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This paper investigates mechanisms that guarantee 
secure information flow in a computer system. These 
mechanisms are examined within a mathematical 
framework suitable for formulating the requirements 
of secure information flow among security classes. 
The central component of the model is a lattice 
structure derived from the security classes and justified 
by the semantics of information flow. The lattice 
properties permit concise formulations of the security 
requirements of different existing systems and facilitate 
the construction of mechanisms that enforce security. 
The model provides a unifying view of all systems 
that restrict information flow, enables a classification 
of them according to security objectives, and suggests 
some new approaches. It also leads to the construction 
of automatic program certification mechanisms for 
verifying the secure flow of information through a 
program. 
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1. Introduction 

The security mechanisms of most computer  systems 
make no at tempt to guarantee secure information flow. 
"Secure information flow," or simply "security," 
means here that no unauthorized flow of information is 
possible. In the common example of  a government or 
military system, security requires that processes be 
unable to transfer data from files of  higher security 
classifications to files (or users) of lower ones: not only 
must a user be prevented from directly reading a file 
whose security classification exceeds his own, but he 
must be inhibited from indirectly accessing such in- 
formation by collaborating in arbitrarily ingenious 
ways with other users who have authority to access the 
information [19]. 

Most  access control mechanisms are designed to 
control immediate  access to objects without taking 
into account information flow paths implied by a 
given, outstanding collection of access rights. Con- 
temporary  access control mechanisms, such as are 
found in Multics [18, 20] or Hydra  [24], have demon- 
strated their abilities to enforce the isolation of processes 
essential to the success of  a multitask system. These 
systems rely primarily on assumptions of  "trustworthi-  
ness" of  processes for secure information flow among 
cooperating processes. Though it is mainly of theoretical 
interest, Harr ison et al. [12] have recently demonstrated 
that  in general it may be undecidable whether an 
access right to an object will " leak"  to a process in a 
system whose access control mechanism is modeled 
by an access matrix [11, 15]. 

In our research into this problem, we sought to find 
suitable and viable restrictions according to which the 
security of  a system would not only be decidable, but 
simply so. Our results show that suitable constraints do 
indeed exist, and moreover  within the context of  a 
richly structured model. 

Copyright @ 1976, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted, provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

A version of this paper was presented at the Fifth ACM Sym- 
posium on Operating Systems Principles, The University of Texas 
at Austin, November 19-21, 1975. 

Work reported herein was supported in part by the National 
Science Foundation under grants GJ-43176 and GJ-41289 and by 
IBM under a fellowship. Author's present address: Computer 
Sciences Department, Purdue University, West Lafayette, IN 
47907. 

236 

2. The Model 

2.1 Description 
An information flow model FM is defined by 

F m  = (N, P, SC, e ,  ~). 
N = {a, b , . . . }  is a set of  logical storage objects or 
information receptacles. Elements of N may be files, 
segments, or even program variables, depending on the 
level of  detail under consideration. Each user of  the 
system may also be regarded as an object. P = 
{p, q , . . . }  is a set of processes. Processes are the active 
agents responsible for all information flow. 
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SC = {A, B , . . . }  is a set of security classes cor- 
responding to disjoint classes of information. They are 
intended to encompass, but are not limited to, the 
familiar concepts of "security classifications," "se- 
curity categories," and "need to know" [9, 23]. Each 
object a is bound to a security class, denoted by _a, 
which specifies the security class associated with the 
information stored in a. There are two methods of 
binding objects to security classes: static binding, 
where the security class of an object is constant, and 
dynamic binding, where the security class of an object 
varies with its contents. Users may be bound, usually 
statically, to security classes referred to as "security 
clearances" [2, 22, 23]. Each process p may also be 
bound to a security class, which we denote by p. In 
this case, p may be determined by the security clearance 
of the user owning p or by the history of security classes 
to which/9 has had access. 

