
Operating R.S. Gaines
Systems Editor

A Lattice Model of
Secure Information
Flow
Dorothy E. Denning
Purdue University

This paper investigates mechanisms that guarantee
secure information flow in a computer system. These
mechanisms are examined within a mathematical
framework suitable for formulating the requirements
of secure information flow among security classes.
The central component of the model is a lattice
structure derived from the security classes and justified
by the semantics of information flow. The lattice
properties permit concise formulations of the security
requirements of different existing systems and facilitate
the construction of mechanisms that enforce security.
The model provides a unifying view of all systems
that restrict information flow, enables a classification
of them according to security objectives, and suggests
some new approaches. It also leads to the construction
of automatic program certification mechanisms for
verifying the secure flow of information through a
program.

Key Words and Phrases: protection, security,
information flow, security class, lattice, program
certification

CR Categories: 4.35

1. Introduction

The security mechanisms of most computer systems
make no at tempt to guarantee secure information flow.
"Secure information flow," or simply "security,"
means here that no unauthorized flow of information is
possible. In the common example of a government or
military system, security requires that processes be
unable to transfer data from files of higher security
classifications to files (or users) of lower ones: not only
must a user be prevented from directly reading a file
whose security classification exceeds his own, but he
must be inhibited from indirectly accessing such in-
formation by collaborating in arbitrarily ingenious
ways with other users who have authority to access the
information [19].

Most access control mechanisms are designed to
control immediate access to objects without taking
into account information flow paths implied by a
given, outstanding collection of access rights. Con-
temporary access control mechanisms, such as are
found in Multics [18, 20] or Hydra [24], have demon-
strated their abilities to enforce the isolation of processes
essential to the success of a multitask system. These
systems rely primarily on assumptions of "trustworthi-
ness" of processes for secure information flow among
cooperating processes. Though it is mainly of theoretical
interest, Harr ison et al. [12] have recently demonstrated
that in general it may be undecidable whether an
access right to an object will " leak" to a process in a
system whose access control mechanism is modeled
by an access matrix [11, 15].

In our research into this problem, we sought to find
suitable and viable restrictions according to which the
security of a system would not only be decidable, but
simply so. Our results show that suitable constraints do
indeed exist, and moreover within the context of a
richly structured model.

Copyright @ 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted, provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

A version of this paper was presented at the Fifth ACM Sym-
posium on Operating Systems Principles, The University of Texas
at Austin, November 19-21, 1975.

Work reported herein was supported in part by the National
Science Foundation under grants GJ-43176 and GJ-41289 and by
IBM under a fellowship. Author's present address: Computer
Sciences Department, Purdue University, West Lafayette, IN
47907.

236

2. The Model

2.1 Description
An information flow model FM is defined by

F m = (N, P, SC, e , ~).
N = {a, b , . . . } is a set of logical storage objects or
information receptacles. Elements of N may be files,
segments, or even program variables, depending on the
level of detail under consideration. Each user of the
system may also be regarded as an object. P =
{p, q , . . . } is a set of processes. Processes are the active
agents responsible for all information flow.

Communications May 1976
of Volume 19
the ACM Number 5

SC = {A, B , . . . } is a set of security classes cor-
responding to disjoint classes of information. They are
intended to encompass, but are not limited to, the
familiar concepts of "security classifications," "se-
curity categories," and "need to know" [9, 23]. Each
object a is bound to a security class, denoted by _a,
which specifies the security class associated with the
information stored in a. There are two methods of
binding objects to security classes: static binding,
where the security class of an object is constant, and
dynamic binding, where the security class of an object
varies with its contents. Users may be bound, usually
statically, to security classes referred to as "security
clearances" [2, 22, 23]. Each process p may also be
bound to a security class, which we denote by p. In
this case, p may be determined by the security clearance
of the user owning p or by the history of security classes
to which/9 has had access.

The class-combining operator " @ " is an associative
and commutative binary operator that specifies, for
any pair of operand classes, the class in which the re-
sult of any binary function on values from the operand
classes belongs. The class of the result of any binary
function on objects a and b is thus a ~3 b. By extension,
the class of the value of an n-ary function f(al, . . . ,a,)
is a~ @ . . . @ a,. To avoid semantic ambiguities that
may arise when two different functions over the same
domain have overlapping ranges, we assume that the
operator " ~ " is independent of the function used to
combine values. No generality is lost by this assumption
since the effect of a function-dependent " G " can be
simulated by an appropriate set of processes using a
function-independent " @ " [4]. The set of security
classes is closed under " ~ " .

