
CMPSC443-Computer Security Page

Prof. Syed Rafiul Hussain

Department of Computer Science and Engineering

The Pennsylvania State University

1

CSE 443: Introduction to Computer Security
Module: System Security 

Access Control

Acknowledgements: Some of the slides have been adopted from Trent Jaeger (Penn State)

CMPSC443 - Computer Security Page

Why authenticate?
• Why do we want to verify the identity of a user?

2

CMPSC443 - Computer Security Page

Access Control
• Method for restricting the operations that processes may

perform on a computer system

• aka Authorization

3

CMPSC443 - Computer Security Page

A Brief History
• Early computing systems had no isolation

– Shared memory space

– Shared file space

• Some physical limitations made this OK

– Batch processing

– Load the tape/disk for the application

– Network? What network?

• In the mid-60s people started to work on ‘multiuser’ or ‘time-sharing’
systems

– What about a bug?

– What about my data?

4

CMPSC443 - Computer Security Page

Multiprogrammed Systems
• Multics project

– AT&T, MIT, Honeywell, etc.

– General purpose, multi-user system

– Comprehensive security

• Hardware protection

• Subject labeling

• Permission management

• UNIX project

– Spin-off of Multics project

• When AT&T left

– A stripped-down multiuser system

5

CMPSC443 - Computer Security Page

Access Control
• Why do you need access control?

6

CMPSC443 - Computer Security Page

Access Control
• Why do you need access control?

• Protection

• Prevent errors - oops, I overwrote your files

• Security

• Prevent unauthorized access under all conditions

7

CMPSC443 - Computer Security Page

Access Control
• What is needed for “security”?

• Protect the process - limit others’ access to your resources

• Confine the process - limit your access to others’ resources

8

CMPSC443 - Computer Security Page

Control Access
• An identity permits access to resources

• In computer security this is called

– Access control

– Authorization

• In authorization, we talk about:

– Subjects (for whom an action is performed)

– Objects (upon what an action is performed)

– Operations (the type of action performed)

• Authorization limits a subject’s access perform an operation on an object

– The combination of object and operations allowed are called a permission

9

CMPSC443 - Computer Security Page

Access Control Policy
• What is access control policy?

‣ Check whether a process is authorized to perform perform

operations on an object

• Authorize

‣ Subject: Process

‣ Object: Resource that is security-sensitive

‣ Operations: Actions taken using that resource

• An object+operations is called a permission

‣ Sets of permissions for subjects and objects in a system is called

an access control policy

10

CMPSC443 - Computer Security Page

Access Control Policy
• Access control policy determines what operations a particular subject can

perform for a set of objects
• It answers the questions

‣ E.g., do you have the permission to read /etc/passwd

‣ Does Alice have the permission to view the CSE website?

‣ Do students have the permission to share project data?

‣ Does Dr. Hussain have the permission to change your grades?

• An Access Control Policy answers these questions

11

CMPSC443 - Computer Security Page

Access Control Concepts
• Subjects are the active entities that do things

‣ E.g., you, Alice, students, Prof. Jaeger

• Objects are passive things that things are done to

‣ E.g., /etc/passwd, CSE website, project data, grades

• Operations are actions that are taken

‣ E.g., read, view, share, change

12

CMPSC443 - Computer Security Page

Protection domain

Protection Domains

Program A

Files

• A protection domain specifies the set
of resources (objects) that a process
can access and the operations that the
process may use to access such
resources.

• How is this done today?

• Memory protection

• E.g., UNIX protected memory,  

file-system permissions
(rwx…)Process memory

‣

13

Memory

What should the protection domain of each process be?
Policy is defined with respect to the protection domain it governs.

CMPSC443 - Computer Security Page

Access Policy Model
• A protection system answers authorization queries using a protection state (S),

which can be modified by protection state methods (M)

‣ Authorization query: Can subject perform requested operation on object? Y/N

• A protection state (S) relates subjects, objects, and operations to authorization
query results

‣ E.g., in mode bits, ACLs, … — the policy

• A protection state methods (M) can change the protection state (i.e., policy)

‣ Add/remove rights for subjects to perform operations on objects — change the

policy

14

CMPSC443 - Computer Security Page

Specifying Policy
• Problem - identify subjects, objects, and operations

‣ And authorized permissions for subjects

‣ And rules for switching between subjects

• Finer policy is better for security and functionality, but is
harder to write and manage

