
CSE 543: Computer Security

Project 2: SSH Protocol with MITM Attack

Due: 11:59 pm (eastern time), October 12, 2020

1 Introduction

This project has two main parts. In the first part, you will develop a client-server system that provides secure
file transfer. You will implement the SSH protocol to construct a secure channel between the client and server
over which to perform secure file transfer. You will use the OpenSSL library to implement the SSH protocol.
The SSH protocol produces a symmetric key shared between the client and server, and you will use the OpenSSL
library once again to use that key to transfer the file. In the second part, you will develop a man-in-the-middle
(MITM) attack against the SSH protocol that you implemented in part 1. You will create a MITM that
pretends to be the target server, but instead opens a secure connection to the client that it can use to read
client communications forwarded to the target server.

The system you produce must run on the Westgate Linux lab machines. These machines are named cse-
p204instXX.cse.psu.edu, where XX is a number between 01 and about 40. All these machines should be
identical and already have the OpenSSL library installed. You should SSH into those machines to verify that
your code works. We developed and tested the project code on those machines, so should work fine, but it is
up to you to make sure. You will need to speak to the CSE IT folks (helpdesk@cse.psu.edu) if you
do not have access to those machines.

2 Overview

2.1 Part 1

The main task in part 1 is to implement the SSH protocol as described in the paper (https://syed-rafiul-hussain.
github.io/index.php/teaching/cse543-f20/docs/ssh.pdf). Since any user is authorized to upload a file
in this project, you only have to implement Steps 1-4 of the protocol, corresponding to messages 1-4 in the
ProtoMessageType enumeration in cse543-proto.h. You are going to use the OpenSSL functions provided to
implement the SSH protocol.

2.2 Part 2

The original SSH protocol that you will implement in part 1 is prone to a kind of MITM attack called Server
Spoofing. In this attack, a malicious entity may intercept client communications intended for a target server
to create a MITM connection, where the malicious entity pretends it is the server to the client and as a client
to the target server. Since the SSH protocol does not authenticate that the public key provided by the server is
really associated with the target server to which the client is intending to connect, a malicious entity can take
advantage of this. The SSH systems take some measures to prevent this attack outside the crypto protocol.
You will extend the server of part1 to produce a MITM server that performs this server spoofing MITM attack
against the (unmodified) client and (mostly unmodified) server implemented in part 1.

3 Project Tasks

You should first download the tarball from https://syed-rafiul-hussain.github.io/index.php/teaching/

cse543-f20/projects/cse543-f20-p2.tar.gz. The tarball has the initial code for part 1 and part 2. The
project includes source code and a Makefile for building the tarball for your project for submission. We suggest
you perform the project tasks listed below in the following order.

1

https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f20/docs/ssh.pdf
https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f20/docs/ssh.pdf
https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f20/projects/cse543-f20-p2.tar.gz
https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f20/projects/cse543-f20-p2.tar.gz

3.1 Part 1

The initial version of the program includes two functions test_rsa and test_aes that encrypt a message. These
functions demonstrate how to perform symmetric and public key encryption with OpenSSL library, which should
be a big help in the project.

3.1.1 Write the functions to build encrypted messages for sending and decrypted received mes-
sages

There are two pairs of functions for you to implement: seal/unseal_symmetric_key for public key crypto
and encrypt/decrypt_message. These encryption functions must perform encryption and produce buffers
containing the data necessary for the other party to decrypt. The decryption functions must extract the
necessary information from a sent buffer and perform the decryption.

3.1.2 Write the function to generate pseudo random values

Develop the function generate_pseudorandom_bytes by using the OpenSSL functions for producing pseudo
random values.

3.1.3 Develop the SSH Protocol

Implement the client and server portions of the SSH protocol, as described in the paper (https://syed-rafiul-hussain.
github.io/index.php/teaching/cse543-f20/docs/ssh.pdf). There are two functions
client_authenticate and server_protocol to be implemented.

3.1.4 Transfer the file securely

Implement the encryption and transfer functionality to send the file from the client to the server in the function
transfer_file.

3.2 Part 2

Use the client and server you implemented in part1. For this attack, you will run these components unmodified
except for a small modification to one function (receive file) used by the server.

3.2.1 Implement server spoofing attack

In the MITM attack, you will modify the code from the part 2 (see below) to perform the server spoofing attack.

