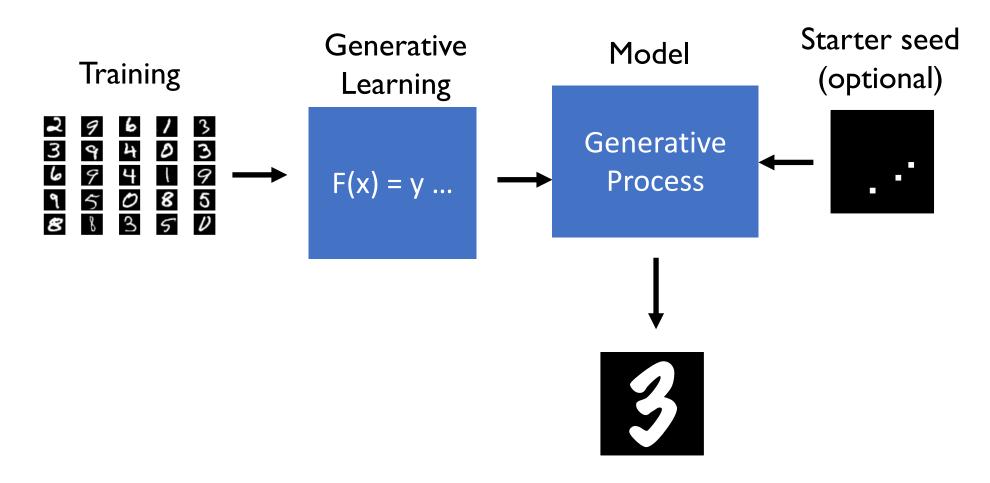
Adversary's problem

- Given: *x* ∈ *X*
- Find δ
 - min $\mu(\delta)$
 - Such that: $F(x + \delta) \in T$
 - Where: $T \subseteq Y$
- Misclassification: $T = Y \{F(x)\}$
- Targeted: $T = \{t\}$

Adversarial samples ... intuition ...



Using machine learning to create ...



Inference time: produce output which is most like training inputs ..

Creating reality? Fake news

Abusive use of machine learning:

Using GANs to generate **fake content** (a.k.a deep fakes)

Strong societal implications:

elections, automated trolling, court

evidence ...

Generative media:

- Video of Obama saying things he never said, ...
- Automated reviews, tweets, comments, indistinguishable from human-generated content

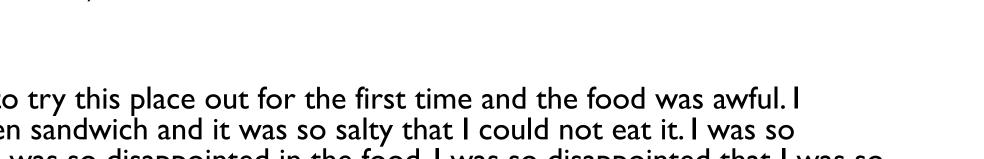
Creating reality? Fake reviews

"I love this place. I have been going here for years and it is a great place to hang out with friends and family. I love the food and service. I have never had a bad experience when I am there." (5 stars!)

"I had the grilled veggie burger with fries!!!! Ohhhh and taste. Omgggg! Very flavorful! It was so delicious that I didn't spell it!!" (5 stars!)

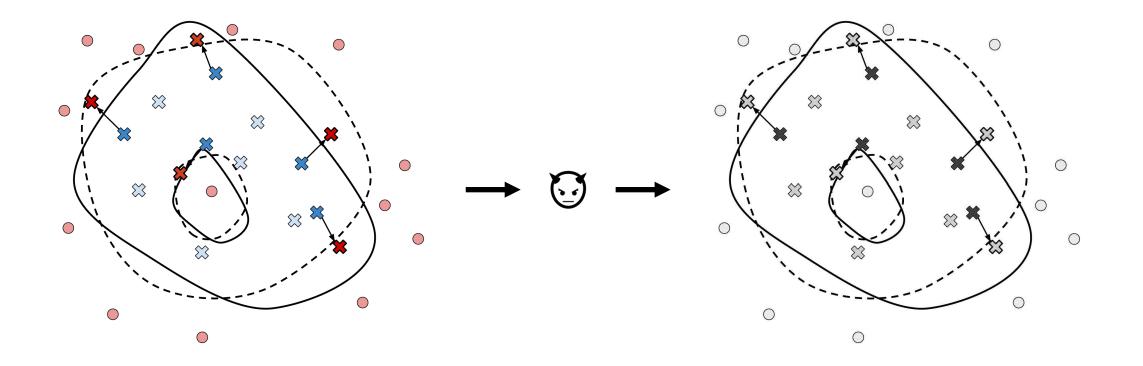
"I was so excited to try this place out for the first time and the food was awful. I ordered the chicken sandwich and it was so salty that I could not eat it. I was so disappointed that I was so disappointed in the food. I was so disappointed that I was so disappointed with the service." (I star)

Source: <u>https://arxiv.org/pdf/1708.08151.pdf</u>, "Automated Crowdturfing Attacks and Defenses in Online Review Systems" (**Yao et al**.)



Model theft

• Machine learning models (generally) expose a lot of information about their internals just through normal interactions ... and can be reproduced.



- Security— you don't have to know anything about a service to create adversarial samples, you just have to be able to access it.
- **Google** Cloud Platform • Intellectual property – if your organization's value is "in" a model, then it can be extracted (and duplicated and misused).
- Privacy the model can tell you a lot about the training data, e.g., patient data.

amazon

Thanks to Ian Goodfellow, Somesh Jha, Patrick McDaniel, Nicolas Papernot and Berkay Celik for some slides.