15

CMPSC443 - Computer Security Page

Protection Domains
• Balance function and security

• Functionality

• Operations to get the job done

• Security

• Prevent operations that may lead to compromise

• Challenge: Figuring out and specifying authorized

operations for each process

16

CMPSC443 - Computer Security Page

Access Matrix

• Describe all possible accesses

– Operations of (S2,O2)

– E.g., read, write, execute

• Specify which users’ processes can access which files

• Necessary to specify policy to protect users

O1 O2 O3

S1 Y Y N

S2 N Y N

S3 N Y Y

17

CMPSC443 - Computer Security Page

The Access Matrix
• Suppose the private key file for J  

is object O1

‣ Only J can read

• Suppose the public key file for  
J is object O2

‣ All can read, only J can modify

• Suppose all can read and write from  
object O3

• What’s the access matrix?

O1 O2 O3

J ? ? ?

S2 ? ? ?

S3 ? ? ?

18

CMPSC443 - Computer Security Page

Access Control Lists

O1 O2 O3

S1 Y Y N

S2 N Y N

S3 N Y Y

• System stores

– Which operations can subjects perform

– For each object

• Advantage: Makes you think about how to  
protect each object

– Also, easier to confine subjects as we’ll discuss later

• Disadvantage: Cannot tell what permissions  
a particular subject has without looking at  
each object

– Process always uses all of its permissions, as  

we’ll discuss later

19

CMPSC443 - Computer Security Page

Capabilities

O1 O2 O3

S1 Y Y N

S2 N Y N

S3 N Y Y

• System stores

– Which operations can be performed on each object

– For each subject

• Advantages and disadvantages are reverse  
of ACL case, naturally

20

CMPSC443 - Computer Security Page

Authentication and Access
• Authenticate user

– E.g., login and ssh

– Verify password or ...

• Create processes with appropriate identity (subject)

– E.g., UNIX user id

• Limit access of these processes using subject

– E.g., Access control of files based on subject

• Protect one user from another

21

CMPSC443 - Computer Security Page

Authorization Challenges
• Sounds pretty easy, but there are several challenges

– What’s an object?

– What’s an operation?

– What’s a subject?

– Who’s going to manage permissions?

22

CMPSC443 - Computer Security Page

Objects
• What’s an object?

– OS: Many things are files

– Although not all

• Different software components have their own objects

– Virtualization

– Microkernels

– X Windows

– Database

– Apache

– Logrotate

– Clouds

– Social Networks

23

CMPSC443 - Computer Security Page

Operations
• What’s an operation?

– OS: System call

– Well, not really because many things can happen in a single system call

• What happens on a file open?

• Security-sensitive operations

– Any operation that may impact the security of your system

• Confidentiality, Integrity, Availability

– A little bit imprecise, but enables some interaction between subjects

• Lots of security-sensitive operations

– Communication between VMs

– Cut-and-paste between windows

– Update a database record

– Post a message to a social network

24

CMPSC443 - Computer Security Page

Subjects
• What’s a subject?

– OS: System (root/administrator) and Regular Users (you and me)

– However, even for operating systems this distinction is unsatisfactory

• System is too coarse

• User is too coarse/fine

• Why is system too coarse?

– Might that be the same problem for users?

• Do users even matter to operating systems anymore?

– How many users on your devices?

25

CMPSC443 - Computer Security Page

Who Are You?
• Identity vs. Permission

26

CMPSC443 - Computer Security Page

Root/Administrative User
• Subjects with full system access

– Initialize the system

– Modify the kernel

– Install software

• Need extra permissions to perform administrative tasks

– Ends up being a lot of processes

• All are part of the trusted computing base

27

CMPSC443 - Computer Security Page

Regular Users
• An unprivileged user

– However, all your processes run with the same permissions

• What are all the programs that you run?

– Should they all have full access to any file you can access?

• Sandboxing

– Run a program with a subset of your permissions

28

CMPSC443 - Computer Security Page

Role-Based Access Control
• Associate permissions with job functions

– Each job defines a set of tasks

– The tasks need permissions

– The permissions define a role

• Bank Teller

– Read/Write to client accounts

– Cannot create new accounts

– Cannot create a loan

– Role defines only the permissions allowed for the job

• What kind of jobs can we define permission sets for?