4 Implementation

4.1 Part 1

4.1.1 Create public and private keys

You can create the public and private keys using the OpenSSL system using the following commands:

generate key pair - mykey.pem holds private key
openssl genrsa -out mykey.pem 2048

extract public key in basic format - pubkey.pem is in PKCS#8 format
openssl rsa -in mykey.pem -pubout -out pubkey.pem

convert public key to RSA format - rsapub.pem holds public key
openssl rsa -pubin -in pubkey.pem -RSAPublicKey_out > rsapub.pem

4.1.2 Run the Client and Server

The server program will be started by the following command line:
cse543-p1-server <private-key-file> <public-key-file>

where (1) the <private-key-file> is the name of the file that stores the private key for the server and (2)
<public-key-file> is the name of the file that stores the corresponding public key for the server.

2

https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f20/docs/ssh.pdf
https://syed-rafiul-hussain.github.io/index.php/teaching/cse543-f20/docs/ssh.pdf

The client program will be started by the following command line:
cse543-p1 <file-to-transfer> <server-ip-address>

where (1) the <file-to-transfer> is the file path name of the file to transfer from the client to the server and
(2) <server-ip-address> is the IP address of the server host.

Start the server first, as it will wait for connection requests from clients. When a connection request is received
from a client the sequence of steps will be performed.

4.1.3 Perform the SSH protocol

The client will initiate the SSH protocol to produce a symmetric key to be shared by the client and server.

4.1.4 Transfer the file

The <file-to-transfer> will be sent encrypted and integrity protected from the client to the server. The
server will store the file in a directory called ”shared” under the directory from which the server is run.

4.1.5 Server awaits next request

The client will terminate and the server will await the next request from the next client.

4.2 Part 2

The code for part 2 consists of one new file cse543-p2.c, which replaces the cse543-p1.c file from part 1. The
cse543-p2.c code only differs from the part 1 code only that the interface to start the server is slightly different
(see MITM USAGE in the file). The first two arguments are the MITMs public and private keys as before.
These keys will be different than the target server’s public and private keys, of course. The third argument
is still an IP address, but it is the IP address of the real (target) server. The fourth argument is the “MITM
option” which you should set to 1 to perform the server spoofing attack. In summary, MITM should run as
below:
cse543-p2-server <private_key_file> <public_key_file> <real-server-IP-address> 1

4.2.1 Use Your Part 1 Code

The client and target server will be largely unchanged from part 1. To run client, MITM, and target server on
one machine, you need to take the following steps to have the target server communicate on a different port:

1. make a copy directory of part1 code and rename the new directory to part1 server. This is going to be
the directory where you run the target server.

2. change line 36 in cse543-network.h from #define PROTOCOL_PORT 9165 to #define PROTOCOL_PORT 9166.
Now instead of port 1965, the target server will listen on port 9166 .

MITM is set up to communicate with the client on port 9165 and with the target server on port 9166. You will
run MITM with option “1”. This will invoke server_secure_transfer from part 1. You need to modify that
function to perform the MITM proxy attack, as described below.

4.2.2 Server Spoofing Attack

In this attack, you will modify the code in server secure transfer to perform the SSH protocol as the server to
a part 1 client, but also initiate a new SSH connection to a part 1 server as the client. This attack emulates
the case where a MITM may obtain an IP address for another server or sit between the client and server on the
network. The attack must: (1) construct a SSH connection with the client sufficient for the client to transfer
the file (from part 1); (2) replay the client messages to create a second SSH connection to another part 1 server;
and (3) forward the client’s messages to transfer the same file to the part 1 server. The easiest way to do that
is to start with the server protocol and add the steps necessary to replay client messages to the part 1 server
sufficient to transfer the file. This should not take a lot of code given what you have for part 1. To test for
this, run the client and MITM server and the real server on the same machine The real server will
receive connections listening to port 9166. MITM will receive connections listening on port 9165 for the client,
and 9166 for the real server.

5 Deliverable

Please submit a tarball of your code with the provided Makefile using make tar.

3

6 Grading

1. We can build and run what you have submitted without incident (10 points).

2. Encrypted communication works (10 points).

3. Generate pseudo random data (10 points).

4. SSH protocol implementation and specification (40 points)

5. Transfer file securely (10 points).

6. Server spoofing attack works (20 points).

4

	Introduction
	Overview
	Part 1
	Part 2

	Project Tasks
	Part 1
	Write the functions to build encrypted messages for sending and decrypted received messages
	Write the function to generate pseudo random values
	Develop the SSH Protocol
	Transfer the file securely

	Part 2
	Implement server spoofing attack

	Implementation
	Part 1
	Create public and private keys
	Run the Client and Server
	Perform the SSH protocol
	Transfer the file
	Server awaits next request

	Part 2
	Use Your Part 1 Code
	Server Spoofing Attack

	Deliverable
	Grading