The class-combining operator " @ "  is an associative 
and commutative binary operator that specifies, for 
any pair of operand classes, the class in which the re- 
sult of any binary function on values from the operand 
classes belongs. The class of the result of any binary 
function on objects a and b is thus a ~3 b. By extension, 
the class of the value of an n-ary function f(al,  . . .  ,a,) 
is a~ @ . . .  @ a,. To avoid semantic ambiguities that 
may arise when two different functions over the same 
domain have overlapping ranges, we assume that the 
operator " ~ "  is independent of the function used to 
combine values. No generality is lost by this assumption 
since the effect of a function-dependent " G "  can be 
simulated by an appropriate set of processes using a 
function-independent " @ "  [4]. The set of security 
classes is closed under " ~ " .  

A flow relation "---¢' is defined on pairs of security 
classes. For  classes A and B, we write A ~ B if and 
only if information in class A is permitted to flow into 
class B. Information is said to flow from class A to 
class B whenever information associated with A affects 
the value of information associated with B. In this 
paper we shall be concerned only with flows which 
result from (sequences of) operations that cause in- 
formation to be transferred from one object to another 
(e.g. copying, assignment, l /o, parameter passing, and 
message sending). This includes flows along "legitimate" 
and "storage" channels. We shall not be concerned 
with flows along "covert"  channels (i.e. a process's 
effect on the system load) [16]. 

The security requirements of the model are simply 
stated: a flow model FM is secure if and only if execution 
of a sequence of operations cannot give rise to a flow 
that violates the relation "--+". If  a value f ( a l , . . . ,  a,) 
flows to an object b that is statically bound to a se- 
curity class _b, then a~ G . . .  @ a_,---~_b must hold. 
I f 3 ' ( a l , . . . ,  a,) flows to a dynamically bound object 
b, then the class of b must be updated (if necessary) 
so that _aa @ . . .  ~3 _a, ~ b holds for this case also. 
Assuming that "---~" is transitive, it is easily shown 

that the security of individual operations implies that of  
arbitrary sequences of operations [4]. The assumption 
of transitivity is justified below. 

The model we have outlined is a simplified form of 
the one in [4]. The detailed model accounts for a set of 
"states" of an underlying computer system and a set of 
"transition operators" for describing state changes and 
their associated reformation flows. It also accounts for 
such implementation requirements as tags that mark 
memory locations with the class of information stored 
in them, or the necessity of nullifying a memory cell 
when it is deallocated. 

2.2 Derivation of Lattice Structure 
Under certain assumptions, the model components 

SC, "--¢',  and " @ "  form a universally bounded lattice. 
These assumptions are not arbitrary, but follow from 
the semantics of information flow. By this we mean 
either that no generality is lost by them or that they 
are required for consistency. Consistency means that all 
flows implied by a permissible flow should also be 
permitted by the flow relation. For  example, if the 
statement begin b := a; c := b end is secure, then 
the statement c := a should also be secure. Without a 
consistent flow structure, it would be possible to mas- 
querade insecure operations as secure ones. 

A universally bounded lattice is a structure con- 
sisting of a finite partially ordered set together with 
least upper and greatest lower bound operators on the 
set [3, 21]. To show that (SC, ---b 0 )  forms such a 
lattice, we establish that: 

(1) (SC, ---~) is a partially ordered set. 
(2) SC is finite. 
(3) SC has a lower bound L such that L ~ A for all 

A E S C .  
(4) @ is a least upper bound operator on SC. 

These assumptions then imply the existence of a great- 
est lower bound operator on SC, which we denote by 
"®".  This in turn implies the existence of a unique 
upper bound H. Therefore, the structure (SC, --~, G, ®) 
is a lattice with lower bound L and upper bound H. 

Assumption (1), that (SC, --+) is a partially or- 
dered set, is demonstrated by showing that the relation 
"---~" is reflexive, transitive, and antisymmetric; that 
is, for all A, B, C E SC: 

(a) A ~ A (reflexive). 
(b) A --* B and B ~ C ~ A ~ C (transitive). 
(c) A ~ B and B ~ A ~ A = B (antisymmetric). 

Reflexivity is required for consistency: since the state- 
ment a := a is trivially secure, an inconsistency would 
exist if A -~ A for any A E SC. Transitivity follows 
from a similar requirement. Since A ~ B implies per- 
mission to move a value x from an object in A to one 
in B, and B --~ C implies it is in turn permissible to 
move x to an object in C, an inconsistency arises if 
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.4 -~  C. I t  is easily shown [4] that this assumption 
implies that a sequence of operations is secure if each 
operation is individually secure. Antisymmetry follows 
f rom the practical assumption of irredundant classes, 
for .4 ~ B and B ~ A would imply that anything in 
one class can be moved into the other, whereupon one 
of  them is unnecessary. 