29

CMPSC443 - Computer Security Page

Role-based Access Control
• Model consists of two relationships

– Role-permission assignments

– User-role assignments

• Assign permissions to roles

– These are largely fixed

• Assign a user to the roles they can assume

– These change with each user

– Administrators must manage this relationship

30

CMPSC443 - Computer Security Page

Role Based Access Control
• Most formulations are of the type

‣ U: users -- these are the subjects in the system

‣ R: roles -- these are the different roles users may assume

‣ P: permissions --- these are the rights which can be assumed

• There is a many-to-many relation between:

‣ Users and roles

‣ Roles and permissions

• Relations define the role-based access control policy

31

CMPSC443 - Computer Security Page

Security Policies
• A security policy specifies the rules of security

‣ Some statement of secure procedure or configuration that parameterizes the

operation of a system

‣ Example: Airport Policy

• Take off your shoes

• No bottles that could contain > 3 ozs

• Empty bottles are OK?

• You need to put your things through X-ray machine

• Laptops by themselves, coat off

• Go through the metal detector

• Goal: prevent on-airplane (metal) weapon, flammable liquid, dangerous
objects … (successful?)

32

CMPSC443 - Computer Security Page

Access Policy Enforcement
• A protection state defines what each subject can do

‣ E.g., in an access bits --- the policy

• A reference monitor enforces the protection state

‣ A service that responds to the query...

• A correct reference monitor implementation meets the following guarantees

‣ Tamperproof

‣ Complete Mediation

‣ Simple enough to verify

• A protection system consists of a protection state, operations to modify that
state, and a reference monitor to enforce that state

33

CMPSC443 - Computer Security Page

Access Control Problem
• You run three programs

‣ One from the system - passwd
‣ One application - editor
‣ One from the Internet - email attachment

• What access control policies should be assigned to each program? For
protection? For security?

• How to make specifying access control policies easy?

Homework!

34

CMPSC443 - Computer Security Page

Commodity OS Security
• UNIX and Windows Protection Systems

‣ How do they identify subjects/objects to express access control

policies?

35

CMPSC443 - Computer Security Page

The UNIX FS access policy
• Really, this is a bit string ACL encoding an access matrix

• E.g.,

rwx rwx rwx

• And a policy is encoded as “r”, “w”, “x” if enabled, and “-” if not, e.g,

rwxrw---x

• Says owner can read, write and execute, group can read and write, and world

can execute only.

World
Group
Owner

36

CMPSC443 - Computer Security Page

UNIX UIDs
• Processes and files are associated with user IDs (UIDs)

• File UID indicates its owner (who gets owner perms)

‣ Group UID also (who gets group perms)

• Process UID indicates the owner of the process

‣ Normal user

‣ System (root)

‣ Now, some special UIDs for some programs

‣ Also, a process may run under multiple Group UIDs

• How do we switch UIDs (e.g., run a privileged program)?

37

CMPSC443 - Computer Security Page

Subjects
• Process

– User ID (UID)

– Group ID (GID)

– Supplementary Groups

• Command: id

– Provide info for that shell

38

CMPSC443 - Computer Security Page

UNIX UID Transitions
• UNIX represents subjects with a combination of UIDs

– Effective UID/GID -- used for access control

– Real UID/GID -- identify real owner of a process - control signals

– Saved UID -- privileged process - lower privilege temporarily

– File system UID -- reduce permission to file system

• UID transitions

– For login process: UIDs are root

– After authentication, the shell’s UIDs are: hussain1

– Exec su: real is hussain1; effective is root

39

R=1,E=1,S=1 seteuid(0) seteuid(1)

R=1,E=0,S=1

seteuid(1)

seteuid(0) R=1,E=1,S=0 seteuid(1)

R=1,E=0,S=0

seteuid(0) seteuid(1)

seteuid(0)

R=0,E=1,S=1 seteuid(1)

R=0,E=0,S=1

seteuid(0) seteuid(1)

seteuid(0)

R=0,E=1,S=0 seteuid(1)

R=0,E=0,S=0

seteuid(0) seteuid(1)

seteuid(0)

(a) An FSA describing seteuid in Linux

R=1,E=1,S=0 setreuid(0, 0) setreuid(0, 1)

R=1,E=0,S=0

setreuid(1, 0)

R=1,E=1,S=1

setreuid(1, 1)

setreuid(1, 0)

setreuid(1, 1)

R=0,E=0,S=0

setreuid(0, 0)

R=0,E=1,S=1

setreuid(0, 1)

setreuid(0, 0) setreuid(0, 1) setreuid(1, 0) setreuid(1, 1)

R=1,E=0,S=1

setreuid(1, 0)

setreuid(1, 1)

setreuid(0, 0)

setreuid(0, 1)setreuid(1, 0)

setreuid(1, 1)

setreuid(0, 0)

setreuid(0, 1)

setreuid(1, 0)

setreuid(1, 1)

setreuid(0, 0)

setreuid(0, 1)