A flow relation "---¢' is defined on pairs of security
classes. For classes A and B, we write A ~ B if and
only if information in class A is permitted to flow into
class B. Information is said to flow from class A to
class B whenever information associated with A affects
the value of information associated with B. In this
paper we shall be concerned only with flows which
result from (sequences of) operations that cause in-
formation to be transferred from one object to another
(e.g. copying, assignment, l /o, parameter passing, and
message sending). This includes flows along "legitimate"
and "storage" channels. We shall not be concerned
with flows along "covert" channels (i.e. a process's
effect on the system load) [16].

The security requirements of the model are simply
stated: a flow model FM is secure if and only if execution
of a sequence of operations cannot give rise to a flow
that violates the relation "--+". If a value f (a l , . . . , a,)
flows to an object b that is statically bound to a se-
curity class _b, then a~ G . . . @ a_,---~_b must hold.
I f 3 ' (a l , . . . , a,) flows to a dynamically bound object
b, then the class of b must be updated (if necessary)
so that _aa @ . . . ~3 _a, ~ b holds for this case also.
Assuming that "---~" is transitive, it is easily shown

that the security of individual operations implies that of
arbitrary sequences of operations [4]. The assumption
of transitivity is justified below.

The model we have outlined is a simplified form of
the one in [4]. The detailed model accounts for a set of
"states" of an underlying computer system and a set of
"transition operators" for describing state changes and
their associated reformation flows. It also accounts for
such implementation requirements as tags that mark
memory locations with the class of information stored
in them, or the necessity of nullifying a memory cell
when it is deallocated.

2.2 Derivation of Lattice Structure
Under certain assumptions, the model components

SC, "--¢', and " @ " form a universally bounded lattice.
These assumptions are not arbitrary, but follow from
the semantics of information flow. By this we mean
either that no generality is lost by them or that they
are required for consistency. Consistency means that all
flows implied by a permissible flow should also be
permitted by the flow relation. For example, if the
statement begin b := a; c := b end is secure, then
the statement c := a should also be secure. Without a
consistent flow structure, it would be possible to mas-
querade insecure operations as secure ones.

A universally bounded lattice is a structure con-
sisting of a finite partially ordered set together with
least upper and greatest lower bound operators on the
set [3, 21]. To show that (SC, ---b 0) forms such a
lattice, we establish that:

(1) (SC, ---~) is a partially ordered set.
(2) SC is finite.
(3) SC has a lower bound L such that L ~ A for all

A E S C .
(4) @ is a least upper bound operator on SC.

These assumptions then imply the existence of a great-
est lower bound operator on SC, which we denote by
"®". This in turn implies the existence of a unique
upper bound H. Therefore, the structure (SC, --~, G, ®)
is a lattice with lower bound L and upper bound H.

Assumption (1), that (SC, --+) is a partially or-
dered set, is demonstrated by showing that the relation
"---~" is reflexive, transitive, and antisymmetric; that
is, for all A, B, C E SC:

(a) A ~ A (reflexive).
(b) A --* B and B ~ C ~ A ~ C (transitive).
(c) A ~ B and B ~ A ~ A = B (antisymmetric).

Reflexivity is required for consistency: since the state-
ment a := a is trivially secure, an inconsistency would
exist if A -~ A for any A E SC. Transitivity follows
from a similar requirement. Since A ~ B implies per-
mission to move a value x from an object in A to one
in B, and B --~ C implies it is in turn permissible to
move x to an object in C, an inconsistency arises if

237 Communications May 1976
of Volume 19
the ACM Number 5

.4 -~ C. I t is easily shown [4] that this assumption
implies that a sequence of operations is secure if each
operation is individually secure. Antisymmetry follows
f rom the practical assumption of irredundant classes,
for .4 ~ B and B ~ A would imply that anything in
one class can be moved into the other, whereupon one
of them is unnecessary.

Assumption (2), that the set of security classes SC
is finite, is a property of any practical system.

Assumption (3), that there exists a lower bound
L on SC, can be made without loss of generality. All
constants are candidates for membership in L. How-
ever, even if constants must be divided among several
classes, L itself need not have any objects assigned to it.

Assumption (4), that the class-combining operator
" @ " is also a least upper bound operator, is demon-
strated by showing that for all A,B,C E SC:

(a) . 4 ~ A @ B and B - - * A @ B.
(b) A --* C and B--* C ~ A @ B - - . C.