Assumption (2), that the set of  security classes SC 
is finite, is a property of  any practical system. 

Assumption (3), that there exists a lower bound 
L on SC, can be made without loss of generality. All 
constants are candidates for membership in L. How- 
ever, even if constants must be divided among several 
classes, L itself need not have any objects assigned to it. 

Assumption (4), that the class-combining operator 
" @ "  is also a least upper bound operator, is demon- 
strated by showing that  for all A,B,C E SC: 

(a) . 4 ~ A  @ B and B - - * A  @ B. 
(b) A --* C and B--* C ~ A @ B - - .  C. 

Without property (a) we would have the semantic 
absurdity that operands could not flow into the class of 
a result generated f rom them. Moreover,  it would be 
inconsistent for an operation such as c :=- a -k- b 
to be permitted whereas e :-= a is not, since the latter 
operation can be performed by executing the former 
with b = 0. For  part  (b), consider five objects a, b, 
e, el, and c2 such that a ~ _c, _b --~ _c, and c = c / =  ~2; 
and consider this p rogram segment: 

cl  := a; 
c2 := b; 
c := ci*c2. 

Execution of  this p rogram segment assigns to c infor- 
mation derived f rom a and b; therefore, the flow 
q @ b ~ c is implied semantically. For  consistency, 
we require the flow relation to reflect this fact. Thus for 
any two classes .4 and B, .4 @ B is the least upper 
bound, also referred to as the "join,"  of`4 and B. 

I t  is useful to extend the domain of the least upper 
bound operator to subsets. For  a subset X of SC, let 
@X denote L if X is empty, and the least upper bound 
of the classes in X otherwise. Then for n > 1 and 
X = { A 1 , . . . ,  .4,~1, @X = .41 ~3 . . .  @ An; further- 
more, `4i ~ B(I < i < n) if and only if @X --> B, or 
A1 ~ . . .  @ An ~ B. This says that information in 
objects al . . . .  , a~ can flow separately into an object b 
if and only if _al @ . . .  ~ _an --~ _b (i.e. the class cor- 
responding to the combination of classes of a l , . . . ,  a ,  
can flow into the class of  b). The least upper bound 
property also implies that @ is associative and com- 
mutative; hence d := (a ,b) ,c  is secure if and only if 
d := b , (c .a )  is secure (which is also required for con- 
sistency). The highest class H is defined as @ SC; since 
it need not have any objects assigned to it, no generality 
is lost by assuming its existence. Although informa- 
tion can reach H from any other class, it is not allowed 
ot flow f rom H to any other class. 

Assumptions (1)-(4) imply the existence of a 

Fig. 1. Linear ordered lattice. 

SC = {A~, . . . ,A.} A. 
T 

A¢ ~ Aj iff i _< j A._i 

A~ @ AS ~- A~.~C.j) 
T 

T 

Description Representation 

greatest lower bound operator on the security classes, 
which we denote by " ® " .  I t  is shown in [4] that 
A ® B = @L(A,  B), where L(A,  B) = { C [ C ~  A 
and C ---} B]. As with the least upper bound "@",  
" ® "  can also be extended to operate on subsets of  
the security classes SC. For  a subset X of SC, let ® X  
be H if X is empty, and otherwise the greatest lower 
bound of the classes in X. Then for n > 1 and 
X = { B 1 , . . . ,  B,}, ® X  = B1 ® . . .  ® B,; further- 
more, A --~ B,(1 < i __< n) if and only i f A - - ~  ®X, 
or A ~ B1 ® . . .  ® B,. This says that information in 
an object a can flow into objects b l , . . . ,  b ,  if and 
only if q ~ bl ® . . .  ® _b,. We observe that the lowest 
class L is just the greatest lower bound of the entire 
(finite) set of security classes (i.e. L = N S C ) .  