R=0,E=1,S=0

setreuid(1, 0)

setreuid(1, 1)

setreuid(0, 0)

setreuid(0, 1)

R=0,E=0,S=1

setreuid(1, 0)

setreuid(1, 1)

setreuid(0, 0)

setreuid(0, 1)

(b) An FSA describing setreuid in Linux

R=1,E=1,S=1 setresuid(0, 0, 0) setresuid(0, 0, 1) setresuid(0, 1, 0) setresuid(0, 1, 1) setresuid(1, 0, 0) setresuid(1, 0, 1) setresuid(1, 1, 0) setresuid(1, 1, 1)

R=1,E=1,S=0

setresuid(1, 1, 1)

setresuid(1, 1, 0)

R=0,E=0,S=0

setresuid(0, 0, 0)

R=0,E=0,S=1

setresuid(0, 0, 1)

R=0,E=1,S=0

setresuid(0, 1, 0)

R=0,E=1,S=1

setresuid(0, 1, 1)

R=1,E=0,S=0

setresuid(1, 0, 0)

R=1,E=0,S=1

setresuid(1, 0, 1)

setresuid(1, 1, 1)

setresuid(1, 1, 0)

setresuid(0, 0, 0)

setresuid(0, 0, 1)

setresuid(0, 1, 0)

setresuid(0, 1, 1)

setresuid(1, 0, 0)

setresuid(1, 0, 1)

setresuid(1, 1, 1)

setresuid(1, 1, 0)

setresuid(0, 0, 0)

setresuid(0, 0, 1)

setresuid(0, 1, 0)

setresuid(0, 1, 1)

setresuid(1, 0, 0)

setresuid(1, 0, 1)

setresuid(1, 1, 1)

setresuid(1, 1, 0)

setresuid(0, 0, 0)

setresuid(0, 0, 1)

setresuid(0, 1, 0)

setresuid(0, 1, 1)

setresuid(1, 0, 0)

setresuid(1, 0, 1)

setresuid(1, 1, 1)

setresuid(1, 1, 0)

setresuid(0, 0, 0)

setresuid(0, 0, 1)

setresuid(0, 1, 0)

setresuid(0, 1, 1)

setresuid(1, 0, 0)

setresuid(1, 0, 1)

setresuid(1, 1, 1)

setresuid(1, 1, 0)

setresuid(0, 0, 0)

setresuid(0, 0, 1)

setresuid(0, 1, 0)

setresuid(0, 1, 1)

setresuid(1, 0, 0)

setresuid(1, 0, 1)

setresuid(1, 1, 1)

setresuid(1, 1, 0)

setresuid(0, 0, 0)

setresuid(0, 0, 1)

setresuid(0, 1, 0)

setresuid(0, 1, 1)

setresuid(1, 0, 0)

setresuid(1, 0, 1)

(c) An FSA describing setresuid in Linux

Figure 5: Three finite state automata describing the seteuid, setreuid, setresuid system calls in Linux respectively.

Ellipses represent states of the FSA, where a notation like “R=1,E=0,S=1” indicates that euid = 0 and ruid = suid �= 0.
Each transition is labelled with the system call it corresponds to.

CMPSC443 - Computer Security Page

UID Transition: Setuid
• A special bit in the mode bits

• Execute file

‣ Resulting process has the effective (and fs) UID/GID of file owner

• Enables a user to escalate privilege
‣ For executing a trusted service

• Downside: User defines execution environment

‣ e.g., Environment variables, input arguments, open descriptors, etc.

• Service must protect itself or user can gain unauthorized access

‣ UNIX services often run as root UID -- many via setuid!

40

CMPSC443 - Computer Security Page

UID Transition: Setuid
• A special bit in the mode bits

• Execute file

– Resulting process has the effective (and fs) UID/GID of file owner

• Enables a user to escalate privilege

– For executing a trusted service

• User defines execution environment

– e.g., Environment variables

• Service must protect itself or user can gain root access

41

CMPSC443 - Computer Security Page

Setuid Execution
• Process A running as

– UID=X

• Fork process A to create process B

– Both running with UID=X

• The exec file passwd in process B with setuid bit set and owner of root

– process A has UID=X

– process B has UID=root

42

CMPSC443 - Computer Security Page

UNIX Limitations
• How do I create a subject with no permissions?

– You don’t

• How do I give one person access to a file?

– Make them owner

– Make a group of one

• How do I give all but one user access to a file?