Without property (a) we would have the semantic
absurdity that operands could not flow into the class of
a result generated f rom them. Moreover, it would be
inconsistent for an operation such as c :=- a -k- b
to be permitted whereas e :-= a is not, since the latter
operation can be performed by executing the former
with b = 0. For part (b), consider five objects a, b,
e, el, and c2 such that a ~ _c, _b --~ _c, and c = c / = ~2;
and consider this p rogram segment:

cl := a;
c2 := b;
c := ci*c2.

Execution of this p rogram segment assigns to c infor-
mation derived f rom a and b; therefore, the flow
q @ b ~ c is implied semantically. For consistency,
we require the flow relation to reflect this fact. Thus for
any two classes .4 and B, .4 @ B is the least upper
bound, also referred to as the "join," of`4 and B.

I t is useful to extend the domain of the least upper
bound operator to subsets. For a subset X of SC, let
@X denote L if X is empty, and the least upper bound
of the classes in X otherwise. Then for n > 1 and
X = { A 1 , . . . , .4,~1, @X = .41 ~3 . . . @ An; further-
more, `4i ~ B(I < i < n) if and only if @X --> B, or
A1 ~ . . . @ An ~ B. This says that information in
objects al , a~ can flow separately into an object b
if and only if _al @ . . . ~ _an --~ _b (i.e. the class cor-
responding to the combination of classes of a l , . . . , a ,
can flow into the class of b). The least upper bound
property also implies that @ is associative and com-
mutative; hence d := (a ,b) ,c is secure if and only if
d := b , (c .a) is secure (which is also required for con-
sistency). The highest class H is defined as @ SC; since
it need not have any objects assigned to it, no generality
is lost by assuming its existence. Although informa-
tion can reach H from any other class, it is not allowed
ot flow f rom H to any other class.

Assumptions (1)-(4) imply the existence of a

Fig. 1. Linear ordered lattice.

SC = {A~, . . . ,A.} A.
T

A¢ ~ Aj iff i _< j A._i

A~ @ AS ~- A~.~C.j)
T

T

Description Representation

greatest lower bound operator on the security classes,
which we denote by " ® " . I t is shown in [4] that
A ® B = @L(A, B), where L(A, B) = { C [C ~ A
and C ---} B]. As with the least upper bound "@",
" ® " can also be extended to operate on subsets of
the security classes SC. For a subset X of SC, let ® X
be H if X is empty, and otherwise the greatest lower
bound of the classes in X. Then for n > 1 and
X = { B 1 , . . . , B,}, ® X = B1 ® . . . ® B,; further-
more, A --~ B,(1 < i __< n) if and only i f A - - ~ ®X,
or A ~ B1 ® . . . ® B,. This says that information in
an object a can flow into objects b l , . . . , b , if and
only if q ~ bl ® . . . ® _b,. We observe that the lowest
class L is just the greatest lower bound of the entire
(finite) set of security classes (i.e. L = N S C) .

2.3 E x a m p l e s
Figure 1 illustrates that a simple linear ordering on

a set of security classes SC satisfies the lattice property.
The graphical representation is a standard precedence
graph for a partial order, showing only the nonre-
flexive, immediate relations. This structure is suitable
for any system in which the classes are linearly (or
hierarchically) ordered. One case is a government or
military system in which the security classes are de-
termined solely f rom the four security levels: unclassi-
fied, confidential, secret, and top secret. An even simpler
case is a system that needs only two classes: unconfi-
dential (L) and confidential (H), with the single security
requirement that confidential information cannot flow
into an unconfidential object. This case is considered by
Denning, Denning, and Graham [5] and also by
Fenton (using the names null and priv for L and H,
respectively) [6, 7].

A richer structure satisfying the lattice property is
derived from a nonlinear ordering on the set of all
subsets of a given finite set X. Figure 2 illustrates this
for X = {x, y, z}. This structure is suitable when X
is regarded as a set of properties and classes as combi-
nations of properties f rom X; information in an object
a is not permitted to flow into an object b unless b has
at least the properties of a. Consider, for instance, a
system that contains medical, financial, and criminal
records on individuals (i.e. X = {reed, fin, crim}).
Then medical information would be permitted to flow

238 Communications May 1976
of Volume 19
the ACM Number 5

into only those objects b for which med E _b, or a com-
bination of medical and financial information would
be permitted to flow into only those objects b for which
med C b and fin E _b.

Still richer structures can be constructed as combi-
nations of the two examples above. The profiles of
ADEPT [23] form a lattice determined by the (Car-
tesian) product of two lattices. One lattice is derived
from a linear ordering of a set of Authority Levels
corresponding to the (unclassified, confidential, etc.)
levels of government and military security. The other
lattice is derived from an ordering by subsets of the
set of all subsets determined by a collection of Cate-
gories (properties) corresponding to special control
compartments used to restrict access by project and
area.

