
CMPSC 443: Introduction to Computer Security

Spring 2022
Project 2: Buffer Overflows

Due: 11:59 pm (eastern time), March 14, 2022

February 22, 2022

1 Introduction

In this assignment, you will produce Buffer overflow attacks. First, you learn some attacks that invoke
shared functions with arguments obtained from different places in memory (injected by you, or from
environment variables, or from the hard coded strings in the code etc). Successful completion of
this project heavily relies on correct understanding of stacks, heaps, program memory layout and a
function’s stack frame.

2 Prerequisite

Before attempting this project, it is advisable to brush on the basics of stack frame, memory layout
of program, use of GDB Debugger and big-endian vs little-endian. To quickly brush through basics
of GDB debugging, I’d recommend watching this GDB Debugger Tutorial - https://www.youtube.
com/watch?v=J7L2x1ATOgk&t=319s.

3 Project Platforms

For this project, we will use the Linux virtual machine (VM), which is available at https://drive.
google.com/file/d/1OqvEfiIkl4DUrU_ZlBfVdPwRCnossri-/view?usp=sharing. To get the VM run-
ning on your host machine, you will need Oracle VM VirtualBox downloaded and installed. The tar
provided in the URL above consists of all necessary files (*.vbox, *.vmdk etc.) for Oracle VirtualBox
to start the Ubuntu VM.
The exploits in this project have been tested on the same VM, therefore you must use the same en-
vironment for solving your tasks. Running the task binaries in a different VM or environment might
not work.
Note: The password for the VM is posted on CANVAS. Once you login, all the necessary project
files would be available on the Desktop itself.

4 Background

In the Virtual machine set-up, we have installed few tools and configurations that are essential for the
completion of this project.

1

https://www.youtube.com/watch?v=J7L2x1ATOgk&t=319s
https://www.youtube.com/watch?v=J7L2x1ATOgk&t=319s
https://drive.google.com/file/d/1OqvEfiIkl4DUrU_ZlBfVdPwRCnossri-/view?usp=sharing
https://drive.google.com/file/d/1OqvEfiIkl4DUrU_ZlBfVdPwRCnossri-/view?usp=sharing


Address space layout randomization (ASLR) is set to Zero (Turned off) in the 32-bit Linux
machine.

gdb-peda is a wrapper around the GDB debugger that has many features that help better visualize
operational stack frames, variables, registers etc. when debugging C programs. This is already in-
stalled and set-up in the VM provided to you.

GDB command to show 100 lines of the stack starting from the $esp register is -

x/100xw $esp

GDB peda command provides a better visualization of the stack for the same purpose -

context stack 100

The exhaustive list of commands in gdb-peda is shown in this cheat sheet -
https://github.com/kibercthulhu/gdb-peda-cheatsheet/blob/master/gdb-peda%20cheatsheet.

pdf

You are free to use any of these commands for help during your attacks.

GDB is a very popular and important GNU debugger that is used primarily to debug C programs.
It is an essential tool used by computer science engineers. I highly recommend you to spend a couple
of days to get hands-on with the tool if you haven’t used it anytime in the past. Some of the most
important commands that can come handy in this project are as follows -

print var OR p var

Prints the value of the local/global variable

p &var

Prints the address at which var is stored

p sample_function

Prints the pointer address to the method "sample_function"

p exit, p printf, p scanf etc.

Prints the pointer address to the standard C methods like printf, scanf, exit etc.

b 171

Adds a breakpoint at line no 171

run args

Starts a program within GDB with arguments

c

Continues the program until the next breakpoint

info locals

Gives information about all the local variables at the moment in the current frame.

info frame

Gives information about the current frame.

2

https://github.com/kibercthulhu/gdb-peda-cheatsheet/blob/master/gdb-peda%20cheatsheet.pdf
https://github.com/kibercthulhu/gdb-peda-cheatsheet/blob/master/gdb-peda%20cheatsheet.pdf


5 Code and Compiling

The initial code for the project is available at https://drive.google.com/file/d/1AgZGNMczwECwAzxE9CQ8f8av8VSFBXGn/
view?usp=sharing. The same initial code is also present inside the VM on its Desktop. You have
three groups of files given here -

The first group of files contains the victim-binary file which is compiled using its source code cse443-
victim-program.c. Other files in this group contain utility functions, Makefile and README.txt to
help you guide through the tasks. You should NOT edit any of these files.

victim-binary

cse443-victim-program.c

cse443-util-program.c

cse443-util-program.h

Makefile

README.txt

The second group of files correspond to each of the five tasks to be executed. They have some initial
code written for your help. You should edit these files appropriately to successfully finish all the
tasks.

cse443-task1-attack.c

cse443-task2-attack.c

cse443-task3-attack.c

cse443-task4-attack.c

cse443-task5-attack.c

The third group of files correspond to other intermediate files and payloads that are generated using
the above two groups of files. For Example, the command ”make task1-binary” will produce two inter-
mediate files ”task1-binary” and ”cse443-task1-attack.o” from the source code ”cse443-task1-attack.c”.