– You don’t

• Setuid - root or user

• UNIX model is easy to use

– But, you can’t express every case

43

CMPSC443 - Computer Security Page

Changing Effective User ID
• A process that executes a set-uid program can drop its privilege; it can

‣ drop privilege permanently

• removes the privileged user id from all three user IDs

• drop privilege temporarily

‣ removes the privileged user ID from its effective uid but stores it in its saved uid,

later the process may restore privilege by restoring privileged user ID in its effective
uid

‣

44

CMPSC443 - Computer Security Page

Avoiding Vulnerabilities
• How do we write programs to avoid mistakes that lead to vulnerabilities?

‣ Prevent memory errors

‣ Detect data handling errors (e.g., truncation)

45

CMPSC443 - Computer Security Page

Access Control == Security?
• Do the Windows and UNIX access control mechanisms provide security for

our systems?

– What is security?

46

CMPSC443 - Computer Security Page

What Is Security?
• In practice, security methods focus on security or functionality - but not both at the

same time!

• Security Is Foremost
‣ Information Flow: No communication with untrusted

‣ Advantage: Focus is security

‣ Disadvantage: May prevent required functionality

• Restrict based on Functionality
‣ Least Privilege: Only rights needed to execute

‣ Advantage: Enables required functionality

‣ Disadvantage: May not block all attack paths

• Let’s look at the two common approaches

‣ Least Privilege and Information Flow

47

CMPSC443 - Computer Security Page

Principle of Least Privilege

• Implication 1: you want to limit the process to the smallest possible set of

objects

• Implication 2: you want to assign the minimal set of operations to each

object

• Caveat: of course, you need to provide enough permissions to get the job
done.

48

A system should only provide those privileges needed
to perform the processes’ functions and no more.

CMPSC443 - Computer Security Page

Least Privilege
• Limit permissions to those required and no more

• Suppose J1-J3 must use the permissions below

‣ What is the impact of the secrecy of O1?

O1 O2 O3

J1 R RW -

J2 - R -

J3 - R RW

49

CMPSC443 - Computer Security Page

Least Privilege
• Can least privilege prevent attacks?

‣ Trojan horse

‣ Untrusted input

50

CMPSC443 - Computer Security Page

Least Privilege
• Can least privilege prevent attacks?

‣ Trojan horse

‣ Untrusted input

‣ Some. No guarantee such attacks are not possible

51

CMPSC443 - Computer Security Page

Secure Protection State
• Set of all protection states P

• Set of secure protection states Q

– Subjects access to objects to perform operations

– Meets secrecy, integrity, availability goal

• Example: Protect access to your public key pair

– Only the protection states in which only you can read the private key file are secure

– Protection states in which only you may write the public key file are secure

• Problem: Not all processes are necessarily secure

– Recall programs running on your behalf

• Hey, even some programs running on your behalf are not to be trusted with your private key!

52

CMPSC443 - Computer Security Page

Trusted Processes
• Does it matter if we do not trust some of J’s processes?

53

O1 O2 O3

J R RW RW

S2 N R RW

S3 N R RW

CMPSC443 - Computer Security Page

Secrecy
• Does the following protection state ensure the secrecy of J’s private key in

O1?

54

O1 O2 O3

J R RW RW

S2 N R RW

S3 N R RW

CMPSC443 - Computer Security Page

Integrity
• Does the following access matrix protect the integrity of J’s public key file

O2?

55

O1 O2 O3

J R RW RW

S2 N R RW

S3 N R RW

CMPSC443 - Computer Security Page

Protection vs Security
• Protection

– Security goals met under trusted processes

– Protects against an error by a non-malicious entity

• Security

– Security goals met under potentially malicious processes

– Protects against any malicious entity

• For J:

– Non-malicious process shouldn’t leak the private key by writing it to O3

– A malicious process may write the private key to O3

• What kind of process might do this?

56

CMPSC443 - Computer Security Page

Trojan Horses
• Trojan horse: A program with a malicious function that masquerades as a

benign application

• Suppose you download an editor to modify your secret documents

– This program can do anything your subject is capable of

– For example, write the document contents to a remote party

• To prevent leakage, we must block Trojan horse leakage

– We’ll discuss this later

57

CMPSC443 - Computer Security Page

Secrecy Properties
• Simple-Security Property

– Subjects cannot read data that is more secret than their subject is allowed

• *-Security Property

– Subjects cannot write data to files that are less secret than they are

• Reverse for protecting integrity

– Why?

58

CMPSC443 - Computer Security Page

Enforcement Mechanism
• Every system needs to enforce its protection state

• Q: What is required of such an enforcement mechanism?