3. Enforcement of Security

The primary difficulty with guaranteeing security
lies in detecting (and monitoring) all flow causing
operations. This is because all such operations in a
program are not explicitly specified--or indeed even
executed! As an example, consider the statement
if a = 0 then b := 0; i f b ~ 0 initially, testing b = 0
on termination of this statement is tantamount to
knowing whether a = 0 or not. In other words, infor-
mation flows from a to b regardless of whether or not
the then clause is executed.

To deal with this problem, we distinguish between
two types of flow: "explicit" and "implicit." Explicit
flow to an object b occurs as the result of executing
any statement (e.g. assignment or I/o) that directly
transfers to b information derived from operands
a ~ , . . . , a,. Implicit flow to b occurs as the result of
executing--or not executing--a statement that causes
an explicit flow to b when that statement is conditioned
on the value of an expression. To illustrate the differ-
ence: the statement if a = 0 then b := c causes an
explicit flow from c to b only when a = 0 and the as-
signment to b is performed, but it causes an implicit
flow from a to b irrespective of the truth of a = 0.

To specify the security requirements of programs
causing implicit flows, it is convenient to consider an
abstract representation of programs that preserves the
flows but not necessarily all of the original structure.
An abstract program (or statement) S is defined re-
cursively by:

(I) S is an elementary statement; e.g. assignment or I/O.
(2) There exist S~ and $2 such that S = S~; $2.
(3) There exist S ~ , . . . , S,, and an m-valued variable

c such that S = c:S~ , . . . , S,,.

Step (1) declares simple statements as abstract pro-
grams. Step (2) declares sequences of simpler programs
as abstract programs. Step (3) declares conditional
structures, in which the value of a variable selects

among alternative programs, as abstract programs.
Implicit flows can occur only in type (3) structures.

The conditional structure is used to represent all
conditional (including iterative) statements found in
programming languages. For example, if c then $1
else $2 is represented by c:S1, $2. Both if c then $1
and while c do Sx are represented by c:Sx, and do
ease c of $ 1 ; . . . ; Sm is represented by c:S1, . . . ,S~.
When an expression e selects among alternative pro-
grams $ 1 , . . . , Sin, we use the representation c := e;
c :S~ , . . . , Sin. Structures arising from the unrestricted
use of goto statements can also be represented by the
conditional structure, but to do so requires a control
flow analysis of the program to determine the set of
statements directly conditioned on the values of a
variable.

The security requirements for any program of the
above form are now stated simply. First, an elemen-
tary statement S is secure if any explicit flow caused
by S is secure. Specifically, if S replaces the contents of
an object b with a value derived from objects a ~ , . . . , a ,
(a~ = b for some ai is possible), then security requires
that a_~ @ . . . @ a_,, ~ b hold after execution of S.
If b is dynamically bound to its class, it may be neces-
sary to update b when S is executed. Second, S = S~; $2
is secure if both $1 and $2 are individually secure
(because of the transitivity of "---~"). Third,
S = c :S~ , . . . , Sm is secure if each Sk is secure and all
implicit flows from c are secure. Specifically, let
b l , . . . , b, be the objects into which S specifies ex-
plicit flows (i.e. i = I , . . . , n implies that, for each b~,
there is an operation in some Sk that causes an explicit
flow to b~); then all implicit flow is secure if
e ~ _b~(l < i < n), or equivalently c ~ bt ® . . . ® b,~,
holds after execution of S. If b~ is dynamically bound
to its security class, it may be necessary to update
bi by b i : = bi @ c.

Mechanisms implementing some or all of the se-
curity requirements above have been incorporate d into
ADEPT-50 [23], the MITRE system [2], the Case
system [22], Rotenberg's Privacy Restriction Processor
[19], Fenton's Data Mark Machine [6, 7, 8], and the
security mechanisms proposed by Gat and Saal [10],
Jones and Lipton [14], and the author [4]. The follow-
ing description of these mechanisms distinguishes those
supporting only static binding from those supporting
both static and dynamic binding.

4. Mechanisms for Static Binding

Mechanisms that enforce security in an env'ronment
that supports only static binding of objects to security
classes are further characterized by whether they operate
at run time or at compile time. The first two mecha-
nisms we shall consider are run-time enforcement
mechanisms; the third is a compile-time certification
mechanism.