2.3 E x a m p l e s  
Figure 1 illustrates that a simple linear ordering on 

a set of security classes SC satisfies the lattice property. 
The graphical representation is a standard precedence 
graph for a partial order, showing only the nonre- 
flexive, immediate relations. This structure is suitable 
for any system in which the classes are linearly (or 
hierarchically) ordered. One case is a government or 
military system in which the security classes are de- 
termined solely f rom the four security levels: unclassi- 
fied, confidential, secret, and top secret. An even simpler 
case is a system that needs only two classes: unconfi- 
dential (L) and confidential (H), with the single security 
requirement that confidential information cannot  flow 
into an unconfidential object. This case is considered by 
Denning, Denning, and Graham [5] and also by 
Fenton (using the names null and priv for L and H, 
respectively) [6, 7]. 

A richer structure satisfying the lattice property is 
derived from a nonlinear ordering on the set of all 
subsets of  a given finite set X. Figure 2 illustrates this 
for X = {x, y, z}. This structure is suitable when X 
is regarded as a set of  properties and classes as combi- 
nations of  properties f rom X; information in an object 
a is not permitted to flow into an object b unless b has 
at least the properties of  a. Consider, for instance, a 
system that contains medical, financial, and criminal 
records on individuals (i.e. X = {reed, fin, crim}). 
Then medical information would be permitted to flow 
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into only those objects b for which med E _b, or a com- 
bination of medical and financial information would 
be permitted to flow into only those objects b for which 
med C b and fin E _b. 

Still richer structures can be constructed as combi- 
nations of the two examples above. The profiles of 
ADEPT [23] form a lattice determined by the (Car- 
tesian) product of two lattices. One lattice is derived 
from a linear ordering of a set of Authority Levels 
corresponding to the (unclassified, confidential, etc.) 
levels of government and military security. The other 
lattice is derived from an ordering by subsets of the 
set of all subsets determined by a collection of Cate- 
gories (properties) corresponding to special control 
compartments used to restrict access by project and 
area. 

3. Enforcement of Security 

The primary difficulty with guaranteeing security 
lies in detecting (and monitoring) all flow causing 
operations. This is because all such operations in a 
program are not explicitly specified--or indeed even 
executed! As an example, consider the statement 
if a = 0 then b :=  0; i f b  ~ 0 initially, testing b = 0 
on termination of this statement is tantamount to 
knowing whether a = 0 or not. In other words, infor- 
mation flows from a to b regardless of whether or not 
the then clause is executed. 

To deal with this problem, we distinguish between 
two types of  flow: "explicit" and "implicit." Explicit 
flow to an object b occurs as the result of executing 
any statement (e.g. assignment or I/o) that directly 
transfers to b information derived from operands 
a ~ , . . . ,  a,. Implicit flow to b occurs as the result of 
executing--or not executing--a statement that causes 
an explicit flow to b when that statement is conditioned 
on the value of an expression. To illustrate the differ- 
ence: the statement if a = 0 then b := c causes an 
explicit flow from c to b only when a = 0 and the as- 
signment to b is performed, but it causes an implicit 
flow from a to b irrespective of the truth of a = 0. 

To specify the security requirements of programs 
causing implicit flows, it is convenient to consider an 
abstract representation of programs that preserves the 
flows but not necessarily all of the original structure. 
An abstract program (or statement) S is defined re- 
cursively by: 

(I) S is an elementary statement; e.g. assignment or I/O. 
(2) There exist S~ and $2 such that S = S~; $2. 
(3) There exist S ~ , . . . ,  S,, and an m-valued variable 

c such that S = c:S~ , . . . ,  S,,. 

Step (1) declares simple statements as abstract pro- 
grams. Step (2) declares sequences of simpler programs 
as abstract programs. Step (3) declares conditional 
structures, in which the value of a variable selects 

among alternative programs, as abstract programs. 
Implicit flows can occur only in type (3) structures. 

The conditional structure is used to represent all 
conditional (including iterative) statements found in 
programming languages. For  example, if c then $1 
else $2 is represented by c:S1, $2. Both if c then $1 
and while c do Sx are represented by c:Sx, and do 
ease c of $ 1 ; . . .  ; Sm is represented by c:S1, . . .  ,S~. 
When an expression e selects among alternative pro- 
grams $ 1 , . . . ,  Sin, we use the representation c := e; 
c :S~ , . . . ,  Sin. Structures arising from the unrestricted 
use of goto statements can also be represented by the 
conditional structure, but  to do so requires a control 
flow analysis of the program to determine the set of 
statements directly conditioned on the values of a 
variable. 