59

CMPSC443 - Computer Security Page

Reference Monitor Concept
• Properties

– Complete Mediation of all security-sensitive operations

• Access control policy is checked before any security-sensitive operation is run

– Tamperproof

• No untrusted process can modify the enforcement mechanism or access control policy

– Simple enough for verification of correctness

• All code can be verified against correctness criteria

• Need to enforce a secure protection state

60

CMPSC443 - Computer Security Page

Reference Monitor

61

CMPSC443 - Computer Security Page

Commodity Systems Fail Reference
• Mediation

– UNIX access control focuses on files, but many other types of system objects enable

information flow

• Windows is better, but UNIX systems have been updated

– Many setuid processes are not trustworthy

• Tamperproof

– Protection state transitions may be controlled by untrusted processes

• Correctness

– UNIX and Windows systems are far too large to verify their correctness

62

CMPSC443 - Computer Security Page

Commodity Systems Fail Reference
• Mediation

– UNIX access control focuses on files, but many other types of system objects enable

information flow

• Windows is better, but UNIX systems have been updated

– Many setuid processes are not trustworthy

• Tamperproof

– Protection state transitions may be controlled by untrusted processes

• Correctness

– UNIX and Windows systems are far too large to verify their correctness

63

CMPSC443 - Computer Security Page

Protection State Transitions
• Transition

– From one access matrix state to another

– Add/delete subject, object, operation assignment

• Transition principals

– Owner-driven

– Delegation

– Administrator-driven

• Attenuation of Rights Principle

– Can’t grant a right that you do not possess

64

CMPSC443 - Computer Security Page

Safety Problem
• Is there a general algorithm that enables us to determine whether a permission

may be leaked to an unauthorized user from any future protection state?

• Intuition:

– From a protection state, users can administer permissions for the objects that they

own

– Enable other subjects to access those objects

• For typical access control models (UNIX)

– Problem is Undecidable

– Can also extend representation (new users, objects)

• Practice:

– Check current protection state for “safety”

65

CMPSC443 - Computer Security Page

Mandatory Protection System

66

22 CHAPTER 2. ACCESS CONTROL FUNDAMENTALS

secret

secret

unclassified

unclassified trusted

trusted

untrusted

untrusted

read read read

read read read

read

read readread

write

write

write

write

write

write

write

File:

newfile

Process:

newproc

Labeling
State

Process:

other

File:

acct

write

Transition
State

Protection
State

Figure 2.2: A Mandatory Protection System: The protection state is defined in
terms of labels and is immutable. The immutable labeling state and transition
state enable the definition and management of labels for system subjects and
objects.

not permit unclassified subjects with access to secret objects, newproc can-
not access newfile. As for the protection state, in a secure operating system,
the labeling state must be defined by trusted administrators and immutable
during system execution.

A transition state enables a secure operating system to change the label
of a process or a system resource. For a process, a label transition changes
the permissions available to the process (i.e., its protection domain), so such
transitions are called protection domain transitions for processes. As an example
where a protection domain transition may be necessary, consider when a process
executes a di�erent program. When a process performs an execve system call
the process image (i.e., code and data) of the program is replaced with that of
the file being executed. Since a di�erent program is run as a result of the execve
system call, the label associated with that process may need to be changed as
well to indicate the requisite permissions or trust in the new image.

A transition state may also change the label of a system resource. A label
transition for a file (i.e., object or resource) changes the accessibility of the file to
protection domains. For example, consider the file acct that is labeled trusted
in Figure 2.2. If this file is modified by a process with an untrusted label, such
as other, a transition state may change its label to untrusted as well. The
Low-Water Mark (LOMAC) policy defines such kind of transitions [101, 27]
(see Chapter 5). An alternative would be to change the protection state to
prohibit untrusted processes from modifying trusted files, which is the case
for other policies. As for the protection state and labeling state, in a secure
operating system, the transition state must be defined by trusted administrators
and immutable during system execution.

CMPSC443 - Computer Security Page

Mandatory Protection System
A mandatory protection system is a protection system that can only be modified by trusted
administrators via trusted software, consisting of the following state representations:

• A mandatory protection state is a protection state where subjects and objects are represented by
labels where the state describes the operations that subject labels may take upon object labels

• A labeling state for mapping processes and system resource objects to (subject and object) labels;

• A transition state that describes the legal ways that processes and system resource objects may be

relabeled.

• An MPS enforces a mandatory access control policy

• User-managed access control is called discretionary access control

67

CMPSC443 - Computer Security Page

Mandatory Protection System
• Why is a labeling state necessary?

