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Goal: View machine learning through 
the lens of a security specialist.  



What is “Machine Learning?”
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Autonomous Driving

https://medium.datadriveninvestor.com/goal-setting-lessons-
from-reinforcement-learning-d0c58b321391

Voice Assistants

https://www.geico.com/living/home/technology/voice-
assistant/

Product Recommendation

https://www.farfetchtechblog.com/en/blog/post/how-to-build-a-
recommender-system-it-s-all-about-rocket-science-part-1/
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Autonomous Driving

https://twitter.com/jordanteslatech/status/1418413307862585
344?lang=en

Voice Assistants

https://www.bbc.com/news/technology-59810383

Product Recommendation

https://twitter.com/whoschaos/status/939999586998943744?lang=
en
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Can we force machine learning to make mistakes?

Source: https://www.techrepublic.com/article/why-microsofts-tay-ai-bot-went-wrong/ April 25, 2022



Can we force machine learning to make mistakes?
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“How did this happen?”
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What (really) is “Machine Learning?” 

Source: https://www.ibm.com/ibm/history/ibm100/us/en/icons/ibm700series/impacts/ April 25, 2022

In 1962, Samuel’s Checkers program defeats self-proclaimed checkers master, Robert 
Nealey, played on an IBM 7094 computer. 

“The field of study that gives computers the ability to 
learn without explicitly being programmed.”
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• It begins with an assumption…

Maybe it’s a line… … or a collection of if-
then-else rules…(Linear Regression)

(Decision Trees)

… or maybe you 
don’t know…

• ... and some data… 

“badger” “mushroom” “snake” Having these allows us to use supervised learning algorithms 
(which Tay was likely using), otherwise, we use unsupervised approaches
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• … a measurement of error…

Maybe it’s the 
distance from a line…

… or the difference 
between two distributions.

(Mean Squared Error) (Cross-Entropy)

• ... and way to minimize it. 

i.e., through hill climbing…
(Gradient Descent)

… or minimizing disorder.
(Information Gain)

There are many, many ways to 
deploy machine learning models.
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What can go wrong?
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min
!
𝐿 𝑓! 𝑥 , 𝑦

Model

DataError 

LabelsOptimizer

Data (often the most 
valuable resource) is 

assumed collected faithfully… 

… and the corresponding 
labels are assumed to be 

accurately described.
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Q: What if an adversary controls
(some portion) of your data?

A: They can influence the decision boundary.

Under this threat model:
• Threat: An adversary who can 

add (data, label) pairs
• Vulnerability: Decision 

boundary can be manipulated
• Exploit: ?



Suppose not: Integrity Attacks, Pt. I

Source: https://www.techrepublic.com/article/why-microsofts-tay-ai-bot-went-wrong/ & https://giphy.com/explore/order-66 April 25, 2022

Q: What if an adversary controls
(some portion) of your data?

A: They can influence the decision boundary.

Under this threat model:
• Capability: Adversary can add 

(data, label) pairs
• Vulnerability: Decision 

boundary can be manipulated
• Exploit: ?

A bot that only 
tweets profanities

A system that has 
backdoors

https://www.techrepublic.com/article/why-microsofts-tay-ai-bot-went-wrong/
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This is known as a poisoning attack
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Suppose not: 
Integrity 

Attacks, Pt. II

Q: Okay sure, but what if they don’t 
have control over the training data? 

min
!
𝐿 𝑓! 𝑥 , 𝑦

Model

Data Error 

LabelsOptimizer

Machine learning systems often follow a 
two-stage lifecycle: training and inference



Source: https://paperswithcode.com/dataset/imagenet & https://www.carscoops.com/2020/01/this-is-what-teslas-autopilot-sees-on-the-road/ April 25, 2022
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Training Inference
“Deployment”



Source: https://paperswithcode.com/dataset/imagenet & https://www.carscoops.com/2020/01/this-is-what-teslas-autopilot-sees-on-the-road/ April 25, 2022

Suppose not: 
Integrity 

Attacks, Pt. II

min
!
𝐿 𝑓! 𝑥 , 𝑦 𝑓! 𝑥

Training Inference
“Deployment”

What can an adversary 
do at inference?