The security requirements for any program of the 
above form are now stated simply. First, an elemen- 
tary statement S is secure if any explicit flow caused 
by S is secure. Specifically, if S replaces the contents of 
an object b with a value derived from objects a ~ , . . . ,  a ,  
(a~ = b for some ai is possible), then security requires 
that a_~ @ . . .  @ a_,, ~ b hold after execution of S. 
If b is dynamically bound to its class, it may be neces- 
sary to update b when S is executed. Second, S = S~; $2 
is secure if both $1 and $2 are individually secure 
(because of the transitivity of "---~"). Third, 
S = c :S~ , . . . ,  Sm is secure if each Sk is secure and all 
implicit flows from c are secure. Specifically, let 
b l , . . . ,  b,  be the objects into which S specifies ex- 
plicit flows (i.e. i = I , . . . ,  n implies that, for each b~, 
there is an operation in some Sk that causes an explicit 
flow to b~); then all implicit flow is secure if 
e ~  _b~(l < i < n), or equivalently c ~  bt ® . . .  ® b,~, 
holds after execution of S. If  b~ is dynamically bound 
to its security class, it may be necessary to update 
bi by b i : =  bi @ c. 

Mechanisms implementing some or all of the se- 
curity requirements above have been incorporate d into 
ADEPT-50 [23], the MITRE system [2], the Case 
system [22], Rotenberg's Privacy Restriction Processor 
[19], Fenton's Data Mark Machine [6, 7, 8], and the 
security mechanisms proposed by Gat  and Saal [10], 
Jones and Lipton [14], and the author [4]. The follow- 
ing description of these mechanisms distinguishes those 
supporting only static binding from those supporting 
both static and dynamic binding. 

4. Mechanisms for Static Binding 

Mechanisms that enforce security in an env'ronment 
that supports only static binding of objects to security 
classes are further characterized by whether they operate 
at run time or at compile time. The first two mecha- 
nisms we shall consider are run-time enforcement 
mechanisms; the third is a compile-time certification 
mechanism. 
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4.1 Access Control Mechanisms 
In both the Case system [22] and the M I T R E  

system [2], each process p has an associated clearance 
class p specifying the highest class p can read from 
(observe) and the lowest class p can write into (modify 
or extend). Security is enforced by a run-time mecha- 
nism that permits p to acquire read access to an object 
a only if a ~ _p, and write access to an object b only if 
p ~ b. Hence, p can read from a ~ , . . . ,  am and write 
into bl, . . . , b,~ only if ql @ • • • @ _am ~ P --, bl ® . . . ® 
bn. This mechanism automatically guarantees the se- 
curity of all flows, explicit or implicit, since no flow from 
an object a to an object b can occur unless a ~ p ~ b, 
which implies a --~ b. 

4.2 The Data Mark Machine 
Fenton proposed an interesting run-time enforce- 

ment mechanism in the context of  an abstract computer  
called a Data  Mark  Machine [6, 7, 8]. The Data  Mark  
Machine is a Minsky machine [17] extended to include 
tags (data marks) for binding objects to security classes. 
Fenton 's  important  observation was that a class p 
should be associated with the program counter of  
process p. This class is determined as follows: whenever 
a conditional structure c : S ~ , . . . ,  Sm (m = I in the 
Minsky machine) is entered, the current class _p is 
pushed onto a stack, and _79 is replaced with _p @ _e; 
on exit f rom the structure, _p is restored by popping the 
stack. Immediately prior to execution of a statement S 
conditioned on the values of k condition variables 
c l , . . . ,  ok, _p is the least upper bound of the classes of 
ca, . . . ,  ek (i.e. p = _el @ . . .  (9 ek). I f  S specifies an 
explicit flow from objects a l , . . . ,  a ,  (n = 1 in the 
Minsky machine) to an object b, the instruction execu- 
tion mechanism verifies that _a~ (9 • . .  (9 _a, @ _p ~ b, 
and inhibits the execution of S if the condition is not 
satisfied; this automatically checks implicit flows to 
b (as well as explicit ones) when an explicit flow to b 
occurs. Fenton proves that this mechanism is also 
sufficient to insure the security of  all implicit flows by 
proving that under static binding, it is not necessary 
to verify at run-time implicit flows that occur in the 
absence of  explicit ones. As we shall see later, this 
result does not hold under dynamic binding. 