• To attach a label to every subject and object dynamically

• Imagine a system boot process

• Why is a transition state necessary?

• Necessary for cases where permissions of a process (subject) or access to a file (object)

must be changed dynamically

• Imagine a setuid process

• How does an MPS enable reference monitor?

• Tamperproofing

• Utilizes Mediation and Correctness

68

CMPSC443 - Computer Security Page

Integrity Threat
• Untrusted Input

‣ Process reads untrusted input when expects input protected from

adversaries

• Read a user-defined config file

• Execute a log file

• Admin executes untrusted programs

69

CMPSC443 - Computer Security Page

Protection vs Security
• Protection

‣ Secrecy and integrity met under benign processes

‣ Protects against an error by a non-malicious entity

• Security

‣ Secrecy and integrity met under malicious processes

‣ Blocks against any malicious entity from performing unauthorized operations at

all times

• Hence, For J:

‣ Non-malicious processes shouldn’t leak the private key by writing it to O3

‣ A malicious or compromised process may contain a Trojan horse that will write the private key
to O3

70

CMPSC443 - Computer Security Page

Information Flow
• Access control that focuses on information flow restricts the flow of information

among subjects and objects

‣ Regardless of functional requirements

• Confidentiality

‣ Processes cannot read unauthorized secrets

‣ Processes cannot leak their own secrets to unauthorized processes

• Claim: Prevent Trojan horse attacks

• Integrity

‣ Processes cannot write objects that are “higher integrity”

‣ In addition, processes cannot read objects that are “lower integrity” than they are

• Claim: Prevent attacks from Untrusted Inputs

71

CMPSC443 - Computer Security Page

Prevent Trojan Horses
• Information Flow Goal

‣ Prevent Trojan horse attacks

• Intuition: Prevent flow of secrets to public subjects or objects

72

CMPSC443 - Computer Security Page

Information Flow
• Suppose O1 must be secret to J1 only

• No information flow from O1 to either J2 or J3
‣ What can you remove to protect the secrecy of O1?

O1 O2 O3

J1 R RW -

J2 - R -

J3 - R RW

73

CMPSC443 - Computer Security Page

Denning Security Model
• Information flow model FM = (N, P, SC, x, y)

‣ N: Objects

‣ P: Subjects

‣ SC: Security Classes

‣ x: Combination

‣ y: Can-flow relation

• N and P are assigned security classes (“levels” or “labels”)

• SC1 + SC2 determines the resultant security class when data of security classes

SC1 and SC2 are combined

• SC2 —> SC1 determines whether an information flow is authorized from

security class SC2 to SC1

• SC, +, and —> define a lattice among security classes

74

CMPSC443 - Computer Security Page

Denning Security Model
• Preventing Trojan horse attacks
‣ Secret files are labeled SC1 (secret)

‣ Secret user logs in and runs processes that are labeled SC1 (secret)

‣ Public objects are labeled SC2 (public)

‣ Only flows within a class or from SC2 to SC1 are authorized (public to secret)

‣ When data of SC1 and SC2 are combined, the resultant security class of the

object is SC1 (public and secret data make secret data)

• How does this prevent a Trojan horse from leaking data?

75

CMPSC443 - Computer Security Page

Information Flow
• Does information flow security impact functionality?

76

CMPSC443 - Computer Security Page

Information Flow
• Does information flow security impact functionality?

‣ Yes, so need special processes to reclassify objects

• Called guards, but are assumed to be part of TCB

‣ “Require” formal assurance :-P

77

CMPSC443 - Computer Security Page

Information Flow Models
• Secrecy: Multilevel Security, Bell-La Padula

• Integrity: Biba, LOMAC

78

CMPSC443 - Computer Security Page

Multilevel Security
• A multi-level security system tags all objects and subjects with security tags

classifying them in terms of sensitivity/access level.

‣ We formulate an access control policy based on these levels

‣ We can also add other dimensions, called categories which horizontally partition the

rights space (in a way similar to that as was done by roles)

security levels
categories

79

CMPSC443 - Computer Security Page

US DoD Policy
• Used by the US military (and many others), uses MLS to define policy

• Levels:

UNCLASSIFIED < CONFIDENTIAL < SECRET < TOP SECRET

• Categories (actually unbounded set)

NUC(lear), INTEL(igence), CRYPTO(graphy)

• Note that these levels are used for physical documents in the governments
as well.