"make task1-binary" produces task1-binary

"make task2-binary" produces task2-binary

"make task3-binary" produces task3-binary

"make task4-binary" produces task4-binary

"make task5-binary" produces task5-binary

"make victim-binary" produces victim-binary (This is not required as you wont make

any changes to cse443-victim-program.c)

Similarly, running the task binaries should produce their corresponding payload files as follows.

"./task1-binary" produces task1-payload

"./task2-binary" produces task2-payload

"./task3-binary" produces task3-payload

"./task4-binary" produces task4-payload

"./task5-binary" produces task5-payload

NOTE: Remember! You are only supposed to edit the contents of files mentioned in Group2 to create
corresponding attack binaries and payloads. Editing any file mentioned in Group1 might help you
temporarily in your VM but we will evaluate your code with the original victim binary in a different
setup. Then your code may not be creating successful attacks and this will lead to a 0 score in all
tasks.

3

https://drive.google.com/file/d/1AgZGNMczwECwAzxE9CQ8f8av8VSFBXGn/view?usp=sharing
https://drive.google.com/file/d/1AgZGNMczwECwAzxE9CQ8f8av8VSFBXGn/view?usp=sharing


6 Exercise Tasks

The project consists of five tasks in total. Out of theses tasks, Task no. 4 is a BONUS task and can
be treated as optional. Therefore, tasks 1,2,3,5 are enough to provide you with the full grade. Every
task/attack follows similar execution flow at your end. Primarily, the victim-binary has at-least 5
buffer overflow vulnerabilities which you will take advantage of in each attack to generate unexpected
and interesting results. To analyse these vulnerabilities, we have provided you the victim’s source code
i.e. cse443-victim-program.c!

The tasks are as follows.

1. In Task 1, you will build your very first light-saber by invoking the method make lightsaber.
Observe that the method first lightsaber is invoked through the main function. It has many
local variables including the variable key that is set to the value of another argument argc.
You need to find the buffer overflow vulnerability in first lightsaber and create a payload by
packing enough A’s at the beginning of your string. Find the location of the local variable key
and set it to 0 using this overflow.
Observe that with no attack, the value of key is 2 (because argc is 2) and thus the function
make lightsaber can be never legally called. But with the right overflow attack, you need to
invoke the function make lightsaber with the right value of key=0.
Complete the program cse443-task1-attack.c to build a payload task1-payload using which
the victim-binary prints the message - Congratulations! You have successfully built

your lightsaber. A successful attack will look like the following.

cse443student@cse443student-VirtualBox:~/Desktop/lab2-handout$ ./victim-binary

task1-payload

Welcome to not a Jedi Academy for CMPSC443

TASK1: Try to make your first lightsaber!

Congratulations! You have successfully built your lightsaber.

This is your lightsaber ID := 12937

2. In Task 2, you will use the Force to get access to the Shell! Observe that the method force shell
is invoked through the main function. It has many local variables including the function pointer
variable denoted by functionPtr that is set to point to a method called get this. You need to
find the vulnerability in force shell and create a payload by packing enough A’s at the beginning
of your string. Find the location of the local variable functionPtr and set it to the method called
and get that using this overflow.
Observe that with no attack, the value of functionPtr is set to the address of the function
get this and thus the function and get that can be never legally called. But with the right
overflow attack again, you need to invoke the function and get that.
Complete the program cse443-task2-attack.c to build a payload task2-payload using which
the victim-binary prints the message - Young Jedi! You got the shell - and give access

to a new shell. A successful attack will look like the following.

cse443student@cse443student-VirtualBox:~/Desktop/lab2-handout$ ./victim-binary

task2-payload

Welcome to not a Jedi Academy for CMPSC443

TASK1: Try to make your first lightsaber!

TASK2: Try to get to the Shell. May the force be with you!

This is your lightsaber ID := 11254

4



Young Jedi! You got the shell.

$

3. In Task 3, you will need to complete your Jedi Combat Training by successfully invoking the
method complete training. Observe that the method combat training is invoked through
the main function. You need to find the vulnerability in combat training and create a payload
by packing enough A’s at the beginning of your string. In this attack, you need to spot the return
address of this method and successfully change it to the method complete training using the
overflow.
Observe that with no attack, the method combat training will simply return back to the main
method from where it was initially invoked. But with the right overflow attack again, you need
to return to the function complete training.
Complete the program cse443-task3-attack.c to build a payload task3-payload using which
the victim-binary prints the message - Well Done. Been recognized, your hard-working

has! A successful attack will look like below.

cse443student@cse443student-VirtualBox:~/Desktop/lab2-handout$ ./victim-binary

task3-payload

Welcome to not a Jedi Academy for CMPSC443

TASK1: Try to make your first lightsaber!

TASK2: Try to get to the Shell. May the force be with you!

Try with greater force!

TASK3: Not prepared, you are!