Source: https://www.iangoodfellow.com/slides/2017-05-30-Stanford-cs213n.pdf April 25, 2022

Suppose not: 
Integrity 

Attacks, Pt. II

An observation….
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Suppose not: 
Integrity 

Attacks, Pt. II min
!→$

𝐿 𝑓! 𝑥 , 𝑦airplane
Model

Data Error 

LabelsOptimizer



Source: https://arxiv.org/pdf/1412.6572.pdf April 25, 2022
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Suppose not: 
Integrity 

Attacks, Pt. II
Adversarial examples are inputs designed

to induce worst-case behavior



April 25, 2022

Suppose not: 
Integrity 

Attacks, Pt. II

Adversarial Examples, formalized

arg min
!

𝜖 "

such that: 𝑓# 𝑥 + 𝜖 ≠ 𝑦
𝑥 + 𝜖 ∈𝐵$

"



April 25, 2022

Suppose not: 
Integrity 

Attacks, Pt. II

Adversarial Examples, formalized

arg min
!

𝜖 "

such that: 𝑓# 𝑥 + 𝜖 ≠ 𝑦
𝑥 + 𝜖 ∈𝐵$

"

Find me the 
smallest change…



April 25, 2022

Suppose not: 
Integrity 

Attacks, Pt. II

Adversarial Examples, formalized

arg min
!

𝜖 "

such that: 𝑓# 𝑥 + 𝜖 ≠ 𝑦
𝑥 + 𝜖 ∈𝐵$

"

Find me the 
smallest change…

… that is misclassified 
by my model….



April 25, 2022

Suppose not: 
Integrity 

Attacks, Pt. II

Adversarial Examples, formalized

arg min
!

𝜖 "

such that: 𝑓# 𝑥 + 𝜖 ≠ 𝑦
𝑥 + 𝜖 ∈𝐵$

"

Find me the 
smallest change…

… that is misclassified 
by my model….

… yet still close to the 
original sample.



April 25, 2022

Suppose not: 
Integrity 

Attacks, Pt. II

Adversarial Examples, formalized

arg min
!

𝜖 "

such that: 𝑓# 𝑥 + 𝜖 ≠ 𝑦
𝑥 + 𝜖 ∈𝐵$

"

Find me the 
smallest change…

… that is misclassified 
by my model….

… yet still close to the 
original sample.

Fast-Gradient Sign Method

Basic Iterative Method

Jacobian-based Saliency Map Approach

Carlini-Wagner
Projected Gradient Descent

Auto Projected Gradient Descent
Shadow

Wasserstein

Brendel & Bethge

Iterative Frame Saliency

NetwonFool

DeepFool
Adversarial Patch

Elastic Net

Fast Adaptive Boundary

Square

Virtual Adversarial Method

Universal Perturbation

Feature Adversaries

ShapeShifter
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This is known as an evasion attack
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Suppose not: 
Integrity 

Attacks, Pt. II

Under this threat model:
• Threat: An adversary can use 

model information to slightly 
manipulate inputs

• Vulnerability: Inputs can be 
misclassified (while preserving 
underlying semantics)

• Exploit: ?

This is known as an evasion attack



Source: https://seclab.stanford.edu/AdvML2017/slides/dawn-stanford-ai-security-workshop-short-sep-2017.pdf & https://arxiv.org/pdf/2110.03301.pdf April 25, 2022

Suppose not: 
Integrity 

Attacks, Pt. II

Under this threat model:
• Threat: An adversary can use 

model information to slightly 
manipulate inputs

• Vulnerability: Inputs can be 
misclassified (while preserving 
underlying semantics)

• Exploit: ?

A self-driving vehicle 
controlled by adversaries

Malware that 
evades detection 
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Attacks on 
Confidentiality



Source: https://www.youtube.com/watch?v=eQLcDmfmGB0 & https://ai.google April 25, 2022
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Source: https://en.wikipedia.org/wiki/GPT-3 & https://openai.com/api/pricing/ April 25, 2022
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Attacks on 
Confidentiality

Model

min
!
𝐿 𝑓! 𝑥 , 𝑦

PaaS

“Man”

How can this be 
exploited??