239 Communications May 1976
of Volume 19
the ACM Number 5

4.1 Access Control Mechanisms
In both the Case system [22] and the M I T R E

system [2], each process p has an associated clearance
class p specifying the highest class p can read from
(observe) and the lowest class p can write into (modify
or extend). Security is enforced by a run-time mecha-
nism that permits p to acquire read access to an object
a only if a ~ _p, and write access to an object b only if
p ~ b. Hence, p can read from a ~ , . . . , am and write
into bl, . . . , b,~ only if ql @ • • • @ _am ~ P --, bl ® . . . ®
bn. This mechanism automatically guarantees the se-
curity of all flows, explicit or implicit, since no flow from
an object a to an object b can occur unless a ~ p ~ b,
which implies a --~ b.

4.2 The Data Mark Machine
Fenton proposed an interesting run-time enforce-

ment mechanism in the context of an abstract computer
called a Data Mark Machine [6, 7, 8]. The Data Mark
Machine is a Minsky machine [17] extended to include
tags (data marks) for binding objects to security classes.
Fenton 's important observation was that a class p
should be associated with the program counter of
process p. This class is determined as follows: whenever
a conditional structure c : S ~ , . . . , Sm (m = I in the
Minsky machine) is entered, the current class _p is
pushed onto a stack, and _79 is replaced with _p @ _e;
on exit f rom the structure, _p is restored by popping the
stack. Immediately prior to execution of a statement S
conditioned on the values of k condition variables
c l , . . . , ok, _p is the least upper bound of the classes of
ca, . . . , ek (i.e. p = _el @ . . . (9 ek). I f S specifies an
explicit flow from objects a l , . . . , a , (n = 1 in the
Minsky machine) to an object b, the instruction execu-
tion mechanism verifies that _a~ (9 • . . (9 _a, @ _p ~ b,
and inhibits the execution of S if the condition is not
satisfied; this automatically checks implicit flows to
b (as well as explicit ones) when an explicit flow to b
occurs. Fenton proves that this mechanism is also
sufficient to insure the security of all implicit flows by
proving that under static binding, it is not necessary
to verify at run-time implicit flows that occur in the
absence of explicit ones. As we shall see later, this
result does not hold under dynamic binding.

4.3 Certification Mechanism
In [4] a program certification mechanism is pro-

posed to enforce security. Program certification mecha-
nisms have at least three advantages over run-time
enforcement mechanisms. First, the execution of a
program is guaranteed to be secure before it executes;
hence a program cannot leak information by purposely
causing security violations. An uncertified program
having access to a confidential value x might at tempt to
convey this value illegally to its owner by causing x
security violations; the owner may then be able to ob-
tain the value of x from a record of aborted operations !

Fig. 2. Lattice of subsets ofX = {x, y, z}.

s c = powerset (X)

A --~ B iff A C B Ix,y,z}
- / r \

,4 t~ B m ,4 g B Ix,y} Ix,zl {y,z}

L= H=X "'-,. 7 7
Description Representation

(One solution to this problem is to inhibit all illegal
operations without recording their occurrence, or else
to record them only after they exceed some limit [6, 19];
this obstructs debugging). The problem is eliminated
entirely with a certification mechanism. Second, a
certification mechanism does not impair the execution
speed of a program, since all security checks are per-
formed prior to program execution (although some
run-time support may still be necessary). Third, the
certification process itself can be specified in terms of
higher-level language structures, rather than low-level
hardware instructions. In this form it is more under-
standable and correctness is more easily established.

On the other hand, program certification mecha-
nisms have two possible limitations. First, flows not
specified by a program cannot be verified. Such a flow
could result f rom a language implementation defect
that a/lows, for example, array bounds to go unchecked
or dangling references to occur. Removal of this limi-
tation is possible with adequate language support.
Second, a program certified as secure can be trans-
formed by hardware malfunction into an insecure one.
Removal of this limitation is possible with a run-time
mechanism that doublechecks all flows.

The proposed certification mechanism operates by
examining the flow of data through a program to de-
termine its consistency with the flow relation on the
given security classes. To make this possible, the pro-
grammer must specify (through appropriate declara-
tions) security classes for all objects referenced in the
program. The following is an overview of a mechanism
detailed in [4].

The lattice properties of the model are exploited to
construct an efficient mechanism that is easily incor-
porated into the analysis phase of a compiler for a
high-level language. We shall describe the mechanism
in terms of the semantic actions of a compiler that
certifies the security of a program having an abstract
structure as defined in Section 3.