4.3 Certification Mechanism 
In [4] a program certification mechanism is pro- 

posed to enforce security. Program certification mecha- 
nisms have at least three advantages over run-time 
enforcement mechanisms. First, the execution of a 
program is guaranteed to be secure before it executes; 
hence a program cannot leak information by purposely 
causing security violations. An uncertified program 
having access to a confidential value x might at tempt to 
convey this value illegally to its owner by causing x 
security violations; the owner may then be able to ob- 
tain the value of x from a record of aborted operations ! 

Fig. 2. Lattice of subsets ofX = {x, y, z}. 

s c  = powerset (X) 

A --~ B iff A C B Ix,y,z} 
- / r \  

,4 t~ B m ,4 g B Ix,y} Ix,zl {y,z} 

L=  H=X "'-,. 7 7 
Description Representation 

(One solution to this problem is to inhibit all illegal 
operations without recording their occurrence, or else 
to record them only after they exceed some limit [6, 19]; 
this obstructs debugging). The problem is eliminated 
entirely with a certification mechanism. Second, a 
certification mechanism does not impair the execution 
speed of a program, since all security checks are per- 
formed prior to program execution (although some 
run-time support  may still be necessary). Third, the 
certification process itself can be specified in terms of 
higher-level language structures, rather than low-level 
hardware instructions. In this form it is more under- 
standable and correctness is more easily established. 

On the other hand, program certification mecha- 
nisms have two possible limitations. First, flows not 
specified by a program cannot be verified. Such a flow 
could result f rom a language implementation defect 
that a/lows, for example, array bounds to go unchecked 
or dangling references to occur. Removal  of this limi- 
tation is possible with adequate language support.  
Second, a program certified as secure can be trans- 
formed by hardware malfunction into an insecure one. 
Removal  of  this limitation is possible with a run-time 
mechanism that doublechecks all flows. 

The proposed certification mechanism operates by 
examining the flow of data through a program to de- 
termine its consistency with the flow relation on the 
given security classes. To make this possible, the pro- 
grammer  must specify (through appropriate  declara- 
tions) security classes for all objects referenced in the 
program. The following is an overview of a mechanism 
detailed in [4]. 

The lattice properties of the model are exploited to 
construct an efficient mechanism that is easily incor- 
porated into the analysis phase of  a compiler for a 
high-level language. We shall describe the mechanism 
in terms of the semantic actions of a compiler that 
certifies the security of  a program having an abstract 
structure as defined in Section 3. 

Consider first an elementary statement S specifying 
an explicit flow from a va luef(a l ,  . . . ,  a ,)  to an object 
b. To verify that _al @ . . .  @ a ,  ~ b, the compiler 

computes the c l a s s f ( a l , . . . , a , )  = a l @ . . . @  a ,  as 
the objects a~ are recognized; it then verifies that 
~ r ( a l , . . . ,  a ,)  ~ b when S is recognized. The compiler 

240 Communications May 1976 
of Volume 19 
the AGM Number 5 



also associates with S the class _b. For  example, if S 
is the assignment statement d := e, where e is the 
expression a -q- b . c ,  the compiler would compute 
_e = a @ _b @ c during the recognition of e, verify 
e_ ~ d_ when the assignment is recognized, and set 
_S : =  ~. 

Consider next a sequence S = $1; $2. In this case, 
the compiler simply sets S := S~ ® _$2. Flow relation 
transitivity implies that no security checks need be 
performed in this case. 

Consider finally a conditional structure S = 
c : S ~ , . . . ,  S,~. In this case the compiler sets S := 
S~ ® . . .  ® S,~; this guarantees that S = bl ® . . .  ® _b,, 
where b ~ , . . . ,  b,  are the objects information can ex- 
plicitly flow to in S ~ , . . . ,  Sin. The security of the im- 
plicit flows from c to b x , . . . ,  b ,  is then checked by 
verifying c --+ S. For  example, if S is the statement 
i f  c then begin a :=  0; b :=  1 end, the relation 
e ~ a ® _b is verified. 