Source: https://arxiv.org/pdf/1609.02943.pdf April 25, 2022
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Model 
Theft

𝑓!( 1, 0 ) = 𝜃% + 𝛽

𝑓!( 0, 1 ) = 𝜃& + 𝛽

𝑓!( 0, 0 ) = 𝛽

With 𝑑 + 1 queries, perfect 
extraction is possible
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Model 
Theft

# Parameters
# Inputs

Fidelity



April 25, 2022

Attacks on 
Confidentiality

Model

min
!
𝐿 𝑓! 𝑥 , 𝑦

PaaS

“Man”

Under this threat model:
• Threat: An adversary can 

query arbitrary inputs
• Vulnerability: Inputs can leak 

varying degrees of model 
information

• Exploit: ?



April 25, 2022

Attacks on 
Confidentiality

Model

min
!
𝐿 𝑓! 𝑥 , 𝑦

PaaS

“Man”

Under this threat model:
• Threat: An adversary can 

query arbitrary inputs
• Vulnerability: Inputs can leak 

varying degrees of model 
information



April 25, 2022

Attacks on 
Confidentiality

Model

min
!
𝐿 𝑓! 𝑥 , 𝑦

PaaS

“Man”

Under this threat model:
• Threat: An adversary can 

query arbitrary inputs
• Vulnerability: Inputs can leak 

varying degrees of model 
information



April 25, 2022

Attacks on 
Confidentiality

Model

min
!
𝐿 𝑓! 𝑥 , 𝑦

PaaS

“Man”

Under this threat model:
• Threat: An adversary can 

query arbitrary inputs
• Vulnerability: Inputs can leak 

varying degrees of model 
information

• Exploit: ?



https://arxiv.org/pdf/1609.02943.pdf April 25, 2022

Attacks on 
Confidentiality

Model

min
!
𝐿 𝑓! 𝑥 , 𝑦

PaaS

“Man”

Under this threat model:
• Threat: An adversary can 

query arbitrary inputs
• Vulnerability: Inputs can leak 

varying degrees of model 
information

• Exploit: ?

Intellectual property can 
be stolen (cheaply)

Training data can be 
recovered (privacy)
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Attacking Availability

https://openai.com/blog/openai-api/ April 25, 2022

What does it mean for machine 
learning to be “available?”
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“Hello” “Bonjour”

Tokenizer (De)Tokenizer

Observations:
1. Lots of (uncommon) input tokens = lots of compute
2. Maximize output sequence length = lots of compute



Sponge Attacks

https://arxiv.org/pdf/2006.03463.pdf April 25, 2022
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Source: https://support.cloudflare.com/hc/en-us/articles/115003011431-Troubleshooting-Cloudflare-5XX-errors April 25, 2022

Model

PaaS

…

Under this threat model:
• Threat: An adversary can 

query arbitrary inputs
• Vulnerability: Model 

throughput is input-specific
• Exploit: ?

An unusable Predictions-
as-a-Service platform
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Machine Learning: The Bottom Line

Sources: https://spectrum.ieee.org/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane April 25, 2022
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Machine Learning: The Bottom Line

Sources: https://news.trust.org/item/20211122213228-wxsz9/ April 25, 2022

This tech is here to stay…

… and we’ll get it wrong at first 
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Machine Learning: The Bottom Line

Sources: https://www.fastcompany.com/90342596/schools-are-quietly-turning-to-ai-to-help-pick-who-gets-in-what-could-go-wrong April 25, 2022

This tech is here to stay…

… and we’ll get it wrong at first 

Privacy
Fairness



Machine Learning: The Bottom Line

Sources: https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html, https://par.nsf.gov/biblio/10173547, https://www.thinkwithgoogle.com/feature/ml-fairness-for-marketers/ April 25, 2022

It is our duty to take this by storm

Academia Policy Awareness
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