80

CMPSC443 - Computer Security Page

Assigning Security Levels
• All subjects are assigned clearance levels and compartments

‣ Alice: (SECRET, {CRYTPO, NUC})

‣ Bob: (CONFIDENTIAL, {INTEL})

‣ Charlie: (TOP SECRET, {CRYPTO, NUC, INTEL})

• All objects are assigned an access class

‣ DocA: (CONFIDENTIAL, {INTEL})

‣ DocB: (SECRET, {CRYPTO})

‣ DocC: (UNCLASSIFIED, {NUC})

81

CMPSC443 - Computer Security Page

Multilevel Security
• Access is allowed if �

subject clearance level >= object sensitivity level and subject categories ⊇
object categories (read down)

• Q: What would write-up be?
82

Bob: CONF., {INTEL})
Charlie: TS, {CRYPTO, NUC, INTEL})

Alice: (SEC., {CRYTPO, NUC})

DocA: (CONFIDENTIAL, {INTEL})

DocB: (SECRET, {CRYPTO})

DocC: (UNCLASSIFIED, {NUC})

CMPSC443 - Computer Security Page

Bell-La Padula Model
• A Confidentiality MLS policy that enforces:

‣ Simple Security Policy: a subject at specific classification level cannot read data with a

higher classification level. This is short hand for “no read up”.

‣ * (star) Property: also known as the confinement property, states that subject at a

specific classification cannot write data to a lower classification level. This is
shorthand for “no write down”.

83

CMPSC443 - Computer Security Page

How about integrity?
• MLS as presented before talks about who can “read” a secret document

(confidentiality)

• Integrity states who can “write” a sensitive document

‣ Thus, who can affect the integrity (content) of a document

‣ Example: You may not care who can read DNS records, but you better care who

writes to them!

• Biba defined a dual of secrecy for integrity

‣ Lattice policy with, “no read down, no write up”

• Users can only create content at or below their own integrity level (a monk may write a prayer
book that can be read by commoners, but not one to be read by a high priest).

• Users can only view content at or above their own integrity level (a monk may read a book written
by the high priest, but may not read a pamphlet written by a lowly commoner).

84

CMPSC443 - Computer Security Page

Biba (example)
• Which users can modify what documents?

‣ Remember “no read down, no write up”

85

Bob: (CONF., {INTEL})
Charlie: (TS, {CRYPTO, NUC, INTEL})

Alice: (SEC., {CRYTPO, NUC})

DocA: (CONFIDENTIAL, {INTEL})

DocB: (SECRET, {CRYPTO})

DocC: (UNCLASSIFIED, {NUC})

?????

CMPSC443 - Computer Security Page

Window Vista Integrity
• Integrity protection for writing

• Defines a series of protection level of increasing protection

‣ installer (highest)

‣ system

‣ high (admin)

‣ medium (user)

‣ low (Internet)

‣ untrusted (lowest)

• Semantics: If subject’s (process’s) integrity level dominates the object’s integrity
level, then the write is allowed

86

CMPSC443 - Computer Security Page

Vista Integrity

87

S1(installer)

S2(user)

S3(untrusted)

O1(admin)

02(untrusted)

03(user)

CMPSC443 - Computer Security Page

Vista Integrity

88

S1(installer)

S2(user)

S3(untrusted)

O1(admin)

02(untrusted)

03(user)

CMPSC443 - Computer Security Page

Reduce Integrity Restrictiveness
• Can we allow processes to read lower integrity data without compromising

information flow?

‣ Still don’t trust the process to handle lower integrity inputs without being

compromised

• Insight: Could change the integrity level of each process based on the data it

accesses

89

CMPSC443 - Computer Security Page

LOMAC
• Low-Water Mark integrity

‣ Change integrity level based on actual dependencies

• Subject is initially at the highest integrity

‣ But integrity level can change based on objects accessed

• Ultimately, subject has integrity of lowest object read

90

CMPSC443 - Computer Security Page

Integrity, Sewage, and Wine
• Mix a gallon of sewage and one drop of wine gives you?

• Mix a gallon of wine and one drop of sewage gives you?

91

Integrity is really a contaminant problem:
you want to make sure your data is
not contaminated with data of lower
integrity.

CMPSC443 - Computer Security Page

Take Away
• Claim: Traditional access control approaches (UNIX and Windows) do not

enforce security against a determined adversary

‣ (1) Trojan horses and confused deputies violate security goals

‣ (2) DAC models prevent goals from being enforced

• Mandatory Access Control (MAC) is the way these can be achieved

‣ MAC policies

‣ Information flow models (MLS, Biba)

‣ Least privilege MAC is often used (see SELinux)

92