This is your lightsaber ID := 16380

TASK3 has been successfully completed!

Well Done. Been recognized, your hard-working has!

Segmentation fault (core dumped)

4. In Task 4, you will need to collect 5 lightsabers to successfully finish the attack. Observe that
the method collect lightsabers is invoked through the main function. You need to find the
vulnerability in collect lightsabers and create a payload by packing enough A’s at the beginning
of your string. In this attack, you need to spot the return address of this method and successfully
craft a chain of calls to the functions get blue lightsaber and get green lightsaber using the
overflow.
Observe that with no attack, the method collect lightsabers will simply return back to the
main method from where it was initially invoked. But with the right overflow attack again, you
need to carefully craft a sequence of 5 calls to collect 3 BLUE lightsabers and 2 GREEN
lightsabers.
Complete the program cse443-task4-attack.c to build a payload task4-payload. A successful
attack will look like the following.

cse443student@cse443student-VirtualBox:~/Desktop/lab2-handout$ ./victim-binary

task4-payload

Welcome to not a Jedi Academy for CMPSC443

TASK1: Try to make your first lightsaber!

TASK2: Try to get to the Shell. May the force be with you!

Try with greater force!

TASK3: Not prepared, you are!

TASK4: Collect five lightsabers to complete this task!

This is your lightsaber ID := 10310

5



You got a blue lightsaber!

This is your lightsaber ID := 6192

You got a blue lightsaber!

This is your lightsaber ID := 10109

You got a blue lightsaber!

This is your lightsaber ID := 17883

You got a green lightsaber!

This is your lightsaber ID := 17596

You got a green lightsaber!

Segmentation fault (core dumped)

5. In Task 5, you will need to follow the light side and use your skills to print your name to
successfully finish the attack. Observe that the method follow the light is invoked through the
main function. You need to find the vulnerability in follow the light and create a payload by
packing enough A’s at the beginning of your string. In this attack, you need to print your name
at the end of the last print statement in this method using the overflow.
Observe that with no attack, the method follow the light will simply return back to the main
method from where it was initially invoked. So it will only print - Your Jedi Name is :- . But
with the right overflow attack, you need to invoke the C library function printf with a custom
argument string i.e. your name and then invoke the system function exit.
Complete the program cse443-task5-attack.c to build a payload task5-payload using which
the victim-binary invokes the native printf function using your NAME as an argument at the
right place in the code. A successful attack will look like below.

cse443student@cse443student-VirtualBox:~/Desktop/lab2-handout$ gdb -q victim-

binary

Reading symbols from victim-binary...done.

gdb-peda$ run task5-payload

Starting program: /home/cse443student/Desktop/lab2-handout/victim-binary task5-

payload

Welcome to not a Jedi Academy for CMPSC443

TASK1: Try to make your first lightsaber!

TASK2: Try to get to the Shell. May the force be with you!

Try with greater force!

TASK3: Not prepared, you are!

TASK4: Collect five lightsabers to complete this task!

TASK5: Print your name !

Your Jedi Name is :- GOUTHAM

[Inferior 1 (process 3072) exited with code 0107]

Warning: not running

gdb-peda$

NOTE : Task 5 is very different from other tasks where we need to send a custom argument like
GOUTHAM to the printf function. In Tasks 1-4 we only change return addresses and values of
local variables to achieve our goal. Your attack will be successful within GDB debugger, however,
the same payload may not help in performing a successful attack outside the GDB debugger.

6



Explain this in your report (refer to Questions section).

7 Questions

1. Draw the function’s stack frame in Task 2 to demonstrate the overflow. Use tools like Paint,
Excel or any other online tool to show the stack frame. Refrain from providing diagrams drawn
using hand.

2. Why does Task 5 fail to run from the command line, but succeed when run in GDB debugger?

3. Why do Tasks 1-4 run both from the command line and GDB debugger the same ?

4. Briefly identify and explain a viable defense mechanism to prevent the attack inTask 3. Precisely
explain how this would prevent the attack you have crafted.

8 Deliverables

Please submit a tar ball containing the following:

1. cse443-task*-attack.c files (4 or 5 files), respective binaries task*-binary (4 or 5 files), payload
files task*-payload (4 or 5 files).

2. A report in PDF containing: (1) Trace of output printed (e.g., shell invocation) from your
execution of each case (2) Screenshot of each completed task and (3) Answers to project questions

9 Grading

The assignment is worth 200 points (+30 BONUS) total broken down as follows.

1. Answers to four questions (40 pts, 10 points each).

2. Packaging of your attack programs, binaries, payloads and the report in the ”tar” file you submit.
Your attack programs build without incident. (20 pts).

3. Completeness of report (20 pts).

4. Task 1 (20 pts), Task 2 (30 pts), Task 3 (30 pts), Task 4 (30 BONUS pts) and Task 5 (40 pts).

7


	Introduction
	Prerequisite
	Project Platforms
	Background
	Code and Compiling
	Exercise Tasks
	Questions
	Deliverables
	Grading