Consider first an elementary statement S specifying
an explicit flow from a va luef(a l , . . . , a ,) to an object
b. To verify that _al @ . . . @ a , ~ b, the compiler

computes the c l a s s f (a l , . . . , a ,) = a l @ . . . @ a , as
the objects a~ are recognized; it then verifies that
~ r (a l , . . . , a ,) ~ b when S is recognized. The compiler

240 Communications May 1976
of Volume 19
the AGM Number 5

also associates with S the class _b. For example, if S
is the assignment statement d := e, where e is the
expression a -q- b . c , the compiler would compute
_e = a @ _b @ c during the recognition of e, verify
e_ ~ d_ when the assignment is recognized, and set
_S : = ~.

Consider next a sequence S = $1; $2. In this case,
the compiler simply sets S := S~ ® _$2. Flow relation
transitivity implies that no security checks need be
performed in this case.

Consider finally a conditional structure S =
c : S ~ , . . . , S,~. In this case the compiler sets S :=
S~ ® . . . ® S,~; this guarantees that S = bl ® . . . ® _b,,
where b ~ , . . . , b, are the objects information can ex-
plicitly flow to in S ~ , . . . , Sin. The security of the im-
plicit flows from c to b x , . . . , b , is then checked by
verifying c --+ S. For example, if S is the statement
i f c then begin a := 0; b := 1 end, the relation
e ~ a ® _b is verified.

5. Mechanisms for Dynamic Binding

A system based purely on dynamic binding is not
practical: some objects and most users are usually
considered to have a fixed class. Were this not the case
in a government or military system, for example, an
unclassi f ied user would be able to raise his clearance
by accessing top secre t data!

Secure flow into the statically bound objects of a
system can be enforced with the mechanisms of Sec-
tion 4. (Note, however, that a certification mechanism
cannot be used if its source objects are dynamically
bound). Secure flow into the dynamically bound objects
of a system can be enforced with the mechanisms of
this section.

There is one intrinsic problem with dynamic up-
dating mechanisms: a change in an object 's class may
remove that object from the purview of a user whose
clearance no longer permits access to the object. The
class-change event can thereby be used to leak informa-
tion, e.g. by removing f rom the user 's purview a file
meaning "0".

5.1 Dynamic Data Mark Machine
One form of dynamic binding mechanism is a modi-

fied version of Fenton 's Data Mark Machine. Updat ing
the class of a dynamically bound object whenever in-
formation flows into it follows this simple principle:
whenever a statement S specifying a flow from objects
a l , . . . , a , to a dynamically bound object b is executed,

the class o f b is changed, viz., _b := ~1 @ • • • • a , @ _p,
where ~ is the class of the program counter. (In the
case of static binding, the mechanism verifies the re-
lation a_l ~ . . . @ a_~ @ _p ~ b; this mechanism forces
the relation to be true by updating b). That this mecha-
nism alone is insufficient to guarantee security can be

seen by considering the execution of the following
program (proposed by Fenton [7]).

b := c := false;
if ~ a then c : = true;
if N c then b := true

Assuming that the constants true and f a l s e are in the
least class L, execution of this program by a process p
proceeds as follows:

b := c:=false; b := _c:=L;
P_:= a; if~-~athen { c : = t rue; _ c : = L ~ P}; P.:=L;
P := _c; i f ~ c t h e n {b := true; b : = L ~ P}; /~ := L

Since p = L @ p, this simplifies to:

b := c := false; b := _c := L;
i f ~ a t h e n {c := true; _c:= a_};
ff~-~ethen {b := true; b : = _cl

When a is true, the test " H a " fails so that (c, _c) remains
(fa l se , L); hence the test "~..~c" succeeds and (b, b)
becomes (true, L) . When a is f a l s e , the test ~--~a succeeds
so that (c, c) becomes (true, a); hence the test ~-~c
fails and (b, _b) remains (fa l se , L) . Therefore, in both
cases the process terminates with b = a yet _b = L.
This is because the updating mechanism does not ac-
count for the implicit flow that occurs when the
statements c := true and b := true are not
executed. Therefore, a security violation results un-
less a = L.

Fenton [6] and Gat and Saal [10] propose a solution
to this problem. In essence, it involves restoring the
class and value of any object whose class was increased
during execution of a conditional structure to the class
and value it had just before entering the structure.
Hence, the objects whose class and value are restored
behave as "local objects" within the conditional struc-
ture. This insures the security of all implicit flows by
nullifying those that caused a class increase. For ex-
ample, in the above program the value of c would be
reset to f a l s e after execution of the statement

ff Ha then c : = true

if the statement c := true were executed.
In [4] a different solution is proposed. I t is based on

augmenting the run-time mechanism with a compile-
time mechanism. Having performed a data flow analysis
of a program to determine what objects could receive
an implicit flow without the hardware performing a
required class increase, the compiler inserts updating
instructions into the compiled program to perform the
required class updates. For example, in the program
given above, the compiler would insert an instruction
at the end of the statement i f ~.~a then c := true to
update _c by p (i.e. set c := a) before the stack is popped
and _p restored to its value before the if statement was
executed; hence c is guaranteed to be updated to reflect
the implicit flow from a even if the assignment to c
is not performed.