5. Mechanisms for Dynamic  Binding 

A system based purely on dynamic binding is not 
practical: some objects and most  users are usually 
considered to have a fixed class. Were this not the case 
in a government or military system, for example, an 
unclassi f ied user would be able to raise his clearance 
by accessing top secre t  data!  

Secure flow into the statically bound objects of  a 
system can be enforced with the mechanisms of Sec- 
tion 4. (Note, however, that  a certification mechanism 
cannot be used if its source objects are dynamically 
bound).  Secure flow into the dynamically bound objects 
of a system can be enforced with the mechanisms of 
this section. 

There is one intrinsic problem with dynamic up- 
dating mechanisms: a change in an object 's class may 
remove that  object from the purview of a user whose 
clearance no longer permits access to the object. The 
class-change event can thereby be used to leak informa- 
tion, e.g. by removing f rom the user 's purview a file 
meaning "0".  

5.1 Dynamic  Data  Mark Machine 
One form of dynamic binding mechanism is a modi- 

fied version of Fenton 's  Data  Mark  Machine. Updat ing 
the class of  a dynamically bound object whenever in- 
formation flows into it follows this simple principle: 
whenever a statement S specifying a flow from objects 
a l , . . . ,  a ,  to a dynamically bound object b is executed, 

the class o f b  is changed, viz., _b := ~1 @ • • • • a ,  @ _p, 
where ~ is the class of the program counter. (In the 
case of static binding, the mechanism verifies the re- 
lation a_l ~ . . .  @ a_~ @ _p ~ b; this mechanism forces 
the relation to be true by updating b). That  this mecha- 
nism alone is insufficient to guarantee security can be 

seen by considering the execution of the following 
program (proposed by Fenton [7]). 

b := c := false; 
if ~ a then c : = true; 
if N c then b := true 

Assuming that the constants true and f a l s e  are in the 
least class L, execution of this program by a process p 
proceeds as follows: 

b := c:=false;  b :=  _c:=L; 
P_:= a; if~-~athen { c : =  t rue;  _ c : = L ~  P}; P.:=L;  
P := _c; i f ~ c t h e n  {b := true; b : = L ~  P}; /~ := L 

Since p = L @ p, this simplifies to: 

b := c := false; b := _c := L; 
i f ~ a t h e n  {c :=  true; _c:= a_}; 
ff~-~ethen {b := true; b : =  _cl 

When a is true, the test " H a "  fails so that (c, _c) remains 
( fa l se ,  L); hence the test "~..~c" succeeds and (b, b) 
becomes (true,  L) .  When a is f a l s e ,  the test ~--~a succeeds 
so that  (c, c) becomes (true,  a); hence the test ~-~c 
fails and (b, _b) remains ( fa l se ,  L) .  Therefore, in both 
cases the process terminates with b = a yet _b = L. 
This is because the updating mechanism does not ac- 
count for the implicit flow that occurs when the 
statements c := true and b := true are not 
executed. Therefore, a security violation results un- 
less a = L. 

Fenton [6] and Gat  and Saal [10] propose a solution 
to this problem. In essence, it involves restoring the 
class and value of any object whose class was increased 
during execution of a conditional structure to the class 
and value it had just before entering the structure. 
Hence, the objects whose class and value are restored 
behave as "local objects" within the conditional struc- 
ture. This insures the security of all implicit flows by 
nullifying those that caused a class increase. For ex- 
ample,  in the above program the value of c would be 
reset to f a l s e  after execution of the statement 

ff Ha then c : = true 

if the statement c := true were executed. 
In [4] a different solution is proposed. I t  is based on 

augmenting the run-time mechanism with a compile- 
time mechanism. Having performed a data flow analysis 
of  a program to determine what objects could receive 
an implicit flow without the hardware performing a 
required class increase, the compiler inserts updating 
instructions into the compiled program to perform the 
required class updates. For  example, in the program 
given above, the compiler would insert an instruction 
at the end of the statement i f  ~.~a then c := true to 
update _c by p (i.e. set c :=  a) before the stack is popped 
and _p restored to its value before the if statement was 
executed; hence c is guaranteed to be updated to reflect 
the implicit flow from a even if the assignment to c 
is not performed. 
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5.2  N o n d e c r e a s i n g  Class  M e c h a n i s m s  