241 Communications May 1976
of Volume 19
the ACM Number 5

5.2 N o n d e c r e a s i n g Class M e c h a n i s m s

Another type of mechanism is based on the prin-
ciple of never decreasing the class of an object; that is,
if information flows from an object a to an object b,
the class of b is always updated by b := _b @ _a (even if
the contents of b are replaced by a). Similarly, the class
p associated with a process is monotonic nondecreasing.
This type of mechanism is used by ADEPT [23],
Rotenberg's Privacy Restriction Processor [19], and
the surveillance and high water mark mechanisms in
[14] (the surveillance mechanism permits the class of a
storage object to decrease when its contents are re-
placed by data in a lower class, but not the program
counter p). In Rotenberg's Processor, p is determined
by the " @ " of the classes ot all objects read (rather
than only those of the condition variables involved in
implicit flows as in the Data Mark Machine). Hence
whenever p writes any information into an object b,
its class can be updated by _b := /2 @ _p to reflect both
implicit and explicit flows to b. ADEPT is similar, but
p is determined by the " @ " of the classes of all files
opened for read or write operations.

A DEP T and Rotenberg's Processor (as described in
[19, 23]) suffer the same problem as the dynamic Data
Mark Machine: they fail to update the class of an ob-
ject b when information flows implicitly to b in the
absence of any explicit flow. That the class associated
with p is nondecreasing has no bearing on this problem.
To see why, suppose the example program in Section
5.1 is split between two processes p and q as follows:
p: c := false;

if Ha then c : = true
q : b := false;

if N c then b : = t r u e

If p and q are executed sequentially and c is global to
both processes, process q terminates with b = a, yet
b = L as before. Even though the classes p and q of
the program counters are nondecreasing, they are inde-
pendent of each other; p is forgotten between the termi-
nation o fp and the initiation of q.

To solve this problem, an additional mechanism
such as described in Section 5.1 is necessary to insure
that al ! implicit flows caused by a process p are secure.
For example, using the approach adopted in [4], every
object b that could receive an implicit flow without a
required class change could have its class updated by
_b := b @ p when p terminates. The mechanisms in
[14] resolve this problem by erasing the contents of
b if it does not satisfy the relation _p --~ /2 when p
terminates.

Actually ADEPT appears to have an even more

fundamental flaw (from our point of view). According
to the description in [23], a process p with top secret
clearance can write into an existing file with a lower
class regardless of the state of p. Since existing files are
statically bound, it can thus transfer data from a top
secret file to an unclassified one!

6. Conc lus ions

The model and mechanisms we have described have
many applications. One is confinement: constraining a
service process from leaking confidential information
about a customer process [16]. The usual solution to
this problem is to prevent the service process from re-
taining any information, confidential or not, after it
ceases to operate on behalf of a customer [1, 13, 16].
By controlling the flow of information from confidential
to nonconfidential objects, a more flexible solution is
possible which permits the service process to save
nonconfidential information [4, 5, 7].

Another application is databases. In addition to
being able to control the flow of "raw data" in the
database to users, it is possible to control the flow of
correlations of the data. As an example, consider a
database containing a list of names associated with one
class and a list of corresponding salaries associated with
another. It is possible to separately control information
flow about names, salaries, and (name, salary) pairs.

The model does not pretend to address all of the
security requirements of a system. Certain requirements
that are frequently modeled by an access matrix [11, 15]
(e.g. controlling a process's execute access rights to
code segments) have been intentionally omitted from
the model. On the other hand, by decoupling the right
to access information from the right to disseminate it,
the flow model goes beyond the access matrix model in
its ability to specify secure information flow. A practical
system needs both acce3s and flow control to satisfy
all security requirements.

Acknowledgmen t s . I wish especially to thank Peter
Denning and Butler Lampson; their combined sug-
gestions for improving (and correcting!) the earlier
versions of this paper nearly equalled in length that of
the paper! I wish also to thank Herbert Schwetman for
supervising the thesis research which led to the model
and mechanisms described here and Kenneth Omahen
for persistently challenging my derivation of the lattice
structure. Finally, I wish I knew who the referees were
so I could thank them personally!

242 Communications May 1976
of Volume 19
the ACM Number 5

References
1. Andrews, G.R. COPS--a protection mechanism for computer
systems. Ph.D. Th., U. of Washington, July 1974.
2. Bell, D.E., and LaPadula, L.J. Secure computer systems:
mathematical foundations and model. M74-244, The MITRE
Corp., Bedford, Mass., May 1973.
3. Birkhoff, G. Lattice Theory. Amer. Math. Soc. Col. Pub.,
XXV, 3rd. ed., 1967.
4. Denning, D.E. Secure information flow in computer systems.
Ph.D. Th., Purdue U., CSD TR 145, May 1975.
5. Denning, D.E., Denning, P.J., and Graham, G.S. Selectively
confined subsystems. Proc. International Workshop on Protection
in Operating Systems. IRIA, Aug. 1974, pp. 55-61.
6. Fenton, J.S. Information protection systems. Ph.D. Th.,
U. of Cambridge, 1973.
7. Fenton, J.S. Memoryless subsystems. Computer J. 17, 2
(May 1974), 143-147.
8. Fenton, J.S. An abstract computer model demonstrating
directional information flow. U. of Cambridge, 1974.
9. Gaines, R.S. An operating system based on the concept of a
supervisory computer. Comm. ACM 15, 3 (March 1972), 150-156.
10. Gat, I., and Saal, H.J. Memoryless execution: a programmer's
viewpoint. IBM Tech. Rep. 025, IBM Israeli Scientific Center,
March 1975.
11. Graham, G.S., and Denning, P.J. Protection--principles
and practice. AFIPS Conf. Proc., Vol. 40, 1972 SJCC, AFIPS
Press, Montvale, N.J., pp. 417--429.
12. Harrison, M.A., Ruzzo, W.L., and Ullman, J.D. On protec-
tion in operating systems. Proc. Fifth Symposium on Operating
Systems Principles, The University of Texas at Austin, Nov.
1975, pp. 14-24.
13. Jones, A.K. Protection in programmed systems. Ph.D. Th.,
Carnegie-Mellon U., June 1973.
14. Jones, A.K., and Lipton, R.J. The enforcement of security
policies for computation. Proc. Fifth Symposium on Operating
Systems Principles, The University of Texas at Austin, Nov.
1975, pp. 197-206.
15. Lampson, B.W. Protection. Proc. Fifth Princeton Symposium
on Information Sciences and Systems, Princeton U., March 1971,
pp. 437-443.
16. Lampson, B.W. A note on the confinement problem. Comm.
ACM 16, 10 (Oct. 1973), 613-615.
17. Minsky, M.L. Computation; Finite and Infinite Machines.
Prentice-HaU, Engiewood Cliffs, N.J., 1967.
18. Organick, E.I. The MULTICS System: An Examination of
its Structure, MIT Press, 1972.
19. Rotenberg, L.J. Making computers keep secrets. Ph.D. Th.,
MIT, MAC TR-115, Feb. 1974.
20. Schroeder, M.D., and Saltzer, J.H. A hardware architecture
for implementing protection rings, Comm. ACM 15, 3 (March
1972), 157-170.
21. Stone, H.S. Discrete Mathematical Structures and their
Applications. SRI, Chicago 1973.
22. Walter, K.G., et al. Modeling the security interface. Rep.
No. 1158, Jennings Computing Center, Case Western Reserve U.,
Aug. 1974.
23. Weissman, C. Security controls in the ADEPT-50 time-sharing
system. AFIPS Conf. Proc., Vol. 35, 1969 FJCC, AFIPS Press,
Montvale, N.J., pp. 417--429.
24. Wulf, W., et al. HYDRA: The kernel of a multi-processor
system. Comm. ACM 17, 6 (June 1974), 337-345.

Ope ra t i ng R.S. Ga ines
Sys tems Ed i to r

Security Kernel
Validation in Practice
Jonathan K. Millen
The MITRE Corporation

A security kernel is a software and hardware
mechanism that enforces access controls within a com-
puter system. The correctness of a security kernel on
a PDP-11/45 is being proved. This paper describes the
technique used to carry out the first step of the proof:
validating a formal specification of the program with
respect to axioms for a secure system.

Key Words and Phrases: validation, verification,
correctness, security kernel, formal specification,
protection

CR Categories: 4.35, 4.6, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

A version of this paper was presented at the Fifth ACM Sym-
posium on Operating Systems Principles, The University of Texas
at Austin, November 19--21, 1975.

This work was supported by the U.S. Air Force under Con-
tract No. F19628-75-C-0001. Author's address: The MITRE
Corporation, P.O. Box 208, Bedford, MA 01730.

243 Communications May 1976
of Volume 19
the ACM Number 5