Another type of mechanism is based on the prin- 
ciple of never decreasing the class of an object; that is, 
if information flows from an object a to an object b, 
the class of b is always updated by b := _b @ _a (even if 
the contents of b are replaced by a). Similarly, the class 
p associated with a process is monotonic nondecreasing. 
This type of mechanism is used by ADEPT [23], 
Rotenberg's Privacy Restriction Processor [19], and 
the surveillance and high water mark mechanisms in 
[14] (the surveillance mechanism permits the class of a 
storage object to decrease when its contents are re- 
placed by data in a lower class, but not the program 
counter p). In Rotenberg's Processor, p is determined 
by the " @ "  of the classes ot all objects read (rather 
than only those of the condition variables involved in 
implicit flows as in the Data Mark Machine). Hence 
whenever p writes any information into an object b, 
its class can be updated by _b := /2 @ _p to reflect both 
implicit and explicit flows to b. ADEPT is similar, but 
p is determined by the " @ "  of the classes of all files 
opened for read or write operations. 

A DEP T and Rotenberg's Processor (as described in 
[19, 23]) suffer the same problem as the dynamic Data 
Mark Machine: they fail to update the class of an ob- 
ject b when information flows implicitly to b in the 
absence of any explicit flow. That  the class associated 
with p is nondecreasing has no bearing on this problem. 
To see why, suppose the example program in Section 
5.1 is split between two processes p and q as follows: 
p: c := false; 

if  Ha  then c : = true 
q :  b := false; 

if N c  then b : = t r u e  

If  p and q are executed sequentially and c is global to 
both processes, process q terminates with b = a, yet 
b = L as before. Even though the classes p and q of 
the  program counters are nondecreasing, they are inde- 
pendent of each other; p is forgotten between the termi- 
nation o fp  and the initiation of q. 

To solve this problem, an additional mechanism 
such as described in Section 5.1 is necessary to insure 
that al ! implicit flows caused by a process p are secure. 
For  example, using the approach adopted in [4], every 
object b that could receive an implicit flow without a 
required class change could have its class updated by 
_b := b @ p when p terminates. The mechanisms in 
[14] resolve this problem by erasing the contents of 
b if it does not satisfy the relation _p --~ /2 when p 
terminates. 

Actually ADEPT appears to have an even more 

fundamental flaw (from our point of view). According 
to the description in [23], a process p with top secret 
clearance can write into an existing file with a lower 
class regardless of the state of p. Since existing files are 
statically bound, it can thus transfer data from a top 
secret file to an unclassified one! 

6. Conc lus ions  

The model and mechanisms we have described have 
many applications. One is confinement: constraining a 
service process from leaking confidential information 
about a customer process [16]. The usual solution to 
this problem is to prevent the service process from re- 
taining any information, confidential or not, after it 
ceases to operate on behalf of a customer [1, 13, 16]. 
By controlling the flow of information from confidential 
to nonconfidential objects, a more flexible solution is 
possible which permits the service process to save 
nonconfidential information [4, 5, 7]. 

Another application is databases. In addition to 
being able to control the flow of "raw data"  in the 
database to users, it is possible to control the flow of 
correlations of the data. As an example, consider a 
database containing a list of names associated with one 
class and a list of corresponding salaries associated with 
another. It is possible to separately control information 
flow about names, salaries, and (name, salary) pairs. 

The model does not pretend to address all of the 
security requirements of a system. Certain requirements 
that are frequently modeled by an access matrix [11, 15] 
(e.g. controlling a process's execute access rights to 
code segments) have been intentionally omitted from 
the  model. On the other hand, by decoupling the right 
to access information from the right to disseminate it, 
the flow model goes beyond the access matrix model in 
its ability to specify secure information flow. A practical 
system needs both acce3s and flow control to satisfy 
all security requirements. 
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A security kernel is a software and hardware 
mechanism that enforces access controls within a com- 
puter system. The correctness of a security kernel on 
a PDP-11/45  is being proved. This paper describes the 
technique used to carry out the first step of the proof: 
validating a formal specification of the program with 
respect to axioms for a secure system. 
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